1
|
Jin X, He M. Diagnostic biomarkers and miRNAs in prognosis of acute respiratory distress syndrome. Allergol Immunopathol (Madr) 2025; 53:194-200. [PMID: 40342127 DOI: 10.15586/aei.v53i3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/15/2025] [Indexed: 05/11/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is a disease of the lung and/or extrapulmonary system characterized by acute, progressive breathing difficulty and refractory hypoxemia. After years of revision, the 2012 International Expert Conference developed a new diagnostic standard for ARDS, known as the Berlin definition, which provides good guidance on how to define and judge the disease in clinical practice. Despite the establishment of diagnostic standards and treatment improvements, ARDS mortality rate still remains high. The primary reason is that the pathophysiology has not been fully elucidated. In patients with ARDS, damage to the alveolar capillary membrane may occur, leading to increased vascular permeability and the occurrence of pulmonary edema. Therefore, exploring the pathogenesis of ARDS from the perspective of microvascular permeability and identification of effective targets may be key factors in the diagnosis and treatment of ARDS. This review presents the current literature regarding the role of miRNAs (micro ribonucleic acids) in early detection and prediction of ARDS outcome.
Collapse
Affiliation(s)
- Xian Jin
- Department of Critical Care Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Xikang Road, Shanghai, P.R. China;
| | - Mei He
- Department of Respiratory and Critical Care Medicine, Shanghai Tongji Hospital, Tongji University, Xincun Road, Shanghai, P.R. China
| |
Collapse
|
2
|
Andrijevic A, Batranovic U, Nedeljkov D, Gavrilovic S, Carapic V, Milic S, Matijasevic J, Andrijevic I. sRAGE as a Prognostic Biomarker in ARDS: Insights from a Clinical Cohort Study. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:229. [PMID: 40005345 PMCID: PMC11857119 DOI: 10.3390/medicina61020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury with high mortality, characterized by hypoxemic respiratory failure and diffuse lung damage. Despite advancements in care, no definitive biomarkers have been established for ARDS diagnosis and prognostic stratification. Soluble receptor for advanced glycation end-products (sRAGE), a marker of alveolar epithelial injury, has shown promise as a prognostic indicator in ARDS. This study evaluates sRAGE's utility in predicting 28-day mortality. Materials and Methods: A retrospective cohort study was conducted at a tertiary care ICU in Serbia from January 2021 to June 2023. Adult patients meeting the Berlin definition of ARDS were included. Exclusion criteria included pre-existing chronic respiratory diseases and prolonged mechanical ventilation before diagnosis. Serum sRAGE levels were measured within 48 h of ARDS diagnosis using enzyme-linked immunosorbent assay (ELISA). Clinical severity scores, laboratory markers, and ventilatory parameters were recorded. Logistic regression and survival analyses were used to assess the prognostic value of sRAGE for 28-day mortality. Results: A cohort of 121 patients (mean age 55.5 years; 63.6% male) was analyzed. Non-survivors exhibited higher median sRAGE levels than survivors (5852 vs. 4479 pg/mL, p = 0.084). The optimal sRAGE cut-off for predicting mortality was >16,500 pg/mL (sensitivity 30.4%, specificity 86.9%). Elevated sRAGE levels were associated with greater disease severity and an increased risk of 28-day mortality in ARDS patients, highlighting its potential as a prognostic biomarker. The main findings, while indicative of a trend toward higher sRAGE levels in non-survivors, did not reach statistical significance. Conclusions: The main findings, while indicative of a trend toward higher sRAGE levels in non-survivors, did not reach statistical significance (p = 0.084). sRAGE demonstrates potential as a prognostic biomarker in ARDS and has moderate correlation with 28-day mortality. Integrating sRAGE with other biomarkers could enhance risk stratification and guide therapeutic decisions. The retrospective design limits the ability to establish causation, underscoring the need for multicenter prospective studies.
Collapse
Affiliation(s)
- Ana Andrijevic
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia; (S.G.); (V.C.); (J.M.); (I.A.)
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Uros Batranovic
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Djordje Nedeljkov
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Srdjan Gavrilovic
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia; (S.G.); (V.C.); (J.M.); (I.A.)
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Vladimir Carapic
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia; (S.G.); (V.C.); (J.M.); (I.A.)
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Svetislava Milic
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Jovan Matijasevic
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia; (S.G.); (V.C.); (J.M.); (I.A.)
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| | - Ilija Andrijevic
- Medical Faculty, University of Novi Sad, 21000 Novi Sad, Serbia; (S.G.); (V.C.); (J.M.); (I.A.)
- Intensive Care Unit, Institute for Pulmonary Diseases of Vojvodina, 21204 Sremska Kamenica, Serbia; (U.B.); (D.N.); (S.M.)
| |
Collapse
|
3
|
Tang J, Shi J, Han Z, Chen X. Application of Macrophage Subtype Analysis in Acute Lung Injury/Acute Respiratory Distress Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:412. [PMID: 39735977 DOI: 10.31083/j.fbl2912412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 12/31/2024]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair. During ALI/ARDS, these versatile cells undergo polarization into distinct subtypes with significant variations in transcriptional profiles, developmental trajectory, phenotype, and functionality. This review discusses developments in the analysis of alveolar macrophage subtypes in the study of ALI/ARDS, and the potential value of targeting new macrophage subtypes in the diagnosis, prognostic evaluation, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajia Tang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Jun Shi
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese PLA General Hospital, 100048 Beijing, China
- School of Medicine, South China University of Technology, 510006 Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular Mechanisms of Lung Injury: Current Perspectives. Clin Chest Med 2024; 45:821-833. [PMID: 39443000 PMCID: PMC11499619 DOI: 10.1016/j.ccm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Lubschinski TL, Pollo LAE, de Oliveira PGF, Nardino LA, Mohr ETB, da Silva Buss Z, Sandjo LP, Biavatti MW, Daltoé FP, Dalmarco EM. Preclinical evidence of the anti-inflammatory effect and toxicological safety of aryl-cyclohexanone in vivo. Fundam Clin Pharmacol 2024; 38:1103-1115. [PMID: 39155123 DOI: 10.1111/fcp.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Respiratory distress syndrome is a complex inflammatory condition defined by the presence of acute hypoxemia and cellular infiltration with diffuse alveolar injury following a tissue injury, such as acute lung injury. The inflammatory process involved in this pathology is a defense mechanism of the body against infectious agents and/or tissue injuries. However, when the condition is not reversed, it becomes a significant cause of tissue damage, sometimes leading to loss of function of the affected organ. Therefore, it is essential to understand the mechanisms underlying inflammation, as well as the development of new therapeutic agents that reduce inflammatory damage in these cases. Aryl-cyclohexanone derivatives have previously shown significant anti-inflammatory activity linked to an immunomodulatory capacity in vitro and may be good candidates for therapies in which inflammation plays a central role. METHODS Was evaluated the anti-inflammatory capacity of a synthesized molecule aryl-cyclohexanone in the murine model of lipopolysaccharide (LPS)-induced acute lung injury. The assessment of acute oral toxicity follows the Organization for Economic Co-operation and Development (OECD) guideline 423. RESULTS The results demonstrated that the studied molecule protects against LPS-induced inflammation. We observed a decrease in the migration of total and differential leukocytes to the bronchoalveolar lavage fluid (BALF), in addition to a reduction in exudation, myeloperoxidase (MPO) activity, nitric oxide metabolites, and the secretion of pro-inflammatory cytokines (alpha tumor necrosis factors [TNF-α], interleukin-6 [IL-6], interferon-gamma [IFN-γ], and monocyte chemoattractant protein-1 [MCP-1]). Finally, aryl cyclohexanone did not show signs of acute oral toxicity (OECD 423). CONCLUSIONS The results prove our hypothesis that aryl-cyclohexanone is a promising molecule for developing a new, safe anti-inflammatory drug.
Collapse
Affiliation(s)
- Tainá Larissa Lubschinski
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Luiz Antonio Escorteganha Pollo
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luigi Arruda Nardino
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduarda Talita Bramorski Mohr
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Felipe Perozzo Daltoé
- Department of Pathology, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo Monguilhott Dalmarco
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
6
|
Radbel J, Meshanni JA, Vayas KN, Le-Hoang O, Abramova E, Zhou P, Joseph LB, Laskin JD, Gow AJ, Laskin DL. Effects of ozone exposure on lung injury, inflammation, and oxidative stress in a murine model of nonpneumonic endotoxemia. Toxicol Sci 2024; 200:299-311. [PMID: 38749002 PMCID: PMC11285192 DOI: 10.1093/toxsci/kfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Oahn Le-Hoang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
7
|
Sathe NA, Zelnick LR, Morrell ED, Bhatraju PK, Kerchberger VE, Hough CL, Ware LB, Fohner AE, Wurfel MM. Development and External Validation of Models to Predict Persistent Hypoxemic Respiratory Failure for Clinical Trial Enrichment. Crit Care Med 2024; 52:764-774. [PMID: 38197736 PMCID: PMC11018468 DOI: 10.1097/ccm.0000000000006181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
OBJECTIVES Improving the efficiency of clinical trials in acute hypoxemic respiratory failure (HRF) depends on enrichment strategies that minimize enrollment of patients who quickly resolve with existing care and focus on patients at high risk for persistent HRF. We aimed to develop parsimonious models predicting risk of persistent HRF using routine data from ICU admission and select research immune biomarkers. DESIGN Prospective cohorts for derivation ( n = 630) and external validation ( n = 511). SETTING Medical and surgical ICUs at two U.S. medical centers. PATIENTS Adults with acute HRF defined as new invasive mechanical ventilation (IMV) and hypoxemia on the first calendar day after ICU admission. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We evaluated discrimination, calibration, and practical utility of models predicting persistent HRF risk (defined as ongoing IMV and hypoxemia on the third calendar day after admission): 1) a clinical model with least absolute shrinkage and selection operator (LASSO) selecting Pa o2 /F io2 , vasopressors, mean arterial pressure, bicarbonate, and acute respiratory distress syndrome as predictors; 2) a model adding interleukin-6 (IL-6) to clinical predictors; and 3) a comparator model with Pa o2 /F io2 alone, representing an existing strategy for enrichment. Forty-nine percent and 69% of patients had persistent HRF in derivation and validation sets, respectively. In validation, both LASSO (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.64-0.73) and LASSO + IL-6 (0.71; 95% CI, 0.66-0.76) models had better discrimination than Pa o2 /F io2 (0.64; 95% CI, 0.59-0.69). Both models underestimated risk in lower risk deciles, but exhibited better calibration at relevant risk thresholds. Evaluating practical utility, both LASSO and LASSO + IL-6 models exhibited greater net benefit in decision curve analysis, and greater sample size savings in enrichment analysis, compared with Pa o2 /F io2 . The added utility of LASSO + IL-6 model over LASSO was modest. CONCLUSIONS Parsimonious, interpretable models that predict persistent HRF may improve enrichment of trials testing HRF-targeted therapies and warrant future validation.
