1
|
Russkikh IV, Popov OS, Klochkova TG, Sushentseva NN, Apalko SV, Asinovskaya AY, Mosenko SV, Sarana AM, Shcherbak SG. Comparative metabolomic analysis reveals shared and unique features of COVID-19 cytokine storm and surgical sepsis. Sci Rep 2025; 15:6622. [PMID: 39994234 PMCID: PMC11850835 DOI: 10.1038/s41598-025-90426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
The clinical manifestations of the cytokine storm (CS) associated with COVID-19 resemble the acute phase of sepsis. Metabolomics may contribute to understanding the specific pathobiology of these two syndromes. The aim of this study was to compare serum metabolomic profiles in CS associated with COVID-19 vs. septic surgery patients. In a retrospective cross-sectional study, serum samples from patients with CS associated with COVID-19, with and without comorbidity, as well as serum samples from patients with surgical sepsis were investigated. Targeted metabolomic analysis was performed on all samples using LC-MS/MS. Analysis revealed that similar alterations in the serum metabolome of patients with COVID-19 and surgical septic patients were associated with amino acid metabolism, nitrogen metabolism, inflammatory status, methionine cycle and glycolysis. The most significant difference was found for serum levels of metabolites of kynurenine synthesis, tricarboxylic acid cycle, gamma-aminobutyric acid and niacinamide. The metabolic pathway of cysteine and methionine metabolism was significantly disturbed in COVID-19 and surgical septic patients. For the first time, the similarities and differences between the serum metabolomic profiles of patients with CS associated with COVID-19 and patients with surgical sepsis were investigated for patients from the Northwest of the Russian Federation.
Collapse
Affiliation(s)
- Iana V Russkikh
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
| | - Oleg S Popov
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
- Saint Petersburg State University, Government of the Russian Federation, 199034, Saint-Petersburg, Russian Federation
| | - Tatiana G Klochkova
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation.
| | - Natalia N Sushentseva
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
| | - Svetlana V Apalko
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
- Saint Petersburg State University, Government of the Russian Federation, 199034, Saint-Petersburg, Russian Federation
| | - Anna Yu Asinovskaya
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
- Saint Petersburg State University, Government of the Russian Federation, 199034, Saint-Petersburg, Russian Federation
| | - Sergey V Mosenko
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
- Saint Petersburg State University, Government of the Russian Federation, 199034, Saint-Petersburg, Russian Federation
| | - Andrey M Sarana
- Saint Petersburg State University, Government of the Russian Federation, 199034, Saint-Petersburg, Russian Federation
| | - Sergey G Shcherbak
- Saint Petersburg State Health Care Establishment the City Hospital No. 40 of Health Department of the Saint Petersburg Kurortniy District Administration, St. Borisova, 9, 197706, Sestroretsk, Russian Federation
- Saint Petersburg State University, Government of the Russian Federation, 199034, Saint-Petersburg, Russian Federation
| |
Collapse
|
2
|
Turk H, Temiz E, Koyuncu I. Metabolic reprogramming in sepsis-associated acute kidney injury: insights from lipopolysaccharide-induced oxidative stress and amino acid dysregulation. Mol Biol Rep 2024; 52:52. [PMID: 39680269 DOI: 10.1007/s11033-024-10175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) stands out as a critical health issue due to its high mortality and morbidity rates. This study aimed to comprehensively investigate the biochemical and metabolic alterations induced by lipopolysaccharide (LPS) in human embryonic kidney cells (HEK-293) using an in vitro model. METHODS AND RESULTS The study investigated the impact of LPS on HEK-293 cells by evaluating cytotoxicity using the MTT assay, analyzing apoptosis, cell cycle progression, and oxidative stress via flow cytometry, measuring TNF-α levels through ELISA, and assessing amino acid metabolism with LC-MS/MS. The findings demonstrated that LPS significantly reduced cell viability in a dose-dependent manner, increased apoptotic cell populations, induced DNA damage by arresting the cell cycle in the Sub-G1 phase, and activated oxidative stress pathways. Notably, elevated reactive oxygen species (ROS) production and increased secretion of the pro-inflammatory cytokine TNF-α highlighted LPS's inflammatory and cytotoxic effects. Furthermore, systematic analysis revealed LPS-induced disruptions in amino acid metabolism, including marked reductions in alanine, arginine, and aspartic acid levels. KEGG pathway analysis identified significant metabolic alterations in pathways such as the urea cycle, TCA cycle, and glutathione metabolism. Interestingly, elevated citrulline levels suggested a potential adaptive mechanism to counteract LPS-induced inflammation and oxidative stress. Additionally, ROC analysis identified cystine as a highly reliable biomarker, with an AUC value of 1.00, emphasizing its critical role in metabolic reprogramming associated with SA-AKI. CONCLUSIONS This study provides critical insights into the molecular pathophysiology of SA-AKI and emphasizes the promise of metabolomic approaches in the early diagnosis of sepsis-related complications and the development of targeted therapies.
Collapse
Affiliation(s)
- Hakan Turk
- Department of Urology, Usak Private Oztan Hospital, Usak, Turkey.
| | - Ebru Temiz
- Departments of Endocrinology, Diabetes and Nutrition Center, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Medical Promotion and Marketing Program, Vocational School of Health Services, Harran University, Sanliurfa, Turkey
| | - Ismail Koyuncu
- Departments of Medical Biochemistry, Faculty of Medicine; Science and Technology Application and Research Center, Harran University, Sanliurfa, Turkey
| |
Collapse
|
3
|
Salihovic S, Eklund D, Kruse R, Wallgren U, Hyötyläinen T, Särndahl E, Kurland L. Exploring the circulating metabolome of sepsis: metabolomic and lipidomic profiles sampled in the ambulance. Metabolomics 2024; 20:111. [PMID: 39369060 PMCID: PMC11455889 DOI: 10.1007/s11306-024-02172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Sepsis is defined as a dysfunctional host response to infection. The diverse clinical presentations of sepsis pose diagnostic challenges and there is a demand for enhanced diagnostic markers for sepsis as well as an understanding of the underlying pathological mechanisms involved in sepsis. From this perspective, metabolomics has emerged as a potentially valuable tool for aiding in the early identification of sepsis that could highlight key metabolic pathways and underlying pathological mechanisms. OBJECTIVE The aim of this investigation is to explore the early metabolomic and lipidomic profiles in a prospective cohort where plasma samples (n = 138) were obtained during ambulance transport among patients with infection according to clinical judgement who subsequently developed sepsis, patients who developed non-septic infection, and symptomatic controls without an infection. METHODS Multiplatform metabolomics and lipidomics were performed using UHPLC-MS/MS and UHPLC-QTOFMS. Uni- and multivariable analysis were used to identify metabolite profiles in sepsis vs symptomatic control and sepsis vs non-septic infection. RESULTS Univariable analysis disclosed that out of the 457 annotated metabolites measured across three different platforms, 23 polar, 27 semipolar metabolites and 133 molecular lipids exhibited significant differences between patients who developed sepsis and symptomatic controls following correction for multiple testing. Furthermore, 84 metabolites remained significantly different between sepsis and symptomatic controls following adjustment for age, sex, and Charlson comorbidity score. Notably, no significant differences were identified in metabolites levels when comparing patients with sepsis and non-septic infection in univariable and multivariable analyses. CONCLUSION Overall, we found that the metabolome, including the lipidome, was decreased in patients experiencing infection and sepsis, with no significant differences between the two conditions. This finding indicates that the observed metabolic profiles are shared between both infection and sepsis, rather than being exclusive to sepsis alone.
Collapse
Affiliation(s)
- Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Robert Kruse
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ulrika Wallgren
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden
| | - Lisa Kurland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, 701 82, Örebro, Sweden.
| |
Collapse
|
4
|
Han Z, Quan Z, Zeng S, Wen L, Wang H. Utilizing omics technologies in the investigation of sepsis-induced cardiomyopathy. IJC HEART & VASCULATURE 2024; 54:101477. [PMID: 39171080 PMCID: PMC11334652 DOI: 10.1016/j.ijcha.2024.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a common and high-mortality complication among critically ill patients. Uncertainties persist regarding the pathogenesis, pathophysiology, and diagnosis of SIC, underscoring the necessity to investigate potential biological mechanisms. With the rise of omics technologies, leveraging their high throughput and big data advantages, a systems biology perspective is employed to study the biological processes of SIC. This approach aids in gaining a better understanding of the disease's onset, progression, and outcomes, ultimately providing improved guidance for clinical practices. This review summarizes the currently applied omics technologies, omics studies related to SIC, and relevant omics databases.