Collapse
Affiliation(s)
- Neha A. Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Leila R. Zelnick
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Sepsis Center of Research Excellence, University of Washington
| | - V. Eric Kerchberger
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Catherine L. Hough
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Lorraine B, Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alison E Fohner
- Department of Epidemiology, School of Public Health, University of Washington
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Sepsis Center of Research Excellence, University of Washington
| |
Collapse
|
8
|
Fricke-Galindo I, García-Carmona S, Alanis-Ponce J, Pérez-Rubio G, Ramírez-Venegas A, Montiel-Lopez F, Robles-Hernández R, Hernández-Zenteno RDJ, Valencia-Pérez Rea D, Bautista-Becerril B, Ramírez-Díaz ME, Cruz-Vicente F, Martínez-Gómez MDL, Sansores R, Falfán-Valencia R. sRAGE levels are decreased in plasma and sputum of COPD secondary to biomass-burning smoke and tobacco smoking: Differences according to the rs3134940 AGER variant. Heliyon 2024; 10:e28675. [PMID: 38571598 PMCID: PMC10988041 DOI: 10.1016/j.heliyon.2024.e28675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
The receptor for advanced glycation end products (RAGE) and its gene (AGER) have been related to lung injury and inflammatory diseases, including chronic obstructive pulmonary disease (COPD). We aimed to evaluate the association of rs2071288, rs3134940, rs184003, and rs2070600 AGER single-nucleotide variants and the soluble-RAGE plasma and sputum levels with COPD secondary to biomass-burning smoke (BBS) and tobacco smoking. Four groups, including 2189 subjects, were analyzed: COPD secondary to BBS exposure (COPD-BBS, n = 342), BBS-exposed subjects without COPD (BBES, n = 774), tobacco smoking-induced COPD (COPD-TS, n = 434), and smokers without COPD (SWOC, n = 639). Allelic discrimination assays determined the AGER variants. The sRAGE was quantified in plasma (n = 240) and induced-sputum (n = 72) samples from a subgroup of patients using the ELISA technique. In addition, a meta-analysis was performed for the association of rs2070600 with COPD susceptibility. None of the studied genetic variants were found to be associated with COPD-BBS or COPD-TS. A marginal association was observed for the rs3134940 with COPD-BBS (p = 0.066). The results from the meta-analysis, including six case-control studies (n = 4149 subjects), showed a lack of association of rs2070600 with COPD susceptibility (p = 0.681), probably due to interethnic differences. The sRAGE plasma levels were lower in COPD-BBS compared to BBS and in COPD-TS compared to SWOC. The sRAGE levels were also lower in sputum samples from COPD-BBS than BBES. Subjects with rs3134940-TC genotypes exhibit lower sRAGE plasma levels than TT subjects, mainly from the COPD-BBS and SWOC groups. The AGER variants were not associated with COPD-BBS nor COPD-TS, but the sRAGE plasma and sputum levels are related to both COPD-BBS and COPD-TS and are influenced by the rs3134940 variant.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Salvador García-Carmona
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Jesús Alanis-Ponce
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Francisco Montiel-Lopez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Robinson Robles-Hernández
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Rafael de Jesús Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Daniela Valencia-Pérez Rea
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - María Elena Ramírez-Díaz
- Coordinación de Vigilancia Epidemiológica, Jurisdicción 06 Sierra, Tlacolula de Matamoros Oaxaca, Servicios de Salud de Oaxaca, Oaxaca, 70400, Mexico
| | - Filiberto Cruz-Vicente
- Internal Medicine Department, Hospital Civil Aurelio Valdivieso, Servicios de Salud de Oaxaca, Oaxaca, 68050, Mexico
| | | | - Raúl Sansores
- Clínica de Enfermedades Respiratorias, Fundación Médica Sur, Mexico City, 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| |
Collapse
|
9
|
Katsandres SC, Hall J, Danielson K, Sakr S, Dean SG, Carlbom DJ, Wurfel MM, Bhatraju PK, Hippensteel JA, Schmidt EP, Oshima K, Counts CR, Sayre MR, Henning DJ, Johnson NJ. Inflammation, endothelial injury, and the acute respiratory distress syndrome after out-of-hospital cardiac arrest. Resusc Plus 2024; 17:100590. [PMID: 38463638 PMCID: PMC10924201 DOI: 10.1016/j.resplu.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is often seen in patients resuscitated from out-of-hospital cardiac arrest (OHCA). We aim to test whether inflammatory or endothelial injury markers are associated with the development of ARDS in patients hospitalized after OHCA. Methods We conducted a prospective, cohort, pilot study at an urban academic medical center in 2019 that included a convenience sample of adults with non-traumatic OHCA. Blood and pulmonary edema fluid (PEF) were collected within 12 hours of hospital arrival. Samples were assayed for cytokines (interleukin [IL]-1, tumor necrosis factor-α [TNF-α], tumor necrosis factor receptor1 [TNFR1], IL-6), epithelial injury markers (pulmonary surfactant-associated protein D), endothelial injury markers (Angiopoietin-2 [Ang-2] and glycocalyx degradation products), and other proteins (matrix metallopeptidase-9 and myeloperoxidase). Patients were followed for 7 days for development of ARDS, as adjudicated by 3 blinded reviewers, and through hospital discharge for mortality and neurological outcome. We examined associations between biomarker concentrations and ARDS, hospital mortality, and neurological outcome using multivariable logistic regression. Latent phase analysis was used to identify distinct biological classes associated with outcomes. Results 41 patients were enrolled. Mean age was 58 years, 29% were female, and 22% had a respiratory etiology for cardiac arrest. Seven patients (17%) developed ARDS within 7 days. There were no significant associations between individual biomarkers and development of ARDS in adjusted analyses, nor survival or neurologic status after adjusting for use of targeted temperature management (TTM) and initial cardiac arrest rhythm. Elevated Ang-2 and TNFR-1 were associated with decreased survival (RR = 0.6, 95% CI = 0.3-1.0; RR = 0.5, 95% CI = 0.3-0.9; respectively), and poor neurologic status at discharge (RR = 0.4, 95% CI = 0.2-0.8; RR = 0.4, 95% CI = 0.2-0.9) in unadjusted associations. Conclusion OHCA patients have markedly elevated plasma and pulmonary edema fluid biomarker concentrations, indicating widespread inflammation, epithelial injury, and endothelial activation. Biomarker concentrations were not associated with ARDS development, though several distinct biological phenotypes warrant further exploration. Latent phase analysis demonstrated that patients with low biomarker levels aside from TNF-α and TNFR-1 (Class 2) fared worse than other patients. Future research may benefit from considering other tools to predict and prevent development of ARDS in this population.
Collapse
Affiliation(s)
- Sarah C. Katsandres
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Jane Hall
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
| | - Kyle Danielson
- Airlift Northwest, University of Washington, Seattle, WA, United States
| | - Sana Sakr
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Sarah G. Dean
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - David J. Carlbom
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| | - Joseph A. Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, United States
| | - Eric P. Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Catherine R. Counts
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
- Seattle Fire Department, Seattle, WA, United States
| | - Michael R. Sayre
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
- Seattle Fire Department, Seattle, WA, United States
| | | | - Nicholas J. Johnson
- Department of Emergency Medicine, University of Washington, Seattle, WA, United States
- Division of Pulmonary, Critical Care, and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Wang Y, Saelao P, Chanthavixay G, Gallardo RA, Wolc A, Fulton JE, Dekkers JM, Lamont SJ, Kelly TR, Zhou H. Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array. Int J Mol Sci 2024; 25:2640. [PMID: 38473888 DOI: 10.3390/ijms25052640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat stress resilience in chickens, a genome-wide association study (GWAS) was conducted using Hy-Line Brown layer chicks subjected to either high ambient temperature or combined high temperature and Newcastle disease virus infection. Hematochemical parameters were measured during three treatment phases: acute heat stress, chronic heat stress, and chronic heat stress combined with NDV infection. Significant changes in blood parameters were recorded for 11 parameters (sodium (Na+, potassium (K+), ionized calcium (iCa2+), glucose (Glu), pH, carbon dioxide partial pressure (PCO2), oxygen partial pressure (PO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (sO2)) across the three treatments. The GWAS revealed 39 significant SNPs (p < 0.05) for seven parameters, located on Gallus gallus chromosomes (GGA) 1, 3, 4, 6, 11, and 12. The significant genomic regions were further investigated to examine if the genes within the regions were associated with the corresponding traits under heat stress. A candidate gene list including genes in the identified genomic regions that were also differentially expressed in chicken tissues under heat stress was generated. Understanding the correlation between genetic variants and resilience to heat stress is an important step towards improving heat tolerance in poultry.
Collapse
Affiliation(s)
- Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Perot Saelao
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
- Veterinary Pest Genetics Research Unit, United States Department of Agriculture U, Kerrville, TX 78006, USA
| | - Ganrea Chanthavixay
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Rodrigo A Gallardo
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Hy-Line International, Dallas Center, IA 50063, USA
| | | | - Jack M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Terra R Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Spadaro S, Jimenez-Santana JD, La Rosa R, Spinazzola G, Argente Navarro P, Volta CA, Scaramuzzo G. Prone Positioning and Molecular Biomarkers in COVID and Non-COVID ARDS: A Narrative Review. J Clin Med 2024; 13:317. [PMID: 38256451 PMCID: PMC10816213 DOI: 10.3390/jcm13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Prone positioning (PP) represents a therapeutic intervention with the proven capacity of ameliorating gas exchanges and ventilatory mechanics indicated in acute respiratory distress syndrome (ARDS). When PP is selectively applied to moderate-severe cases of ARDS, it sensitively affects clinical outcomes, including mortality. After the COVID-19 outbreak, clinical application of PP peaked worldwide and was applied in 60% of treated cases, according to large reports. Research on this topic has revealed many physiological underpinnings of PP, focusing on regional ventilation redistribution and the reduction of parenchymal stress and strain. However, there is a lack of evidence on biomarkers behavior in different phases and phenotypes of ARDS. Patients response to PP are, to date, decided on PaO2/FiO2 ratio improvement, whereas scarce data exist on biomarker tracking during PP. The purpose of this review is to explore current evidence on the clinical relevance of biomarkers in the setting of moderate-severe ARDS of different etiologies (i.e., COVID and non-COVID-related ARDS). Moreover, this review focuses on how PP may modulate biomarkers and which biomarkers may have a role in outcome prediction in ARDS patients.
Collapse
Affiliation(s)
- Savino Spadaro
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Jose Daniel Jimenez-Santana
- Department of Anaesthesiology, Hospital Universitari i Politécnic la Fe, 46026 Valencia, Spain; (J.D.J.-S.); (P.A.N.)
| | - Riccardo La Rosa
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Giorgia Spinazzola
- Department of Emergency, Anesthesiologic and Reanimation Sciences, Fondazione Policlinico Universitario Gemelli, IRCSS, 00168 Rome, Italy;
| | - Pilar Argente Navarro
- Department of Anaesthesiology, Hospital Universitari i Politécnic la Fe, 46026 Valencia, Spain; (J.D.J.-S.); (P.A.N.)
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, 44124 Ferrara, Italy; (R.L.R.); (C.A.V.); (G.S.)
- Anesthesia and Intensive Care Unit, Emergency Department, Azienda Ospedaliera Universitaria di Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
12
|
Chiumello D, Coppola S, Catozzi G, Danzo F, Santus P, Radovanovic D. Lung Imaging and Artificial Intelligence in ARDS. J Clin Med 2024; 13:305. [PMID: 38256439 PMCID: PMC10816549 DOI: 10.3390/jcm13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Artificial intelligence (AI) can make intelligent decisions in a manner akin to that of the human mind. AI has the potential to improve clinical workflow, diagnosis, and prognosis, especially in radiology. Acute respiratory distress syndrome (ARDS) is a very diverse illness that is characterized by interstitial opacities, mostly in the dependent areas, decreased lung aeration with alveolar collapse, and inflammatory lung edema resulting in elevated lung weight. As a result, lung imaging is a crucial tool for evaluating the mechanical and morphological traits of ARDS patients. Compared to traditional chest radiography, sensitivity and specificity of lung computed tomography (CT) and ultrasound are higher. The state of the art in the application of AI is summarized in this narrative review which focuses on CT and ultrasound techniques in patients with ARDS. A total of eighteen items were retrieved. The primary goals of using AI for lung imaging were to evaluate the risk of developing ARDS, the measurement of alveolar recruitment, potential alternative diagnoses, and outcome. While the physician must still be present to guarantee a high standard of examination, AI could help the clinical team provide the best care possible.