Collapse
Affiliation(s)
- Zheng Han
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Zhen Quan
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Siyao Zeng
- Harbin Medical University Graduate School, Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Lianghe Wen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| |
Collapse
|
5
|
Getsina M, Chernevskaya E, Beloborodova N, Golovnya E, Polyakov P, Kushlinskii N. Features of Metabolites and Biomarkers in Inflammatory and Infectious Complications of Childhood Cancers. Biomedicines 2024; 12:2101. [PMID: 39335614 PMCID: PMC11429149 DOI: 10.3390/biomedicines12092101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: In the treatment of oncological diseases in children, the search for opportunities for the earlier detection of complications to improve treatment results is very important. Metabolomic studies are actively conducted to stratify different groups of patients in order to identify the most promising markers. Methods: Three groups of patients participated in this study: healthy children as a control group (n = 18), children with various malignant oncological diseases (leukemia, lymphoma, nephroblastoma, ependymoma, etc.) as patients (n = 40) without complications, and patients (n = 31) with complications (inflammatory and infectious). The mitochondrial metabolites (succinic and fumaric acids); biomarkers related to inflammation such as C-reactive protein (CRP), procalcitonin (PCT), and presepsin (PSP); and sepsis-associated aromatic metabolites, such as phenyllactic (PhLA), hydroxyphenyllactic (p-HPhLA), and hydroxyphenylacetic acids (p-HPhAA), were identified. Results: It was found that children with malignant oncological diseases had profound metabolic dysfunction compared to healthy children, regardless of the presence of systemic inflammatory response syndrome (SIRS) or sepsis. The prognostic ability of procalcitonin and presepsin for detecting sepsis was high: AUROC = 0.875, cut-off value (Youden index) = 0.913 ng/mL, and AUROC = 0.774, with cut-off value (Youden index) of 526 pg/mL, respectively. Conclusions: A significant increase in aromatic microbial metabolites and biomarkers in non-survivor patients that is registered already in the first days of the development of complications indicates the appropriateness of assessing metabolic dysfunction for its timely targeted correction.
Collapse
Affiliation(s)
- Maria Getsina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka Str., 25-2, 107031 Moscow, Russia; (E.C.)
| | - Ekaterina Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka Str., 25-2, 107031 Moscow, Russia; (E.C.)
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka Str., 25-2, 107031 Moscow, Russia; (E.C.)
| | - Evgeniy Golovnya
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia
| | - Petr Polyakov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Petrovka Str., 25-2, 107031 Moscow, Russia; (E.C.)
| | - Nicolai Kushlinskii
- Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, 115522 Moscow, Russia
| |
Collapse
|
6
|
Pandey S. Metabolomics Characterization of Disease Markers in Diabetes and Its Associated Pathologies. Metab Syndr Relat Disord 2024; 22:499-509. [PMID: 38778629 DOI: 10.1089/met.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
With the change in lifestyle of people, there has been a considerable increase in diabetes, which brings with it certain follow-up pathological conditions, which lead to a substantial medical burden. Identifying biomarkers that aid in screening, diagnosis, and prognosis of diabetes and its associated pathologies would help better patient management and facilitate a personalized treatment approach for prevention and treatment. With the advancement in techniques and technologies, metabolomics has emerged as an omics approach capable of large-scale high throughput data analysis and identifying and quantifying metabolites that provide an insight into the underlying mechanism of the disease and its progression. Diabetes and metabolomics keywords were searched in correspondence with the assigned keywords, including kidney, cardiovascular diseases and critical illness from PubMed and Scopus, from its inception to Dec 2023. The relevant studies from this search were extracted and included in the study. This review is focused on the biomarkers identified in diabetes, diabetic kidney disease, diabetes-related development of CVD, and its role in critical illness.
Collapse
Affiliation(s)
- Swarnima Pandey
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Chen F, Yan S, Xu J, Jiang Y, Wang J, Deng H, Wang J, Zou L, Liu Y, Zhu Y. Exploring the potential mechanism of Xuebijing injection against sepsis based on metabolomics and network pharmacology. Anal Biochem 2023; 682:115332. [PMID: 37816419 DOI: 10.1016/j.ab.2023.115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
Sepsis is a major contributor to the death of critically ill patients globally, in which metabolic disturbance is observed. Xuebijing injection (XBJ), a well-known traditional Chinese medicine, has received approval by the State Food and Drug Administration (SFDA) of China owing to its satisfactory clinical therapeutic effect. Nowadays, it has been applied clinically to the treatment of sepsis, but its effect on metabolic disorders remains unclear. In the present study, we sought to explore its underlying mechanism by employing a combination of network pharmacology and metabolomics. Initially, its protective effects were validated using a sepsis rat model created through cecal ligation puncture (CLP). Subsequently, the metabonomic strategy was utilized to discriminate the differential metabolic markers. Meanwhile, a comprehensive view of the potential ingredient-target-disease network was constructed based on a network pharmacology analysis. Next, the network diagram was constructed by integrating the results of network pharmacology and metabonomics. Finally, qRT-PCR together with Western blot was used to validate the expression levels of the associated genes. Based on our findings, we identified 34 differential metabolites in the sepsis group and 26 distinct metabolites in the XBJ group, with 8 common biological metabolites predominantly associated with arginine and proline metabolism. Through comprehensive analysis, we identified 21 genes that regulate metabolites, and qRT-PCR validation was conducted on six of these genes in both liver and kidney tissues. Additionally, XBJ demonstrated the capability to inhibit the activation of the NF-kB signaling pathway in both liver and kidney tissues, leading to a reduction in the occurrence of inflammatory responses. In summary, our study has validated the complexity of the natural compounds within XBJ and elucidated their potential mechanisms for addressing CLP-induced metabolic disturbances. This work contributes to our understanding of the bioactive compounds and their associated targets, providing insights into the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Fang Chen
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Shifan Yan
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China; Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Xu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Jiang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Jia Wang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Huafei Deng
- Department of Pathophysiology, School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan, China
| | - Jingjing Wang
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Lianhong Zou
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yanjuan Liu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China; Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Yimin Zhu
- Department of Emergency, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China; Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
8
|
Huang J, Wang Z, Zhang X, Gou Y, Li J, Guan S, Zhang H. Lipidomics Study of Sepsis-Induced Liver and Lung Injury under Anti-HMGB1 Intervention. J Proteome Res 2023. [DOI: 10.1021/acs.jproteome.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Mosevoll KA, Hansen BA, Gundersen IM, Reikvam H, Bruserud Ø, Bruserud Ø, Wendelbo Ø. Systemic Metabolomic Profiles in Adult Patients with Bacterial Sepsis: Characterization of Patient Heterogeneity at the Time of Diagnosis. Biomolecules 2023; 13:biom13020223. [PMID: 36830594 PMCID: PMC9953377 DOI: 10.3390/biom13020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is a dysregulated host response to infection that causes potentially life-threatening organ dysfunction. We investigated the serum metabolomic profile at hospital admission for patients with bacterial sepsis. The study included 60 patients; 35 patients fulfilled the most recent 2016 Sepsis-3 criteria whereas the remaining 25 patients only fulfilled the previous Sepsis-2 criteria and could therefore be classified as having systemic inflammatory response syndrome (SIRS). A total of 1011 identified metabolites were detected in our serum samples. Ninety-seven metabolites differed significantly when comparing Sepsis-3 and Sepsis-2/SIRS patients; 40 of these metabolites constituted a heterogeneous group of amino acid metabolites/peptides. When comparing patients with and without bacteremia, we identified 51 metabolites that differed significantly, including 16 lipid metabolites and 11 amino acid metabolites. Furthermore, 42 metabolites showed a highly significant association with the maximal total Sequential Organ Failure Assessment (SOFA )score during the course of the disease (i.e., Pearson's correlation test, p-value < 0.005, and correlation factor > 0.6); these top-ranked metabolites included 23 amino acid metabolites and a subset of pregnenolone/progestin metabolites. Unsupervised hierarchical clustering analyses based on all 42 top-ranked SOFA correlated metabolites or the subset of 23 top-ranked amino acid metabolites showed that most Sepsis-3 patients differed from Sepsis-2/SIRS patients in their systemic metabolic profile at the time of hospital admission. However, a minority of Sepsis-3 patients showed similarities with the Sepsis-2/SIRS metabolic profile even though several of them showed a high total SOFA score. To conclude, Sepsis-3 patients are heterogeneous with regard to their metabolic profile at the time of hospitalization.