Collapse
Affiliation(s)
- Davide Chiumello
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
- Coordinated Research Center on Respiratory Failure, University of Milan, 20122 Milan, Italy
| | - Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital Milan, 20142 Milan, Italy
| | - Giulia Catozzi
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Fiammetta Danzo
- Division of Respiratory Diseases, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Pierachille Santus
- Division of Respiratory Diseases, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Dejan Radovanovic
- Division of Respiratory Diseases, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
13
|
Yang J, Wei A, Wu B, Deng J. Predictive value of combination of lung injury prediction score and receptor for advanced glycation end‑products for the occurrence of acute respiratory distress syndrome. Exp Ther Med 2024; 27:4. [PMID: 38223323 PMCID: PMC10785033 DOI: 10.3892/etm.2023.12291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
The present study evaluated the predictive value of the combination of the lung injury prediction score (LIPS) and receptor for advanced glycation end-products (RAGE) for the occurrence of acute respiratory distress syndrome (ARDS) in critically ill patients with ARDS risk factors. A total of 551 patients with risk factors of ARDS were divided into an ARDS group and a non-ARDS group. LIPS was computed within 6 h of admission into the ICU, and the plasma concentration of RAGE was detected within 24 h of admission. Multivariate analysis was performed to identify independent associations, and the predictive values for ARDS occurrence were assessed with receiver operating characteristic (ROC) curve. Within 7 days after admission into the ICU, ARDS occurred in 176 patients (31.9%). Multivariate analysis demonstrated that LIPS [odds ratio (OR), 1.282; 95% confidence interval (CI), 1.108-1.604], RAGE levels (OR, 2.359; 95% CI, 1.351-4.813) and Acute Physiology and Chronic Health Evaluation II score (OR, 1.167; 95% CI, 1.074-1.485) were independently associated with ARDS occurrence. ROC curves demonstrated that the area under curve (AUC) of LIPS, RAGE levels and their combination was 0.714 [standard error (SE), 0.023; 95% CI, 0.670-0.759], 0.709 (SE, 0.025; 95% CI, 0.660-0.758) and 0.889 (SE, 0.014; 95% CI, 0.861-0.917), respectively. The AUC of LIPS combined with RAGE levels was significantly higher compared with those of LIPS (0.889 vs. 0.714; Z=6.499; P<0.001) and RAGE (0.889 vs. 0.709; Z=6.282; P<0.001) levels alone. In conclusion, both LIPS and RAGE levels were independently associated with ARDS occurrence in critically ill patients with ARDS risk factors, and had medium predictive values for ARDS occurrence. Combination of LIPS with RAGE levels increased the predictive value for ARDS occurrence.
Collapse
Affiliation(s)
- Jun Yang
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing 402260, P.R. China
| | - Ai Wei
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing 402260, P.R. China
| | - Bing Wu
- Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing 402260, P.R. China
| | - Jialin Deng
- Department of Nursing, Chongqing University Jiangjin Hospital, Chongqing 402260, P.R. China
| |
Collapse
|
14
|
Andrejkovits ÁV, Huțanu A, Susányi EJ, Negrea V, Văsieșiu AM. The Prognostic Utility of Cytokines in Hospitalized COVID-19 Patients. J Crit Care Med (Targu Mures) 2023; 9:208-217. [PMID: 37969879 PMCID: PMC10644278 DOI: 10.2478/jccm-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/14/2023] [Indexed: 11/17/2023] Open
Abstract
Introduction The severity of COVID-19 relies on several factors, but the overproduction of pro-inflammatory cytokines remains a central mechanism. The aim of this study was to investigate the predictive utility of interleukin (IL)-6, IL-8, IL-10, IL-12, tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) measurement in patients with COVID-19. Material and Methods We prospectively enrolled 181 adult patients with COVID-19 admitted to the 1st Infectious Disease County Hospital Târgu Mureș from December 2020 to September 2021. Serum cytokine levels were measured and correlated with disease severity, need for oxygen therapy, intensive care unit (ICU) transfer, and outcome. Results We found significantly higher serum levels of IL-6, IL-8, and IL-10 in patients with severe COVID-19 and in those with a fatal outcome. The logistic regression analysis showed a significant predictive value for IL-8 regarding disease severity, and for IL6 and IL-10 regarding ICU transfer and fatal outcome. Conclusions Serum levels of IL-6, IL-8, and IL-10 were significantly increased in patients with COVID-19, but their predictive value regarding disease severity and the need for oxygen therapy was poor. We found IL-6 and IL-10 to have a good predictive performance regarding ICU transfer and fatal outcome.
Collapse
Affiliation(s)
- Ákos Vince Andrejkovits
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, Targu Mures, Romania
| | - Ervin József Susányi
- First Infectious Disease Clinic of Targu Mureș, Mureș County Clinical Hospital, Romania
| | - Valentina Negrea
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
- Department of Infectious Disease, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| | - Anca Meda Văsieșiu
- First Infectious Disease Clinic of Targu Mureș, Mureș County Clinical Hospital, Romania
- Department of Infectious Disease, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| |
Collapse
|
15
|
Elmore A, Almuntashiri A, Wang X, Almuntashiri S, Zhang D. Circulating Surfactant Protein D: A Biomarker for Acute Lung Injury? Biomedicines 2023; 11:2517. [PMID: 37760958 PMCID: PMC10525947 DOI: 10.3390/biomedicines11092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening lung diseases in critically ill patients. The lack of prognostic biomarkers has halted detection methods and effective therapy development. Quantitative biomarker-based approaches in the systemic circulation have been proposed as a means of enhancing diagnostic strategies as well as pharmacotherapy in a patient-specific manner. Pulmonary surfactants are complex mixtures made up of lipids and proteins, which are secreted into the alveolar space by epithelial type II cells under normal and pathological conditions. In this review, we summarize the current knowledge of SP-D in lung injury from both preclinical and clinical studies. Among surfactant proteins, surfactant protein-D (SP-D) has been more widely studied in ALI and ARDS. Recent studies have reported that SP-D has a superior discriminatory ability compared to other lung epithelial proteins for the diagnosis of ARDS, which could reflect the severity of lung injury. Furthermore, we shed light on recombinant SP-D treatment and its benefits as a potential drug for ALI, and we encourage further studies to translate SP-D into clinical use for diagnosis and treatment.
Collapse
Affiliation(s)
- Alyssa Elmore
- College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Ali Almuntashiri
- Department of Dentistry, Security Forces Hospital, Dammam 32314, Saudi Arabia
- Department of Preventive Dentistry, College of Dentistry, Qassim University, Ar Rass 52571, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA (D.Z.)
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA (D.Z.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA (D.Z.)
| |
Collapse
|
16
|
Wang Y, Chen L, Yao C, Wang T, Wu J, Shang Y, Li B, Xia H, Huang S, Wang F, Wen S, Huang S, Lin Y, Dong N, Yao S. Early plasma proteomic biomarkers and prediction model of acute respiratory distress syndrome after cardiopulmonary bypass: a prospective nested cohort study. Int J Surg 2023; 109:2561-2573. [PMID: 37528797 PMCID: PMC10498873 DOI: 10.1097/js9.0000000000000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Early recognition of the risk of acute respiratory distress syndrome (ARDS) after cardiopulmonary bypass (CPB) may improve clinical outcomes. The main objective of this study was to identify proteomic biomarkers and develop an early prediction model for CPB-ARDS. METHODS The authors conducted three prospective nested cohort studies of all consecutive patients undergoing cardiac surgery with CPB at Union Hospital of Tongji Medical College Hospital. Plasma proteomic profiling was performed in ARDS patients and matched controls (Cohort 1, April 2021-July 2021) at multiple timepoints: before CPB (T1), at the end of CPB (T2), and 24 h after CPB (T3). Then, for Cohort 2 (August 2021-July 2022), biomarker expression was measured and verified in the plasma. Furthermore, lung ischemia/reperfusion injury (LIRI) models and sham-operation were established in 50 rats to explore the tissue-level expression of biomarkers identified in the aforementioned clinical cohort. Subsequently, a machine learning-based prediction model incorporating protein and clinical predictors from Cohort 2 for CPB-ARDS was developed and internally validated. Model performance was externally validated on Cohort 3 (January 2023-March 2023). RESULTS A total of 709 proteins were identified, with 9, 29, and 35 altered proteins between ARDS cases and controls at T1, T2, and T3, respectively, in Cohort 1. Following quantitative verification of several predictive proteins in Cohort 2, higher levels of thioredoxin domain containing 5 (TXNDC5), cathepsin L (CTSL), and NPC intracellular cholesterol transporter 2 (NPC2) at T2 were observed in CPB-ARDS patients. A dynamic online predictive nomogram was developed based on three proteins (TXNDC5, CTSL, and NPC2) and two clinical risk factors (CPB time and massive blood transfusion), with excellent performance (precision: 83.33%, sensitivity: 93.33%, specificity: 61.16%, and F1 score: 85.05%). The mean area under the receiver operating characteristics curve (AUC) of the model after 10-fold cross-validation was 0.839 (95% CI: 0.824-0.855). Model discrimination and calibration were maintained during external validation dataset testing, with an AUC of 0.820 (95% CI: 0.685-0.955) and a Brier Score of 0.177 (95% CI: 0.147-0.206). Moreover, the considerably overexpressed TXNDC5 and CTSL proteins identified in the plasma of patients with CPB-ARDS, exhibited a significant upregulation in the lung tissue of LIRI rats. CONCLUSIONS This study identified several novel predictive biomarkers, developed and validated a practical prediction tool using biomarker and clinical factor combinations for individual prediction of CPB-ARDS risk. Assessing the plasma TXNDC5, CTSL, and NPC2 levels might identify patients who warrant closer follow-up and intensified therapy for ARDS prevention following major surgery.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Lin Chen
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | | | - Tingting Wang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Jing Wu
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Bo Li
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Haifa Xia
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Shiqian Huang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Fuquan Wang
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | - Shuyu Wen
- Department of Cardiovascular Surgery
| | - Shaoxin Huang
- SpecAlly Life Technology Co., Ltd., Wuhan, Hubei, People’s Republic of China
| | - Yun Lin
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| | | | - Shanglong Yao
- Department of Anesthesiology
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education
| |
Collapse
|
17
|
Li J, Guo S, Tan Y, Zhang J, Wu Z, Stalin A, Zhang F, Huang Z, Wu C, Liu X, Huang J, Wu J. Integrated network pharmacology analysis and in vitro validation revealed the underlying mechanism of Xiyanping injection in treating coronavirus disease 2019. Medicine (Baltimore) 2023; 102:e34866. [PMID: 37653800 PMCID: PMC10470725 DOI: 10.1097/md.0000000000034866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1β, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1β, CXCL8, and p-STAT3. CONCLUSION Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.
Collapse
Affiliation(s)
- Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- College of Pharmacy, Harbin Medical University-Daqing, Daqing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fanqin Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Abbott M, Li Y, Brochard L, Zhang H. Precision Medicine Using Simultaneous Monitoring and Assessment with Imaging and Biomarkers to Manage Mechanical Ventilation in ARDS. INTENSIVE CARE RESEARCH 2023; 3:195-203. [PMID: 37664686 PMCID: PMC10471647 DOI: 10.1007/s44231-023-00045-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/24/2023] [Indexed: 09/05/2023]
Abstract
Acute respiratory distress syndrome (ARDS) has a ~ 40% mortality rate with an increasing prevalence exacerbated by the COVID-19 pandemic. Mechanical ventilation is the primary means for life-saving support to buy time for lung healing in ARDS patients, however, it can also lead to ventilator-induced lung injury (VILI). Effective strategies to reduce or prevent VILI are necessary but are not currently delivered. Therefore, we aim at evaluating the current imaging technologies to visualize where pressure and volume being delivered to the lung during mechanical ventilation; and combining plasma biomarkers to guide management of mechanical ventilation. We searched PubMed and Medline using keywords and analyzed the literature, including both animal models and human studies, to examine the independent use of computed tomography (CT) to evaluate lung mechanics, electrical impedance tomography (EIT) to guide ventilation, ultrasound to monitor lung injury, and plasma biomarkers to indicate status of lung pathophysiology. This investigation has led to our proposal of the combination of imaging and biomarkers to precisely deliver mechanical ventilation to improve patient outcomes in ARDS.