Collapse
Affiliation(s)
- Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Bent Are Hansen
- Department of Medicine, Central Hospital for Sogn and Fjordane, 6812 Førde, Norway
| | - Ingunn Margareetta Gundersen
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence:
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
10
|
Exploring the Muscle Metabolomics in the Mouse Model of Sepsis-Induced Acquired Weakness. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6908488. [PMID: 36016684 PMCID: PMC9398772 DOI: 10.1155/2022/6908488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
Background/Aim We aimed to identify the differentially expressing metabolites (DEMs) in the muscles of the mouse model of sepsis-induced acquired weakness (sepsis-AW) using liquid chromatography-mass spectrometry (LC-MS). Materials and Methods Sepsis by cecal ligation puncture (CLP) with lower limb immobilization was used to produce a sepsis-AW model. After this, the grip strength of the C57BL/6 male mice was investigated. The transmission electron microscopy was utilized to determine the pathological model. LC-MS was used to detect the metabolic profiles within the mouse muscles. Additionally, a statistically diversified analysis was carried out. Results Compared to the sepsis group, 30 DEMs, including 17 upregulated and 13 down-regulated metabolites, were found in the sepsis-AW group. The enriched metabolic pathways including purine metabolism, valine/leucine/isoleucine biosynthesis, cGMP-PKG pathway, mTOR pathway, FoxO pathway, and PI3K-Akt pathway were found to differ between the two groups. The targeted metabolomics analysis explored significant differences between four amino acid metabolites (leucine, cysteine, tyrosine, and serine) and two energy metabolites (AMP and cAMP) in the muscles of the sepsis-AW experimental model group, which was comparable to the sepsis group. Conclusion The present work identified DEMs and metabolism-related pathways within the muscles of the sepsis-AW mice, which offered valuable experimental data for diagnosis and identification of the pathogenic mechanism underlying sepsis-AW.
Collapse
|
11
|
Feng K, Dai W, Liu L, Li S, Gou Y, Chen Z, Chen G, Fu X. Identification of biomarkers and the mechanisms of multiple trauma complicated with sepsis using metabolomics. Front Public Health 2022; 10:923170. [PMID: 35991069 PMCID: PMC9387941 DOI: 10.3389/fpubh.2022.923170] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis after trauma increases the risk of mortality rate for patients in intensive care unit (ICUs). Currently, it is difficult to predict outcomes in individual patients with sepsis due to the complexity of causative pathogens and the lack of specific treatment. This study aimed to identify metabolomic biomarkers in patients with multiple trauma and those with multiple trauma accompanied with sepsis. Therefore, the metabolic profiles of healthy persons designated as normal controls (NC), multiple trauma patients (MT), and multiple trauma complicated with sepsis (MTS) (30 cases in each group) were analyzed with ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS)-based untargeted plasma metabolomics using collected plasma samples. The differential metabolites were enriched in amino acid metabolism, lipid metabolism, glycometabolism and nucleotide metabolism. Then, nine potential biomarkers, namely, acrylic acid, 5-amino-3-oxohexanoate, 3b-hydroxy-5-cholenoic acid, cytidine, succinic acid semialdehyde, PE [P-18:1(9Z)/16:1(9Z)], sphinganine, uracil, and uridine, were found to be correlated with clinical variables and validated using receiver operating characteristic (ROC) curves. Finally, the three potential biomarkers succinic acid semialdehyde, uracil and uridine were validated and can be applied in the clinical diagnosis of multiple traumas complicated with sepsis.