Collapse
Affiliation(s)
- Megan Abbott
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
| | - Yuchong Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON Canada
- Department of Physiology, University of Toronto, Toronto, ON Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
19
|
Young MD, Cancio TS, Thorpe CR, Willis RP, Snook JK, Jordan BS, Demons ST, Salinas J, Yang Z. Circulatory HMGB1 is an early predictive and prognostic biomarker of ARDS and mortality in a swine model of polytrauma. Front Immunol 2023; 14:1227751. [PMID: 37520569 PMCID: PMC10382277 DOI: 10.3389/fimmu.2023.1227751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a leading cause of morbidity and mortality in polytrauma patients. Pharmacological treatments of ARDS are lacking, and ARDS patients rely on supportive care. Accurate diagnosis of ARDS is vital for early intervention and improved outcomes but is presently delayed up to days. The use of biomarkers for early identification of ARDS development is a potential solution. Inflammatory mediators high-mobility group box 1 (HMGB1), syndecan-1 (SDC-1), and C3a have been previously proposed as potential biomarkers. For this study, we analyzed these biomarkers in animals undergoing smoke inhalation and 40% total body surface area burns, followed by intensive care for 72 h post-injury (PI) to determine their association with ARDS and mortality. We found that the levels of inflammatory mediators in serum were affected, as well as the degree of HMGB1 and Toll-like receptor 4 (TLR4) signal activation in the lung. The results showed significantly increased HMGB1 expression levels in animals that developed ARDS compared with those that did not. Receiver operating characteristic (ROC) analysis showed that HMGB1 levels at 6 h PI were significantly associated with ARDS development (AUROC=0.77) and mortality (AUROC=0.82). Logistic regression analysis revealed that levels of HMGB1 ≥24.10 ng/ml are associated with a 13-fold higher incidence of ARDS [OR:13.57 (2.76-104.3)], whereas the levels of HMGB1 ≥31.39 ng/ml are associated with a 12-fold increase in mortality [OR: 12.00 (2.36-93.47)]. In addition, we found that mesenchymal stem cell (MSC) therapeutic treatment led to a significant decrease in systemic HMGB1 elevation but failed to block SDC-1 and C3a increases. Immunohistochemistry analyses showed that smoke inhalation and burn injury induced the expression of HMGB1 and TLR4 and stimulated co-localization of HMGB1 and TLR4 in the lung. Interestingly, MSC treatment reduced the presence of HMGB1, TLR4, and the HMGB1-TLR4 co-localization. These results show that serum HMGB1 is a prognostic biomarker for predicting the incidence of ARDS and mortality in swine with smoke inhalation and burn injury. Therapeutically blocking HMGB1 signal activation might be an effective approach for attenuating ARDS development in combat casualties or civilian patients.
Collapse
|
20
|
Li X, Li Z, Ye J, Ye W. Diagnostic performance of metagenomic next-generation sequencing for Pneumocystis jirovecii pneumonia. BMC Infect Dis 2023; 23:455. [PMID: 37430211 PMCID: PMC10331973 DOI: 10.1186/s12879-023-08440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Pneumocystis jirovecii pneumonia (PJP) can be a life-threatening opportunistic infection. We aimed to evaluate the diagnostic accuracy of metagenomic next-generation sequencing (mNGS) for PJP. METHODS A comprehensive electronic literature search of Web of Knowledge, PubMed, Cochrane Library, CNKI and Wanfang data was performed. Bivariate analysis was conducted to calculate the pooled sensitivity, specificity, diagnostic odds ratio (DOR), the area under the summary receiver operator characteristic (SROC) curve and the Q-point value (Q*). RESULTS The literature search resulted in 9 studies with a total of 1343 patients, including 418 cases diagnosed with PJP and 925 controls. The pooled sensitivity of mNGS for diagnosis of PJP was 0.974 [95% confidence interval (CI), 0.953-0.987]. The pooled specificity was 0.943 (95% CI, 0.926-0.957), the DOR was 431.58 (95% CI, 186.77-997.27), the area under the SROC curve was 0.987, and the Q* was 0.951. The I2 test indicated no heterogeneity between studies. The Deek funnel test suggested no potential publication bias. Subgroup analyses showed that the area under the SROC curve of mNGS for diagnosis of PJP in immunocompromised and non-HIV patients was 0.9852 and 0.979, respectively. CONCLUSIONS Current evidence indicates that mNGS exhibits excellent accuracy for the diagnosis of PJP. The mNGS is a promising tool for assessment of PJP in both immunocompromised and non-HIV patients.
Collapse
Affiliation(s)
- Xuefang Li
- Department of Infectious Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Jian Ye
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, 1229 Gudun Road, Xihu District, Hangzhou, 310013, Zhejiang Province, People's Republic of China.
| |
Collapse
|
21
|
Ostermann L, Seeliger B, David S, Flasche C, Maus R, Reinboth MS, Christmann M, Neumann K, Brand K, Seltmann S, Bühling F, Paton JC, Roth J, Vogl T, Viemann D, Welte T, Maus UA. S100A9 is indispensable for survival of pneumococcal pneumonia in mice. PLoS Pathog 2023; 19:e1011493. [PMID: 37467233 DOI: 10.1371/journal.ppat.1011493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
S100A8/A9 has important immunomodulatory roles in antibacterial defense, but its relevance in focal pneumonia caused by Streptococcus pneumoniae (S. pneumoniae) is understudied. We show that S100A9 was significantly increased in BAL fluids of patients with bacterial but not viral pneumonia and correlated with procalcitonin and sequential organ failure assessment scores. Mice deficient in S100A9 exhibited drastically elevated Zn2+ levels in lungs, which led to bacterial outgrowth and significantly reduced survival. In addition, reduced survival of S100A9 KO mice was characterized by excessive release of neutrophil elastase, which resulted in degradation of opsonophagocytically important collectins surfactant proteins A and D. All of these features were attenuated in S. pneumoniae-challenged chimeric WT→S100A9 KO mice. Similarly, therapy of S. pneumoniae-infected S100A9 KO mice with a mutant S100A8/A9 protein showing increased half-life significantly decreased lung bacterial loads and lung injury. Collectively, S100A9 controls central antibacterial immune mechanisms of the lung with essential relevance to survival of pneumococcal pneumonia. Moreover, S100A9 appears to be a promising biomarker to distinguish patients with bacterial from those with viral pneumonia. Trial registration: Clinical Trials register (DRKS00000620).
Collapse
Affiliation(s)
- Lena Ostermann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Carolin Flasche
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Regina Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Marieke S Reinboth
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Konstantin Neumann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Frank Bühling
- Labopart Medical Laboratories, Dresden and Chemnitz, Germany
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Translational Pediatrics, Department of Pediatrics, University Hospital Würzburg, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Center for Infection Research, University Würzburg, Germany
| | - Tobias Welte
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Hannover, Germany
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Hannover, Germany
| |
Collapse
|
22
|
Jones TW, Almuntashiri S, Chase A, Alhumaid A, Somanath PR, Sikora A, Zhang D. Plasma matrix metalloproteinase-3 predicts mortality in acute respiratory distress syndrome: a biomarker analysis of a randomized controlled trial. Respir Res 2023; 24:166. [PMID: 37349704 PMCID: PMC10286483 DOI: 10.1186/s12931-023-02476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase-3 (MMP-3) is a proteolytic enzyme involved in acute respiratory distress syndrome (ARDS) pathophysiology that may serve as a lung-specific biomarker in ARDS. METHODS This study was a secondary biomarker analysis of a subset of Albuterol for the Treatment of Acute Lung Injury (ALTA) trial patients to determine the prognostic value of MMP-3. Plasma sample MMP-3 was measured by enzyme-linked immunosorbent assay. The primary outcome was the area under the receiver operating characteristic (AUROC) of MMP-3 at day 3 for the prediction of 90-day mortality. RESULTS A total of 100 unique patient samples were evaluated and the AUROC analysis of day three MMP-3 showed an AUROC of 0.77 for the prediction of 90-day mortality (95% confidence interval: 0.67-0.87), corresponding to a sensitivity of 92% and specificity of 63% and an optimal cutoff value of 18.4 ng/mL. Patients in the high MMP-3 group (≥ 18.4 ng/mL) showed higher mortality compared to the non-elevated MMP-3 group (< 18.4 ng/mL) (47% vs. 4%, p < 0.001). A positive difference in day zero and day three MMP-3 concentration was predictive of mortality with an AUROC of 0.74 correlating to 73% sensitivity, 81% specificity, and an optimal cutoff value of + 9.5 ng/mL. CONCLUSIONS Day three MMP-3 concentration and difference in day zero and three MMP-3 concentrations demonstrated acceptable AUROCs for predicting 90-day mortality with a cut-point of 18.4 ng/mL and + 9.5 ng/mL, respectively. These results suggest a prognostic role of MMP-3 in ARDS.
Collapse
Affiliation(s)
- Timothy W. Jones
- Department of Pharmacy, Augusta University Medical Center, 1120 15th St., Augusta, GA 30912 USA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Sultan Almuntashiri
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Aaron Chase
- Department of Pharmacy, Augusta University Medical Center, 1120 15th St., Augusta, GA 30912 USA
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Abdullah Alhumaid
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Payaningal R. Somanath
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Andrea Sikora
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| | - Duo Zhang
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, 120 15th Street, HM-117, Augusta, GA 30912 USA
| |
Collapse
|
23
|
Borazjani R, Mahmudi-Azer S, Taghrir MH, Homaeifar R, Dabiri G, Paydar S, Fard HA. Adjunctive hemoperfusion with Resin Hemoadsorption (HA) 330 cartridges improves outcomes in patients sustaining multiple Blunt Trauma: a prospective, quasi-experimental study. BMC Surg 2023; 23:148. [PMID: 37270595 PMCID: PMC10239212 DOI: 10.1186/s12893-023-02056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Multi-organ dysfunction syndrome and multi-organ failure are the leading causes of late death in patients sustaining severe blunt trauma. So far, there is no established protocol to mitigate these sequelae. This study assessed the effect of hemoperfusion using resin-hemoadsorption 330 (HA330) cartridges on mortality and complications such as acute respiratory distress syndrome (ARDS) and systemic inflammatory response syndrome (SIRS) among such patients. METHODS This quasi-experimental study recruited patients ≥ 15 years of age with blunt trauma, injury severity score (ISS) ≥ 15, or initial clinical presentation consistent with SIRS. They were divided into two groups: the Control group received only conventional acute care, while the case group received adjunctive hemoperfusion. P-values less than 0.05 were statistically significant. RESULTS Twenty-five patients were included (Control and Case groups: 13 and 12 patients). The presenting vital signs, demographic and injury-related features (except for thoracic injury severity) were similar (p > 0.05). The Case group experienced significantly more severe thoracic injuries than the Control group (Thoracic AIS, median [IQR]: 3 [2-4] vs. 2 [0-2], p = 0.01). Eleven and twelve patients in the Case group had ARDS and SIRS before the hemoperfusion, respectively, and these complications were decreased considerably after hemoperfusion. Meanwhile, the frequency of ARDS and SIRS did not decrease in the Control group. Hemoperfusion significantly reduced the mortality rate in the Case group compared to the Control group (three vs. nine patients, p = 0.027). CONCLUSIONS Adjunctive Hemoperfusion using an HA330 cartridge decreases morbidity and improves outcomes in patients suffering from severe blunt trauma.
Collapse
Affiliation(s)
- Roham Borazjani
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salahaddin Mahmudi-Azer
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Taghrir
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Homaeifar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Dabiri
- Department of Intensive Care Medicine, Trauma Research Center, Shahid Rajaee (Emtiaz) Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Paydar
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Abdolrahimzadeh Fard
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Almuntashiri S, Alhumaid A, Zhu Y, Han Y, Dutta S, Khilji O, Zhang D, Wang X. TIMP-1 and its potential diagnostic and prognostic value in pulmonary diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:67-76. [PMID: 38343891 PMCID: PMC10857872 DOI: 10.1016/j.pccm.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 08/02/2024]
Abstract
Tissue inhibitors of metalloproteases (TIMPs) have caught the attention of many scientists due to their role in various physiological and pathological processes. TIMP-1, 2, 3, and 4 are known members of the TIMPs family. TIMPs exert their biological effects by, but are not limited to, inhibiting the activity of metalloproteases (MMPs). The balance between MMPs and TIMPs is critical for maintaining homeostasis of the extracellular matrix (ECM), while the imbalance between MMPs and TIMPs can lead to pathological changes, such as cancer. In this review, we summarized the current knowledge of TIMP-1 in several pulmonary diseases namely, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), pneumonia, asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and pulmonary fibrosis. Considering the potential of TIMP-1 serving as a non-invasive diagnostic and/or prognostic biomarker, we also reviewed the circulating TIMP-1 levels in translational and clinical studies.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Abdullah Alhumaid
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Saugata Dutta
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Ohmed Khilji
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Rizzo AN, Aggarwal NR, Thompson BT, Schmidt EP. Advancing Precision Medicine for the Diagnosis and Treatment of Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:1563. [PMID: 36836098 PMCID: PMC9966442 DOI: 10.3390/jcm12041563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and life-threatening cause of respiratory failure. Despite decades of research, there are no effective pharmacologic therapies to treat this disease process and mortality remains high. The shortcomings of prior translational research efforts have been increasingly attributed to the heterogeneity of this complex syndrome, which has led to an increased focus on elucidating the mechanisms underlying the interpersonal heterogeneity of ARDS. This shift in focus aims to move the field towards personalized medicine by defining subgroups of ARDS patients with distinct biology, termed endotypes, to quickly identify patients that are most likely to benefit from mechanism targeted treatments. In this review, we first provide a historical perspective and review the key clinical trials that have advanced ARDS treatment. We then review the key challenges that exist with regards to the identification of treatable traits and the implementation of personalized medicine approaches in ARDS. Lastly, we discuss potential strategies and recommendations for future research that we believe will aid in both understanding the molecular pathogenesis of ARDS and the development of personalized treatment approaches.
Collapse
Affiliation(s)
- Alicia N. Rizzo
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Neil R. Aggarwal
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Eric P. Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
26
|
Molecular imaging of chemokine-like receptor 1 (CMKLR1) in experimental acute lung injury. Proc Natl Acad Sci U S A 2023; 120:e2216458120. [PMID: 36626557 PMCID: PMC9934297 DOI: 10.1073/pnas.2216458120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.
Collapse
|
27
|
Almuntashiri S, Jones TW, Wang X, Sikora A, Zhang D. Plasma TIMP-1 as a sex-specific biomarker for acute lung injury. Biol Sex Differ 2022; 13:70. [PMID: 36482481 PMCID: PMC9733313 DOI: 10.1186/s13293-022-00481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) confers high morbidity and mortality, with a death rate reaching 40%. Pre-clinical and clinical studies have cited sex-specific sex hormones as a critical contributor to divergent immunologic responses. Therefore, exploration of sex and sex hormone roles following lung injury and ARDS development is needed. Tissue inhibitor of metalloproteinase-1 (TIMP-1) was the first-discovered natural collagenase inhibitor and is located exclusively on the X chromosome. This study aimed to evaluate the prognostic role of circulating TIMP-1, and if concentration differences between males and females correlate with the mortality of ARDS patients. METHODS Human plasma samples from 100 ARDS patients enrolled in Albuterol to Treat Acute Lung Injury (ALTA) trial on the day of randomization were evaluated. The amount of TIMP-1 was measured using an enzyme-linked immunoassay (ELISA). Area under the receiver operating characteristic (AUROC) was computed to assess the predictive power of TIMP-1 for 30 and 90-day mortality. Chi-squared tests and Kaplan-Meier curves were computed to assess different variables and survival. RESULTS AUROC analysis of TIMP-1 and 30-day mortality among females showed that TIMP-1 exhibited an AUC of 0.87 (95% confidence interval [CI] 0.78 to 0.97; P = 0.0014) with an optimal cut-off value of 159.7 ng/mL producing a 100% sensitivity and 74% specificity. For 90-day mortality, AUROC analysis showed an AUC of 0.82 (95% confidence interval [CI] 0.67 to 0.97; P = 0.0016) with a similar cut-off value producing a 90% sensitivity and 76.47% specificity. Stratifying subjects by TIMP-1 concentration as high (≥ 159.7 ng/mL) or low (< 159.7 ng/mL) indicated that high TIMP-1 was associated with increased 30 and 90-day mortality rates (all P < 0.0001). Lastly, high TIMP-1 group was associated with worse other outcomes including ventilator-free days (VFDs) and ICU-free days (all P < 0.05). CONCLUSION Circulating TIMP-1 appeared to be a promising biomarker for mortality among females with ARDS. The high TIMP-1 group showed worse VFDs and ICU-free days. Circulating TIMP-1 may be a sex-specific biomarker in the setting of ARDS and could improve ARDS phenotyping as well as provide a novel therapeutic target in females.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.,Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, 55473, Saudi Arabia
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Andrea Sikora
- Department of Clinical and Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA, 30901, USA.,Department of Pharmacy, Augusta University Medical Center, Augusta, GA, 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA. .,Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
28
|
Arsentieva NA, Liubimova NE, Batsunov OK, Korobova ZR, Kuznetsova RN, Rubinstein AA, Stanevich OV, Lebedeva AA, Vorobyov EA, Vorobyova SV, Kulikov AN, Gavrilova EG, Pevtcov DE, Polushin YS, Shlyk IV, Totolian AA. Predictive value of specific cytokines for lethal COVID-19 outcome. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-pvo-2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In our study, we aimed to evaluate the significance of specific cytokines in blood plasma as predictive markers of COVID-associated mortality. Materials and methods. In plasma samples of 29 patients with PCR-confirmed COVID-19 we measured the concentrations of 47 molecules. These molecules included: interleukins and selected pro-inflammatory cytokines (IL-1, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-12 (p40), IL-12 (p70), IL 13, IL-15, IL-17A/CTLA8, IL-17-E/IL-25, IL-17F, IL-18, IL-22, IL-27, IFN2, IFN, TNF, TNF/Lymphotoxin-(LTA)); chemokines (CCL2/MCP-1, CCL3/MIP-1, CCL4/MIP-1, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GRO, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, CX3CL1/Fractalkine); anti-inflammatory cytokines (IL-1Ra, IL-10); growth factors (EGF, FGF-2/FGF-basic, Flt-3 Ligand, G-CSF, M-CSF, GM-CSF, PDGF-AA, PDGFAB/BB, TGF, VEGF-A); and sCD40L. We used multiplex analysis based on xMAP technology (Luminex, USA) using Luminex MagPix. As controls, we used plasma samples of 20 healthy individuals. Based on the results, we applied Receiver Operating Characteristic (ROC) analysis and Area Under Curve (AUC) values to compare two different predictive tests and to choose the optimal division point for disease outcome (survivors/non-survivors). To find optimal biomarker combinations, we as used cytokines concentrations as dependent variables to grow a regression tree using JMP 16 Software.Results. Out of 47 studied cytokines/chemokines/growth factors, we picked four pro-inflammatory cytokines as having high significance in evaluation of COVID-19 outcome: IL-6, IL-8, IL-15, and IL-18. Based on the results received, we assume that the highest significance in terms of predicting the outcome of acute COVID-19 belongs to IL-6 and IL-18. Conclusion. Analyzing concentrations of IL-6 and IL-18 before administering treatment may prove valuable in terms of outcome prognosis.
Collapse
|
29
|
Latha K, Rao S, Sakamoto K, Watford WT. Tumor Progression Locus 2 Protects against Acute Respiratory Distress Syndrome in Influenza A Virus-Infected Mice. Microbiol Spectr 2022; 10:e0113622. [PMID: 35980186 PMCID: PMC9604045 DOI: 10.1128/spectrum.01136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
Excessive inflammation in patients with severe influenza disease may lead to acute lung injury that results in acute respiratory distress syndrome (ARDS). ARDS is associated with alveolar damage and pulmonary edema that severely impair gas exchange, leading to hypoxia. With no existing FDA-approved treatment for ARDS, it is important to understand the factors that lead to virus-induced ARDS development to improve prevention, diagnosis, and treatment. We have previously shown that mice deficient in the serine-threonine mitogen-activated protein kinase, Tpl2 (MAP3K8 or COT), succumb to infection with a typically low-pathogenicity strain of influenza A virus (IAV; HKX31, H3N2 [x31]). The goal of the current study was to evaluate influenza A virus-infected Tpl2-/- mice clinically and histopathologically to gain insight into the disease mechanism. We hypothesized that Tpl2-/- mice succumb to IAV infection due to development of ARDS-like disease and pulmonary dysfunction. We observed prominent signs of alveolar septal necrosis, hyaline membranes, pleuritis, edema, and higher lactate dehydrogenase (LDH) levels in the lungs of IAV-infected Tpl2-/- mice compared to wild-type (WT) mice from 7 to 9 days postinfection (dpi). Notably, WT mice showed signs of regenerating epithelium, indicative of repair and recovery, that were reduced in Tpl2-/- mice. Furthermore, biomarkers associated with human ARDS cases were upregulated in Tpl2-/- mice at 7 dpi, demonstrating an ARDS-like phenotype in Tpl2-/- mice in response to IAV infection. IMPORTANCE This study demonstrates the protective role of the serine-threonine mitogen-activated protein kinase, Tpl2, in influenza virus pathogenesis and reveals that host Tpl2 deficiency is sufficient to convert a low-pathogenicity influenza A virus infection into severe influenza disease that resembles ARDS, both histopathologically and transcriptionally. The IAV-infected Tpl2-/- mouse thereby represents a novel murine model for studying ARDS-like disease that could improve our understanding of this aggressive disease and assist in the design of better diagnostics and treatments.
Collapse
Affiliation(s)
- Krishna Latha
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Sanjana Rao
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
30
|
Serial Measurements of Protein Biomarkers in Sepsis-Induced Acute Respiratory Distress Syndrome. Crit Care Explor 2022; 4:e0780. [PMID: 36284549 PMCID: PMC9586925 DOI: 10.1097/cce.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of early, serial measurements of protein biomarkers in sepsis-induced acute respiratory distress syndrome (ARDS) is not clear. OBJECTIVES To determine the differences in soluble receptor for advanced glycation end-products (sRAGEs), angiopoietin-2, and surfactant protein-D (SP-D) levels and their changes over time between sepsis patients with and without ARDS. DESIGN SETTING AND PARTICIPANTS Prospective observational cohort study of adult patients admitted to the medical ICU at Grady Memorial Hospital within 72 hours of sepsis diagnosis. MAIN OUTCOMES AND MEASURES Plasma sRAGE, angiopoietin-2, and SP-D levels were measured for 3 consecutive days after enrollment. The primary outcome was ARDS development, and the secondary outcome of 28-day mortality. The biomarker levels and their changes over time were compared between ARDS and non-ARDS patients and between nonsurvivors and survivors. RESULTS We enrolled 111 patients, and 21 patients (18.9%) developed ARDS. The three biomarker levels were not significantly different between ARDS and non-ARDS patients on all 3 days of measurement. Nonsurvivors had higher levels of all three biomarkers than did survivors on multiple days. The changes of the biomarker levels over time were not different between the outcome groups. Logistic regression analyses showed association between day 1 SP-D level and mortality (odds ratio, 1.52; 95% CI, 1.03-2.24; p = 0.03), and generalized estimating equation analyses showed association between angiopoietin-2 levels and mortality (estimate 0.0002; se 0.0001; p = 0.04). CONCLUSIONS AND RELEVANCE Among critically ill patients with sepsis, sRAGE, angiopoietin-2, and SP-D levels were not significantly different between ARDS and non-ARDS patients but were higher in nonsurvivors compared with survivors. The trend toward higher levels of sRAGE and SP-D, but not of angiopoietin-2, in ARDS patients may indicate the importance of epithelial injury in sepsis-induced ARDS. Changes of the biomarker levels over time were not different between the outcome groups.
Collapse
|
31
|
Rashid M, Ramakrishnan M, Chandran VP, Nandish S, Nair S, Shanbhag V, Thunga G. Artificial intelligence in acute respiratory distress syndrome: A systematic review. Artif Intell Med 2022; 131:102361. [DOI: 10.1016/j.artmed.2022.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
|
32
|
Karimabad MN, Hassanshahi G, Kounis NG, Mplani V, Roditis P, Gogos C, Lagadinou M, Assimakopoulos SF, Dousdampanis P, Koniari I. The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines (Basel) 2022; 10:vaccines10081299. [PMID: 36016187 PMCID: PMC9416781 DOI: 10.3390/vaccines10081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26500 Patras, Greece
- Correspondence:
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, 26500 Patras, Greece
| | - Pavlos Roditis
- Department of Cardiology, Mamatsio Kozanis General Hospital, 50100 Kozani, Greece
| | - Christos Gogos
- COVID-19 Unit, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Maria Lagadinou
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Periklis Dousdampanis
- Department of Nephrology, Saint Andrews State General Hospital, 26221 Patras, Greece
| | - Ioanna Koniari
- Department of Cardiology, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| |
Collapse
|
33
|
Whitney JE, Lee IH, Lee JW, Kong SW. Evolution of multiple omics approaches to define pathophysiology of pediatric acute respiratory distress syndrome. eLife 2022; 11:77405. [PMID: 35913450 PMCID: PMC9342956 DOI: 10.7554/elife.77405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS), though both common and deadly in critically ill children, lacks targeted therapies. The development of effective pharmacotherapies has been limited, in part, by lack of clarity about the pathobiology of pediatric ARDS. Epithelial lung injury, vascular endothelial activation, and systemic immune activation are putative drivers of this complex disease process. Prior studies have used either hypothesis-driven (e.g., candidate genes and proteins, in vitro investigations) or unbiased (e.g., genome-wide association, transcriptomic, metabolomic) approaches to predict clinical outcomes and to define subphenotypes. Advances in multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have permitted more comprehensive investigation of PARDS pathobiology. However, omics studies have been limited in children compared to adults, and analyses across multiple tissue types are lacking. Here, we synthesized existing literature on the molecular mechanism of PARDS, summarized our interrogation of publicly available genomic databases to determine the association of candidate genes with PARDS phenotypes across multiple tissues and cell types, and integrated recent studies that used single-cell RNA sequencing (scRNA-seq). We conclude that novel profiling methods such as scRNA-seq, which permits more comprehensive, unbiased evaluation of pathophysiological mechanisms across tissue and cell types, should be employed to investigate the molecular mechanisms of PRDS toward the goal of identifying targeted therapies.