Collapse
Affiliation(s)
- Ke Feng
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shengming Li
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yi Gou
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhongwei Chen
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guodong Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
12
|
Montague B, Summers A, Bhawal R, Anderson ET, Kraus-Malett S, Zhang S, Goggs R. Identifying potential biomarkers and therapeutic targets for dogs with sepsis using metabolomics and lipidomics analyses. PLoS One 2022; 17:e0271137. [PMID: 35802586 PMCID: PMC9269464 DOI: 10.1371/journal.pone.0271137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis is a diagnostic and therapeutic challenge and is associated with morbidity and a high risk of death. Metabolomic and lipidomic profiling in sepsis can identify alterations in metabolism and might provide useful insights into the dysregulated host response to infection, but investigations in dogs are limited. We aimed to use untargeted metabolomics and lipidomics to characterize metabolic pathways in dogs with sepsis to identify therapeutic targets and potential diagnostic and prognostic biomarkers. In this prospective observational cohort study, we examined the plasma metabolomes and lipidomes of 20 healthy control dogs and compared them with those of 21 client-owned dogs with sepsis. Patient data including signalment, physical exam findings, clinicopathologic data and clinical outcome were recorded. Metabolites were identified using an untargeted mass spectrometry approach and pathway analysis identified multiple enriched metabolic pathways including pyruvaldehyde degradation; ketone body metabolism; the glucose-alanine cycle; vitamin-K metabolism; arginine and betaine metabolism; the biosynthesis of various amino acid classes including the aromatic amino acids; branched chain amino acids; and metabolism of glutamine/glutamate and the glycerophospholipid phosphatidylethanolamine. Metabolites were identified with high discriminant abilities between groups which could serve as potential biomarkers of sepsis including 13,14-Dihydro-15-keto Prostaglandin A2; 12(13)-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid); and 9-HpODE (9-Hydroxyoctadecadienoic acid). Metabolites with higher abundance in samples from nonsurvivors than survivors included 3-(2-hydroxyethyl) indole, indoxyl sulfate and xanthurenic acid. Untargeted lipidomic profiling revealed multiple sphingomyelin species (SM(d34:0)+H; SM(d36:0)+H; SM(d34:0)+HCOO; and SM(d34:1D3)+HCOO); lysophosphatidylcholine molecules (LPC(18:2)+H) and lipophosphoserine molecules (LPS(20:4)+H) that were discriminating for dogs with sepsis. These biomarkers could aid in the diagnosis of dogs with sepsis, provide prognostic information, or act as potential therapeutic targets.
Collapse
Affiliation(s)
- Brett Montague
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - April Summers
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Elizabeth T. Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Sydney Kraus-Malett
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York, United States of America
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Qiao J, Cui L. Multi-Omics Techniques Make it Possible to Analyze Sepsis-Associated Acute Kidney Injury Comprehensively. Front Immunol 2022; 13:905601. [PMID: 35874763 PMCID: PMC9300837 DOI: 10.3389/fimmu.2022.905601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a common complication in critically ill patients with high morbidity and mortality. SA-AKI varies considerably in disease presentation, progression, and response to treatment, highlighting the heterogeneity of the underlying biological mechanisms. In this review, we briefly describe the pathophysiology of SA-AKI, biomarkers, reference databases, and available omics techniques. Advances in omics technology allow for comprehensive analysis of SA-AKI, and the integration of multiple omics provides an opportunity to understand the information flow behind the disease. These approaches will drive a shift in current paradigms for the prevention, diagnosis, and staging and provide the renal community with significant advances in precision medicine in SA-AKI analysis.