Collapse
Affiliation(s)
- Jane E Whitney
- Medical Critical Care, Pediatrics, Boston Children's Hospital, Boston, United States.,Department of Pediatrics, Harvard Medical School, Boston, United States
| | - In-Hee Lee
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, United States
| | - Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, United States.,Computational Health and Informatics Program, Boston Children's Hospital, Boston, United States
| |
Collapse
|
34
|
Battaglini D, Robba C, Pelosi P, Rocco PRM. Treatment for acute respiratory distress syndrome in adults: A narrative review of phase 2 and 3 trials. Expert Opin Emerg Drugs 2022; 27:187-209. [PMID: 35868654 DOI: 10.1080/14728214.2022.2105833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ventilatory management and general supportive care of acute respiratory distress syndrome (ARDS) in the adult population have led to significant clinical improvements, but morbidity and mortality remain high. Pharmacologic strategies acting on the coagulation cascade, inflammation, oxidative stress, and endothelial cell injury have been targeted in the last decade for patients with ARDS, but only a few of these have shown potential benefits with a meaningful clinical response and improved patient outcomes. The lack of availability of specific pharmacologic treatments for ARDS can be attributed to its complex pathophysiology, different risk factors, huge heterogeneity, and difficult classification into specific biological phenotypes and genotypes. AREAS COVERED In this narrative review, we briefly discuss the relevance and current advances in pharmacologic treatments for ARDS in adults and the need for the development of new pharmacological strategies. EXPERT OPINION Identification of ARDS phenotypes, risk factors, heterogeneity, and pathophysiology may help to design clinical trials personalized according to ARDS-specific features, thus hopefully decreasing the rate of failed clinical pharmacologic trials. This concept is still under clinical investigation and needs further development.
Collapse
Affiliation(s)
- Denise Battaglini
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Robba
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Paolo Pelosi
- Dipartimento di Anestesia e Rianimazione, Policlinico San Martino, IRCCS per l'Oncologia e le Neuroscienze, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.,Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 373, Bloco G1-014, Ilha do Fundão, Rio de Janeiro, RJ 21941-902, Brazil.,COVID-19 Virus Network from Ministry of Science, Technology, and Innovation, Brazilian Council for Scientific and Technological Development, and Foundation Carlos Chagas Filho Research Support of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Lim MJ, Zinter MS, Chen L, Wong KMY, Bhalla A, Gala K, Guglielmo M, Alkhouli M, Huard LL, Hanudel MR, Vangala S, Schwingshackl A, Matthay M, Sapru A. Beyond the Alveolar Epithelium: Plasma Soluble Receptor for Advanced Glycation End Products Is Associated With Oxygenation Impairment, Mortality, and Extrapulmonary Organ Failure in Children With Acute Respiratory Distress Syndrome. Crit Care Med 2022; 50:837-847. [PMID: 34678846 PMCID: PMC9035468 DOI: 10.1097/ccm.0000000000005373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Soluble receptor for advanced glycation end products is a known plasma marker of alveolar epithelial injury. However, RAGE is also expressed on cell types beyond the lung, and its activation leads to up-regulation of pro-inflammatory mediators. We sought to examine the relationship between plasma soluble receptor for advanced glycation end products and primary pulmonary dysfunction, extrapulmonary organ dysfunction, and mortality in pediatric acute respiratory distress syndrome patients at two early time points following acute respiratory distress syndrome diagnosis and compare these results to plasma surfactant protein-D, a marker of pure alveolar epithelial injury. DESIGN Prospective observational study. SETTING Five academic PICUs. PATIENTS Two hundred fifty-eight pediatric patients 30 days to 18 years old meeting Berlin Criteria for acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Plasma was collected for soluble receptor for advanced glycation end products and surfactant protein-D measurements within 24 hours (day 1) and 48 to 72 hours (day 3) after acute respiratory distress syndrome diagnosis. Similar to surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with a higher oxygenation index (p < 0.01) and worse lung injury score (p < 0.001) at the time of acute respiratory distress syndrome diagnosis. However, unlike surfactant protein-D, plasma soluble receptor for advanced glycation end products was associated with worse extrapulmonary Pediatric Logistic Organ Dysfunction score during ICU stay (day 3; p < 0.01) and positively correlated with plasma levels of interleukin-6 (p < 0.01), tumor necrosis factor-α (p < 0.01), and angiopoietin-2 (p < 0.01). Among children with indirect lung injury, plasma soluble receptor for advanced glycation end products was associated with mortality independent of age, sex, race, cancer/bone marrow transplant, and Pediatric Risk of Mortality score (day 3; odds ratio, 3.14; 95% CI, 1.46-6.75; p < 0.01). CONCLUSIONS Unlike surfactant protein-D, which is primarily localized to the alveolar epithelium plasma soluble receptor for advanced glycation end products is systemically expressed and correlates with markers of inflammation, extrapulmonary multiple organ dysfunction, and death in pediatric acute respiratory distress syndrome with indirect lung injury. This suggests that unlike surfactant protein-D, soluble receptor for advanced glycation end products is a multifaceted marker of alveolar injury and increased inflammation and that receptor for advanced glycation end products activation may contribute to the pathogenesis of multiple organ failure among children with indirect acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Michelle J. Lim
- UC Davis School of Medicine, UC Davis Children’s Hospital, Department of Pediatrics, Division of Critical Care, Sacramento, CA, USA
| | - Matt S. Zinter
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Lucia Chen
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Kayley Man Yee Wong
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Anoopindar Bhalla
- USC Keck School of Medicine, Children’s Hospital Los Angeles, Department of Anesthesiology and Critical Care Medicine, Los Angeles, CA, USA
| | - Kinisha Gala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mona Guglielmo
- Loma Linda University School of Medicine, Loma Linda University Children’s Hospital, Department of Pediatrics, Division of Critical Care, Loma Linda, CA, USA
| | - Mustafa Alkhouli
- UCSF School of Medicine, Benioff Children’s Hospital, Department of Pediatrics, Division of Critical Care, San Francisco, CA, USA
| | - Leanna L. Huard
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Mark R. Hanudel
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Nephrology, Los Angeles, CA, USA
| | - Sitaram Vangala
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Andreas Schwingshackl
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| | - Michael Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, UCSF, San Francisco, CA, USA
| | - Anil Sapru
- UCLA Geffen School of Medicine, Mattel Children’s Hospital, Department of Pediatrics, Division of Critical Care, Los Angeles, CA, USA
| |
Collapse
|
36
|
Proteomics of lung tissue reveals differences in inflammation and alveolar-capillary barrier response between atelectasis and aerated regions. Sci Rep 2022; 12:7065. [PMID: 35487970 PMCID: PMC9053128 DOI: 10.1038/s41598-022-11045-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atelectasis is a frequent clinical condition, yet knowledge is limited and controversial on its biological contribution towards lung injury. We assessed the regional proteomics of atelectatic versus normally-aerated lung tissue to test the hypothesis that immune and alveolar-capillary barrier functions are compromised by purely atelectasis and dysregulated by additional systemic inflammation (lipopolysaccharide, LPS). Without LPS, 130 proteins were differentially abundant in atelectasis versus aerated lung, mostly (n = 126) with less abundance together with negatively enriched processes in immune, endothelial and epithelial function, and Hippo signaling pathway. Instead, LPS-exposed atelectasis produced 174 differentially abundant proteins, mostly (n = 108) increased including acute lung injury marker RAGE and chemokine CCL5. Functional analysis indicated enhanced leukocyte processes and negatively enriched cell-matrix adhesion and cell junction assembly with LPS. Additionally, extracellular matrix organization and TGF-β signaling were negatively enriched in atelectasis with decreased adhesive glycoprotein THBS1 regardless of LPS. Concordance of a subset of transcriptomics and proteomics revealed overlap of leukocyte-related gene-protein pairs and processes. Together, proteomics of exclusively atelectasis indicates decreased immune response, which converts into an increased response with LPS. Alveolar-capillary barrier function-related proteomics response is down-regulated in atelectasis irrespective of LPS. Specific proteomics signatures suggest biological mechanistic and therapeutic targets for atelectasis-associated lung injury.
Collapse
|
37
|
Wang R, Dai H. Association of platelet count with all-cause mortality from acute respiratory distress syndrome: A cohort study. J Clin Lab Anal 2022; 36:e24378. [PMID: 35358347 PMCID: PMC9102613 DOI: 10.1002/jcla.24378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background The purpose of this study was to investigate whether platelet count was associated with mortality in acute respiratory distress syndrome (ARDS) patients. Methods We analyzed patients with ARDS from Multi‐parameter Intelligent Monitoring in Intensive Care Database III (MIMIC‐III). Platelet count was measured at the time of intensive care unit (ICU) admission. The cox proportional hazard model and subgroup analysis were used to determine the relationship between the platelet count and mortality of ARDS, as well as the consistency of its association. The primary outcome of this study was 365‐day mortality from the date of ICU admission. Result This study enrolled a total of 395 critically ill patients with ARDS. After adjustment for age, gender and ethnicity, the multivariate cox regression model showed that the hazard ratios (HRs) (95% confidence intervals [CIs]) of platelet count <192 × 109/L and >296 × 109/L were 2.08 (1.43, 3.04) and 1.35 (0.91, 2.01), respectively, compared with the reference (192–296 ×109/L). After adjusting for confounding factors, lower platelet count (<192 × 109/L) was associated with increased mortality (adjusted HR, 1.71; 95% CI 1.06–2.76, p = 0.0284). However, there was no similar trend in the 30‐day (adjusted HR,1.02; 95% CI 0.54–1.94) or 90‐day (adjusted HR, 1.65; 95% CI 0.94–2.89) mortality. In the subgroup analysis, lower platelet count showed significant interactions with specific populations (p interaction = 0.0413), especially in patients with atrial fibrillation. Conclusion Taken together, our analysis showed that platelet count is an independent predictor of mortality in critically ill patients with ARDS.
Collapse
Affiliation(s)
- Rennv Wang
- Emergency Department, Affiliated Zhejiang Hospital of Zhejiang University School of Medical, Hangzhou, Zhejiang, China
| | - Haiwen Dai
- Emergency Department, Affiliated Zhejiang Hospital of Zhejiang University School of Medical, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Alipanah N, Calfee CS. Phenotyping in acute respiratory distress syndrome: state of the art and clinical implications. Curr Opin Crit Care 2022; 28:1-8. [PMID: 34670998 PMCID: PMC8782441 DOI: 10.1097/mcc.0000000000000903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Decades of research in acute respiratory distress syndrome (ARDS) have led to few interventions that impact clinical outcomes. The pandemic of patients with ARDS due to the novel SARS-CoV-2 infection has stressed the need for more effective therapies in ARDS. Phenotyping may enable successful trials and precision therapeutics in this patient population. RECENT FINDINGS Clinical phenotypes that group patients by shared cause, time-course or radiographic presentation are of prognostic value, but their use is limited by misclassification. Physiological phenotypes, including the P/F ratio, ventilatory ratio and dead space fraction, predict poor outcomes but can rapidly change, making them unstable over time. Biologic phenotypes have prognostic value with composite clinical and biomarker sub-phenotypes additionally impacting treatment response but are yet to be prospectively validated. SUMMARY Although much progress has been made in ARDS phenotyping, implementation of precision medicine practices will depend on conducting phenotype-aware trials using rapid point of care assays or machine learning algorithms. Omics studies will enhance our understanding of biologic determinants of clinical outcomes in ARDS sub-phenotypes. Whether biologic ARDS sub-phenotypes are specific to this syndrome or rather more broadly identify endotypes of critical illness remains to be determined.
Collapse
Affiliation(s)
- Narges Alipanah
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco
- Department of Anesthesia, University of California San Francisco
| |
Collapse
|
39
|
Wang Z, Xiang L, Lin F, Cai Z, Ruan H, Wang J, Liang J, Wang F, Lu M, Cui W. Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. MATTER 2022; 5:336-362. [PMID: 34693277 PMCID: PMC8524658 DOI: 10.1016/j.matt.2021.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 pandemic spread worldwide unabated. However, achieving protection from the virus in the whole respiratory tract, avoiding blood dissemination, and calming the subsequent cytokine storm remains a major challenge. Here, we develop an inhaled microfluidic microsphere using dual camouflaged methacrylate hyaluronic acid hydrogel microspheres with a genetically engineered membrane from angiotensin-converting enzyme II (ACE2) receptor-overexpressing cells and macrophages. By timely competing with the virus for ACE2 binding, the inhaled microspheres significantly reduce SARS-CoV-2 infective effectiveness over the whole course of the respiratory system in vitro and in vivo. Moreover, the inhaled microspheres efficiently neutralize proinflammatory cytokines, cause an alternative landscape of lung-infiltrated immune cells, and alleviate hyperinflammation of lymph nodes and spleen. In an acute pneumonia model, the inhaled microspheres show significant therapeutic efficacy by regulation of the multisystem inflammatory syndrome and reduce acute mortality, suggesting a powerful synergic strategy for the treatment of patients with severe COVID-19 via non-invasive administration.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Liang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
40
|
Liu XQ, Xue S, Xu JB, Ge H, Mao Q, Xu XH, Jiang HD. Clinical characteristics and related risk factors of disease severity in 101 COVID-19 patients hospitalized in Wuhan, China. Acta Pharmacol Sin 2022; 43:64-75. [PMID: 33742107 PMCID: PMC7976686 DOI: 10.1038/s41401-021-00627-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) broke out in December 2019. Due its high morbility and mortality, it is necessary to summarize the clinical characteristics of COVID-19 patients to provide more theoretical basis for future treatment. In the current study, we conducted a retrospective analysis of the clinical characteristics of COVID-19 patients and explored the risk factors for the severity of illness. A total of 101 COVID-19 patients hospitalized in Leishenshan Hospital (Wuhan, China) was classified into three sub-types: moderate (n = 47), severe (n = 36), and critical (n = 18); their clinical data were collected from the Electronic Medical Record. We showed that among the 101 COVID-19 patients, the median age was 62 years (IQR 51-74); 50 (49.5%) patients were accompanied by hypertension, while 25 (24.8%) and 22 (21.8%) patients suffered from diabetes and heart diseases, respectively, with complications. All patients were from Wuhan who had a definite history of exposure to the epidemic area. Multivariate logistic regression analysis revealed that older age, diabetes, chronic liver disease, percentage of neutrophils (N%) > 75%, CRP > 4 mg/L, D-dimer > 0.55 mg/L, IL-2R > 710 U/mL, IL-8 > 62 pg/mL, and IL-10 > 9.1 pg/mL were independent variables associated with severe COVID-19. In conclusion, we have identified the independent risk factors for the severity of COVID-19 pneumonia, including older age, diabetes, chronic liver disease, higher levels of N%, CRP, D-dimer, IL-2R, IL-8, and IL-10, providing evidence for more accurate risk prediction.
Collapse
|
41
|
Jones TK, Reilly JP, Anderson BJ, Miano TA, Dunn TG, Weisman AR, Agyekum R, Feng R, Ittner CA, Shashaty MG, Meyer NJ. Elevated Plasma Levels of Matrix Metalloproteinase-3 and Tissue-Inhibitor of Matrix Metalloproteinases-1 Associate With Organ Dysfunction and Mortality in Sepsis. Shock 2022; 57:41-47. [PMID: 34265829 PMCID: PMC8663538 DOI: 10.1097/shk.0000000000001833] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Matrix Metalloproteinases (MMP) respond to tissue damage during sepsis. Higher plasma concentrations of MMPs and the tissue-inhibitor of matrix metalloproteinases (TIMP) have been reported in sepsis compared with healthy controls. The objective of this study was to examine if plasma levels of MMP-3, MMP-9, and TIMP-1 associate with mortality and organ dysfunction during sepsis. METHODS We conducted a prospective cohort study of critically ill patients with sepsis adjudicated per Sepsis-3 criteria at a tertiary academic medical center. We measured plasma concentrations of MMP-3, MMP-9, and TIMP-1 on intensive care unit admission. We phenotyped the subjects for shock, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and mortality at 30 days. We used logistic regression to test the associations between the MMPs and TIMP-1 with shock, ARDS, AKI, and mortality. RESULTS Higher plasma TIMP-1 levels were associated with shock (odds ratio [OR] 1.51 per log increase [95% CI 1.25, 1.83]), ARDS (OR 1.24 [95% CI 1.05, 1.46]), AKI (OR 1.18 [95% CI 1.01, 1.38]), and mortality (OR 1.20 [95% CI 1.05, 1.46]. Higher plasma MMP-3 concentrations were associated with shock (OR 1.40 [95% CI 1.12, 1.75]) and mortality (OR 1.24 [95% CI 1.03, 1.48]) whereas MMP-9 levels were not associated with outcomes. Higher plasma TIMP-1 to MMP-3 ratios were associated with shock (OR 1.41 [95% CI 1.15, 1.72], P = 0.02). CONCLUSION Elevated plasma concentrations of TIMP-1 associate with organ dysfunction and mortality in sepsis. Higher plasma levels of MMP-3 associate with shock and mortality. Plasma MMP and TIMP-1 may warrant further investigation as emerging sepsis theragnostic biomarkers.
Collapse
Affiliation(s)
- Tiffanie K. Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John P. Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J. Anderson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd A. Miano
- Division of Epidemiology, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas G. Dunn
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ariel R. Weisman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Roseline Agyekum
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rui Feng
- Division of Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caroline A.G. Ittner
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael G.S. Shashaty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Tretter V, Hochreiter B, Zach ML, Krenn K, Klein KU. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int J Mol Sci 2021; 23:ijms23010106. [PMID: 35008532 PMCID: PMC8745322 DOI: 10.3390/ijms23010106] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Living organisms use a large repertoire of anabolic and catabolic reactions to maintain their physiological body functions, many of which include oxidation and reduction of substrates. The scientific field of redox biology tries to understand how redox homeostasis is regulated and maintained and which mechanisms are derailed in diverse pathological developments of diseases, where oxidative or reductive stress is an issue. The term “oxidative stress” is defined as an imbalance between the generation of oxidants and the local antioxidative defense. Key mediators of oxidative stress are reactive species derived from oxygen, nitrogen, and sulfur that are signal factors at physiological concentrations but can damage cellular macromolecules when they accumulate. However, therapeutical targeting of oxidative stress in disease has proven more difficult than previously expected. Major reasons for this are the very delicate cellular redox systems that differ in the subcellular compartments with regard to their concentrations and depending on the physiological or pathological status of cells and organelles (i.e., circadian rhythm, cell cycle, metabolic need, disease stadium). As reactive species are used as signaling molecules, non-targeted broad-spectrum antioxidants in many cases will fail their therapeutic aim. Precision medicine is called to remedy the situation.
Collapse
|
43
|
Rashid M, Khan S, Datta D, Thunga G, Chandran VP, Balakrishnan A, Shanbhag V, Acharya RV, Nair S. Efficacy and safety of corticosteroids in acute respiratory distress syndrome: An overview of meta-analyses. Int J Clin Pract 2021; 75:e14645. [PMID: 34310805 DOI: 10.1111/ijcp.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Evidence-based recommendations on the efficacy and safety of corticosteroids in acute respiratory distress syndrome (ARDS) remain a therapeutic challenge. Findings from several systematic reviews and meta-analyses are inconsistent. We aimed to assess the published meta-analyses through a systematic review approach and provide further insight into the current uncertainty and also to perform an updated meta-analysis from all the available primary studies. METHODOLOGY We followed the Preferred Reporting Items for Systematic Review (PRISMA) guidelines to establish the patients, intervention, control and outcome (PICO) for reviewing published meta-analyses. Data sources such as PubMed/MEDLINE, SCOPUS, Cochrane and Google Scholar from inception to February 2021 were accessed. Prevention of ARDS, mortality, ventilator-free days, ICU stay and safety in terms of occurrence of adverse effects were the patient-related outcomes. The review also assessed meta-analysis design-related outcomes which includes the quality of meta-analysis, factors contributing to the risk of bias, extent and sources of heterogeneity, publication bias and robustness of findings. AMSTAR-2 checklist assessed the quality of published meta-analyses. RESULTS A total of 18 meta-analyses were reviewed comprising a total of 38 primary studies and 3760 patients. Fourteen studies were in ARDS, three in community-acquired pneumonia and one in critical care. The overall quality of meta-analyses was observed to be critically low to high. A non-significant risk of publication bias and non-significant level of heterogeneity was observed in the reviewed meta-analysis. Corticosteroid was significantly effective in preventing ARDS among CAP patients. The effect of corticosteroids on mortality was observed to be still inconsistent, whereas significant improvement was observed with ICU and ventilator outcomes compared with the control group. Our meta-analysis observed a significant reduction of mortality in RCTs (RR: 0.78; 95% CI: 0.61 to 0.99) and the duration of mechanical ventilation (MD: -4.75; 95% CI: -7.63 to -1.88); and a significant increase in ventilator-free days (MD: 6.03; 95% CI: 3.59 to 8.47) and ICU-free days (MD: 8.04; 95% CI: 2.70 to 13.38) in ARDS patients treated with corticosteroids compared with the control group. CONCLUSION The quality of included studies ranged from critically low to high demonstrating inconsistency in risk of bias. While older studies found no significant effect, recent meta-analyses of RCTs found a significant mortality reduction in the corticosteroid group with considerable levels of heterogeneity. The updated meta-analysis by our team found a significant reduction in mortality in the pooled estimation of RCTs but not in cohort studies. Corticosteroid therapy was effective in terms of ICU and ventilator outcomes with minimal safety concerns. Future meta-analyses should be well executed with specific research questions and well performed with minimal risk of bias to produce good quality evidence.