Collapse
Affiliation(s)
- Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Liyan Cui,
| |
Collapse
|
14
|
Dietary fatty acid metabolism: New insights into the similarities of lipid metabolism in humans and hamsters. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100060. [PMID: 35415688 PMCID: PMC8991696 DOI: 10.1016/j.fochms.2021.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022]
|
15
|
Ding X, Tong R, Song H, Sun G, Wang D, Liang H, Sun J, Cui Y, Zhang X, Liu S, Cheng M, Sun T. Identification of metabolomics-based prognostic prediction models for ICU septic patients. Int Immunopharmacol 2022; 108:108841. [DOI: 10.1016/j.intimp.2022.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022]
|
16
|
Hussain H, Vutipongsatorn K, Jiménez B, Antcliffe DB. Patient Stratification in Sepsis: Using Metabolomics to Detect Clinical Phenotypes, Sub-Phenotypes and Therapeutic Response. Metabolites 2022; 12:metabo12050376. [PMID: 35629881 PMCID: PMC9145582 DOI: 10.3390/metabo12050376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Infections are common and need minimal treatment; however, occasionally, due to inappropriate immune response, they can develop into a life-threatening condition known as sepsis. Sepsis is a global concern with high morbidity and mortality. There has been little advancement in the treatment of sepsis, outside of antibiotics and supportive measures. Some of the difficulty in identifying novel therapies is the heterogeneity of the condition. Metabolic phenotyping has great potential for gaining understanding of this heterogeneity and how the metabolic fingerprints of patients with sepsis differ based on survival, organ dysfunction, disease severity, type of infection, treatment or causative organism. Moreover, metabolomics offers potential for patient stratification as metabolic profiles obtained from analytical platforms can reflect human individuality and phenotypic variation. This article reviews the most relevant metabolomic studies in sepsis and aims to provide an overview of the metabolic derangements in sepsis and how metabolic phenotyping has been used to identify sub-groups of patients with this condition. Finally, we consider the new avenues that metabolomics could open, exploring novel phenotypes and untangling the heterogeneity of sepsis, by looking at advances made in the field with other -omics technologies.
Collapse
Affiliation(s)
- Humma Hussain
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Kritchai Vutipongsatorn
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
| | - Beatriz Jiménez
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - David B. Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (H.H.); (K.V.)
- Correspondence:
| |
Collapse
|
17
|
Infection Biomarkers Based on Metabolomics. Metabolites 2022; 12:metabo12020092. [PMID: 35208167 PMCID: PMC8877834 DOI: 10.3390/metabo12020092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
Current infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival. Metabolomics, by providing a direct insight into the functional metabolic outcome of an organism, presents a highly appealing strategy to discover these biomarkers. The present work reviews the desired main characteristics of infection biomarkers, the main metabolomics strategies to discover these biomarkers and the next steps for developing the area towards effective clinical biomarkers.
Collapse
|
18
|
Fabrazzo M, Russo A, Luciano M, Camerlengo A, Catapano P, Amoroso B, Catapano F, Coppola N. Delirium and Psychiatric Sequelae Associated to SARS-CoV-2 in Asymptomatic Patients With Psychiatric History and Mild Cognitive Impairment as Risk Factors: Three Case Reports. Front Psychiatry 2022; 13:868286. [PMID: 35463530 PMCID: PMC9021604 DOI: 10.3389/fpsyt.2022.868286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Human coronaviruses have neuroinvasive and neurotropic abilities that might explain psychiatric outcomes in affected patients. We hypothesized that delirium might be the sole clinical manifestation or even the prodrome of a psychiatric episode consistent with the mental history of a few infected patients with a preexisting diagnosed cognitive impairment. We examined three patients with preexisting mild cognitive impairment and delirium at admission for suspected SARS-CoV-2 infection. We diagnosed delirium using DSM-5 and Confusion Assessment Method (CAM) and measured consciousness level by the Glasgow Coma Scale. All the patients had no history of fever, respiratory complications, anosmia or ageusia, meningitis, and negative cerebrospinal fluid analysis for SARS-CoV-2. Our first patient had no psychiatric history, the second reported only a depressive episode, and the third had a history of bipolar disorder dated back to 40 years before. In the first patient, delirium resolved 2 days following the admission. The other two patients recovered in 4 and 14 days, and delirium appeared as the prodrome of a new psychiatric episode resembling past events. Clinicians should monitor the possibility that SARS-CoV-2 presence in the brain might clinically manifest in the form of delirium and acute psychiatric sequelae, even without other systemic symptoms. Psychiatric history and preexisting mild cognitive impairment are to be considered as predisposing factors for COVID-19 sequelae in delirium patients.
Collapse
Affiliation(s)
- Michele Fabrazzo
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Luciano
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessio Camerlengo
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Pierluigi Catapano
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Bianca Amoroso
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Catapano
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
19
|
Herrera-Van Oostdam AS, Castañeda-Delgado JE, Oropeza-Valdez JJ, Borrego JC, Monárrez-Espino J, Zheng J, Mandal R, Zhang L, Soto-Guzmán E, Fernández-Ruiz JC, Ochoa-González F, Trejo Medinilla FM, López JA, Wishart DS, Enciso-Moreno JA, López-Hernández Y. Immunometabolic signatures predict risk of progression to sepsis in COVID-19. PLoS One 2021; 16:e0256784. [PMID: 34460840 PMCID: PMC8405033 DOI: 10.1371/journal.pone.0256784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/15/2021] [Indexed: 01/12/2023] Open
Abstract
Viral sepsis has been proposed as an accurate term to describe all multisystemic dysregulations and clinical findings in severe and critically ill COVID-19 patients. The adoption of this term may help the implementation of more accurate strategies of early diagnosis, prognosis, and in-hospital treatment. We accurately quantified 110 metabolites using targeted metabolomics, and 13 cytokines/chemokines in plasma samples of 121 COVID-19 patients with different levels of severity, and 37 non-COVID-19 individuals. Analyses revealed an integrated host-dependent dysregulation of inflammatory cytokines, neutrophil activation chemokines, glycolysis, mitochondrial metabolism, amino acid metabolism, polyamine synthesis, and lipid metabolism typical of sepsis processes distinctive of a mild disease. Dysregulated metabolites and cytokines/chemokines showed differential correlation patterns in mild and critically ill patients, indicating a crosstalk between metabolism and hyperinflammation. Using multivariate analysis, powerful models for diagnosis and prognosis of COVID-19 induced sepsis were generated, as well as for mortality prediction among septic patients. A metabolite panel made of kynurenine/tryptophan ratio, IL-6, LysoPC a C18:2, and phenylalanine discriminated non-COVID-19 from sepsis patients with an area under the curve (AUC (95%CI)) of 0.991 (0.986-0.995), with sensitivity of 0.978 (0.963-0.992) and specificity of 0.920 (0.890-0.949). The panel that included C10:2, IL-6, NLR, and C5 discriminated mild patients from sepsis patients with an AUC (95%CI) of 0.965 (0.952-0.977), with sensitivity of 0.993(0.984-1.000) and specificity of 0.851 (0.815-0.887). The panel with citric acid, LysoPC a C28:1, neutrophil-lymphocyte ratio (NLR) and kynurenine/tryptophan ratio discriminated severe patients from sepsis patients with an AUC (95%CI) of 0.829 (0.800-0.858), with sensitivity of 0.738 (0.695-0.781) and specificity of 0.781 (0.735-0.827). Septic patients who survived were different from those that did not survive with a model consisting of hippuric acid, along with the presence of Type II diabetes, with an AUC (95%CI) of 0.831 (0.788-0.874), with sensitivity of 0.765 (0.697-0.832) and specificity of 0.817 (0.770-0.865).
Collapse
Affiliation(s)
- Ana Sofía Herrera-Van Oostdam
- Doctorado en Ciencias Biomédicas Básicas, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
| | - Julio E. Castañeda-Delgado
- Cátedras-CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Juan José Oropeza-Valdez
- Doctorado en Ciencias Biomédicas Básicas, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Juan Carlos Borrego
- Departmento de Epidemiología, Hospital General de Zona #1 “Emilio Varela Luján”, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Joel Monárrez-Espino
- Christus Muguerza Hospital Chihuahua - University of Monterrey, Chihuahua, Chihuahua, Mexico
| | - Jiamin Zheng
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Rupasri Mandal
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Lun Zhang
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth Soto-Guzmán
- Maestría en Ciencias Biomédicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México
| | - Julio César Fernández-Ruiz
- Doctorado en Ciencias Biomédicas Básicas, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, México
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Fátima Ochoa-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México
| | - Flor M. Trejo Medinilla
- Doctorado en Ciencias Básicas, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, México
| | - Jesús Adrián López
- MicroRNAs Laboratory, Academic Unit for Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Zacatecas, Mexico
| | - David S. Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Yamilé López-Hernández
- Cátedras-CONACyT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
- Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas, Zacatecas, Mexico
| |
Collapse
|