Collapse
Affiliation(s)
- Muhammed Rashid
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sohil Khan
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- School of Pharmacy and Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Divya Datta
- Department of Nephrology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Girish Thunga
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Viji Pulikkel Chandran
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Athira Balakrishnan
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Vishal Shanbhag
- Department of Critical Care Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Raviraja V Acharya
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Sreedharan Nair
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
44
|
Hernández-Beeftink T, Guillen-Guio B, Rodríguez-Pérez H, Marcelino-Rodríguez I, Lorenzo-Salazar JM, Corrales A, Prieto-González M, Rodríguez-Pérez A, Carriedo D, Blanco J, Ambrós A, González-Higueras E, Casanova NG, González-Garay M, Espinosa E, Muriel A, Domínguez D, de Lorenzo AG, Añón JM, Soro M, Belda J, Garcia JGN, Villar J, Flores C. Whole-Blood Mitochondrial DNA Copies Are Associated With the Prognosis of Acute Respiratory Distress Syndrome After Sepsis. Front Immunol 2021; 12:737369. [PMID: 34557198 PMCID: PMC8453061 DOI: 10.3389/fimmu.2021.737369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 01/22/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory process of the lungs that develops primarily in response to pulmonary or systemic sepsis, resulting in a disproportionate death toll in intensive care units (ICUs). Given its role as a critical activator of the inflammatory and innate immune responses, previous studies have reported that an increase of circulating cell-free mitochondrial DNA (mtDNA) is a biomarker for fatal outcome in the ICU. Here we analyzed the association of whole-blood mtDNA (wb-mtDNA) copies with 28-day survival from sepsis and sepsis-associated ARDS. We analyzed mtDNA data from 687 peripheral whole-blood samples within 24 h of sepsis diagnosis from unrelated Spanish patients with sepsis (264 with ARDS) included in the GEN-SEP study. The wb-mtDNA copies were obtained from the array intensities of selected probes, with 100% identity with mtDNA and with the largest number of mismatches with the nuclear sequences, and normalized across the individual-probe intensities. We used Cox regression models for testing the association with 28-day survival. We observed that wb-mtDNA copies were significantly associated with 28-day survival in ARDS patients (hazard ratio = 3.65, 95% confidence interval = 1.39–9.59, p = 0.009) but not in non-ARDS patients. Our findings support that wb-mtDNA copies at sepsis diagnosis could be considered an early prognostic biomarker in sepsis-associated ARDS patients. Future studies will be needed to evaluate the mechanistic links of this observation with the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Aurelio Rodríguez-Pérez
- Department of Anesthesiology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.,Department of Medical and Surgical Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
| | - Demetrio Carriedo
- Intensive Care Unit, Complejo Hospitalario Universitario de León, León, Spain
| | - Jesús Blanco
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Intensive Care Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Alfonso Ambrós
- Intensive Care Unit, Hospital General de Ciudad Real, Ciudad Real, Spain
| | | | - Nancy G Casanova
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | | | - Elena Espinosa
- Department of Anesthesiology, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Arturo Muriel
- Intensive Care Unit, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - David Domínguez
- Department of Anesthesiology, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - José M Añón
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Intensive Care Unit, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Marina Soro
- Anesthesiology and Critical Care Department, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Javier Belda
- Anesthesiology and Critical Care Department, Hospital Clinico Universitario of Valencia, Valencia, Spain
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Jesús Villar
- Research Unit, Hospital Universitario Dr. Negrin, Las Palmas de Gran Canaria, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
45
|
Pons MJ, Ymaña B, Mayanga-Herrera A, Sáenz Y, Alvarez-Erviti L, Tapia-Rojas S, Gamarra R, Blanco AB, Moncunill G, Ugarte-Gil MF. Cytokine Profiles Associated With Worse Prognosis in a Hospitalized Peruvian COVID-19 Cohort. Front Immunol 2021; 12:700921. [PMID: 34539631 PMCID: PMC8440968 DOI: 10.3389/fimmu.2021.700921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines, chemokines and growth factors present different expression profiles related to the prognosis of COVID-19. We analyzed clinical parameters and assessed the expression of these biomarkers in patients with different disease severity in a hospitalized Peruvian cohort to determine those associated with worse prognosis. We measured anti-spike IgG antibodies by ELISA and 30 cytokines by quantitative suspension array technology in 123 sera samples. We analyzed differences between patients with moderate, severe and fatal COVID-19 by logistic regression at baseline and in longitudinal samples. Significant differences were found among the clinical parameters: hemoglobin, neutrophils, lymphocytes and C-reactive protein (CRP), creatinine and D-dimer levels. Higher anti-spike IgG antibody concentrations were associated to fatal patient outcomes. At hospitalization, IL-10, IL-6, MIP-1α, GM-CSF, MCP-1, IL-15, IL-5, IL1RA, TNFα and IL-8 levels were already increased in fatal patients´ group. Meanwhile, multivariable analysis revealed that increased GM-CSF, MCP-1, IL-15, and IL-8 values were associated with fatal outcomes. Moreover, longitudinal analysis identified IL-6 and MCP-1 as the main risk factors related to mortality in hospitalized COVID-19 patients. In this Peruvian cohort we identified and validated biomarkers related to COVID-19 outcomes. Further studies are needed to identify novel criteria for stratification of SARS-CoV-2 infected patients at hospital entry.
Collapse
Affiliation(s)
- Maria J Pons
- Grupo Enfermedades Emergentes, Universidad Científica del Sur, Lima, Peru
| | - Barbara Ymaña
- Grupo Enfermedades Emergentes, Universidad Científica del Sur, Lima, Peru
| | - Ana Mayanga-Herrera
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Peru
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Lydia Alvarez-Erviti
- Área de Neurobiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Salyoc Tapia-Rojas
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Peru
| | - Roxana Gamarra
- Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Amanda B Blanco
- Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Manuel F Ugarte-Gil
- Grupo Enfermedades Emergentes, Universidad Científica del Sur, Lima, Peru.,Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| |
Collapse
|
46
|
Li D, Pan L, Zhang X, Jiang Z. Lower Oligomeric Form of Surfactant Protein D in Murine Acute Lung Injury Induces M1 Subtype Macrophages Through Calreticulin/p38 MAPK Signaling Pathway. Front Immunol 2021; 12:687506. [PMID: 34484184 PMCID: PMC8415422 DOI: 10.3389/fimmu.2021.687506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein D (SP-D) plays an important role in innate and adaptive immune responses. In this study, we found that the expression of total and de-oligomerized SP-D was significantly elevated in mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). To investigate the role of the lower oligomeric form of SP-D in the pathogenesis of ALI, we treated bone marrow-derived macrophages (BMDMs) with ALI-derived bronchoalveolar lavage (BAL) and found that SP-D in ALI BAL predominantly bound to calreticulin (CALR) on macrophages, subsequently increasing the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and expression of interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, IL-10, and CD80. However, anti-SP-D (aSP-D) and anti-calreticulin (aCALR) pretreatment reversed the SP-D binding and activation of macrophages induced by ALI BAL or de-oligomerized recombinant murine SP-D (rSP-D). Lack of signal transducer and activator of transcription (STAT)6 in STAT6-/- macrophages resulted in resistance to suppression by aCALR. Further studies in an ALI mouse model showed that blockade of pulmonary SP-D by intratracheal (i.t.), but not intraperitoneal (i.p.), administration of aSP-D attenuated the severity of ALI, accompanied by lower neutrophil infiltrates and expression of IL-1beta and IL-6. Furthermore, i.t. administration of de-oligomerized rSP-D exacerbated the severity of ALI in association with more pro-inflammatory CD45+Siglec-F(-) M1 subtype macrophages and production of IL-6, TNF-alpha, IL-1beta, and IL-18. The results indicated that SP-D in the lungs of murine ALI was de-oligomerized and participated in the pathogenesis of ALI by predominantly binding to CALR on macrophages and subsequently activating the pro-inflammatory downstream signaling pathway. Targeting de-oligomerized SP-D is a promising therapeutic strategy for the treatment of ALI and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoju Zhang
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Ider M, Naseri A, Ok M, Uney K, Erturk A, Durgut MK, Parlak TM, Ismailoglu N, Kapar MM. Biomarkers in premature calves with and without respiratory distress syndrome. J Vet Intern Med 2021; 35:2524-2533. [PMID: 34227155 PMCID: PMC8478053 DOI: 10.1111/jvim.16217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Approaches to the evaluation of pulmonary arterial hypertension (PAH) in premature calves by using lung-specific epithelial and endothelial biomarkers are needed. OBJECTIVE To investigate the evaluation of PAH in premature calves with and without respiratory distress syndrome (RDS) by using lung-specific epithelial and endothelial biomarkers and determine the prognostic value of these markers in premature calves. ANIMALS Fifty premature calves with RDS, 20 non-RDS premature calves, and 10 healthy term calves. METHODS Hypoxia, hypercapnia, and tachypnea were considered criteria for RDS. Arterial blood gases (PaO2 , PaCO2 , oxygen saturation [SO2 ], base excess [BE], and serum lactate concentration) were measured to assess hypoxia. Serum concentrations of lung-specific growth differentiation factor-15 (GDF-15), asymmetric dimethylarginine (ADMA), endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and surfactant protein D (SP-D) were measured to assess PAH. RESULTS Arterial blood pH, PaO2 , SO2 , and BE of premature calves with RDS were significantly lower and PaCO2 and lactate concentrations higher compared to non-RDS premature and healthy calves. The ADMA and SP-D concentrations of premature calves with RDS were lower and serum ET-1 concentrations higher than those of non-RDS premature and healthy calves. No statistical differences for GDF-15 and VEGF were found among groups. CONCLUSIONS AND CLINICAL IMPORTANCE Significant increases in serum ET-1 concentrations and decreases in ADMA and SP-D concentrations highlight the utility of these markers in the diagnosis of PAH in premature calves with RDS. Also, we found that ET-1 was a reliable diagnostic and prognostic biomarker for PAH and predicting mortality in premature calves.
Collapse
Affiliation(s)
- Merve Ider
- Faculty of Veterinary Medicine, Department of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Amir Naseri
- Faculty of Veterinary Medicine, Department of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Mahmut Ok
- Faculty of Veterinary Medicine, Department of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Kamil Uney
- Faculty of Veterinary Medicine, Department of Pharmacology and ToxicologySelcuk UniversityKonyaTurkey
| | - Alper Erturk
- Faculty of Veterinary Medicine, Department of Internal MedicineMustafa Kemal UniversityHatayTurkey
| | - Murat K. Durgut
- Faculty of Veterinary Medicine, Department of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Tugba M. Parlak
- Faculty of Veterinary Medicine, Department of Pharmacology and ToxicologySelcuk UniversityKonyaTurkey
| | - Nimet Ismailoglu
- Faculty of Veterinary Medicine, Department of Internal MedicineSelcuk UniversityKonyaTurkey
| | - Muhammed M. Kapar
- Faculty of Veterinary Medicine, Department of Internal MedicineSelcuk UniversityKonyaTurkey
| |
Collapse
|
48
|
Alladina J, Levy SD, Cho JL, Brait KL, Rao SR, Camacho A, Hibbert KA, Harris RS, Medoff BD, Januzzi JL, Thompson BT, Bajwa EK. Plasma Soluble Suppression of Tumorigenicity-2 Associates with Ventilator Liberation in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2021; 203:1257-1265. [PMID: 33400890 DOI: 10.1164/rccm.202005-1951oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rationale: Standard physiologic assessments of extubation readiness in patients with acute hypoxemic respiratory failure (AHRF) may not reflect lung injury resolution and could adversely affect clinical decision-making and patient outcomes. Objectives: We hypothesized that elevations in inflammatory plasma biomarkers sST2 (soluble suppression of tumorigenicity-2) and IL-6 indicate ongoing lung injury in AHRF and better inform patient outcomes compared with standard clinical assessments. Methods: We measured daily plasma biomarkers and physiologic variables in 200 patients with AHRF for up to 9 days after intubation. We tested the associations of baseline values with the primary outcome of unassisted breathing at Day 29. We analyzed the ability of serial biomarker measurements to inform successful ventilator liberation. Measurements and Main Results: Baseline sST2 concentrations were higher in patients dead or mechanically ventilated versus breathing unassisted at Day 29 (491.7 ng/ml [interquartile range (IQR), 294.5-670.1 ng/ml] vs. 314.4 ng/ml [IQR, 127.5-550.1 ng/ml]; P = 0.0003). Higher sST2 concentrations over time were associated with a decreased probability of ventilator liberation (hazard ratio, 0.80 per log-unit increase; 95% confidence interval [CI], 0.75-0.83; P = 0.03). Patients with higher sST2 concentrations on the day of liberation were more likely to fail liberation compared with patients who remained successfully liberated (320.9 ng/ml [IQR, 181.1- 495.6 ng/ml] vs. 161.6 ng/ml [IQR, 95.8-292.5 ng/ml]; P = 0.002). Elevated sST2 concentrations on the day of liberation decreased the odds of successful liberation when adjusted for standard physiologic parameters (odds ratio, 0.325; 95% CI, 0.119-0.885; P = 0.03). IL-6 concentrations did not associate with outcomes. Conclusions: Using sST2 concentrations to guide ventilator management may more accurately reflect underlying lung injury and outperform traditional measures of readiness for ventilator liberation.
Collapse
Affiliation(s)
| | - Sean D Levy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | - Sowmya R Rao
- Boston University School of Public Health, Boston, Massachusetts; and
| | - Alexander Camacho
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | | | - R Scott Harris
- Division of Pulmonary and Critical Care Medicine and.,Vertex Pharmaceuticals, Boston, Massachusetts
| | | | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Ednan K Bajwa
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
49
|
Bihari S, Bersten A, Paul E, McGuinness S, Dixon D, Sinha P, Calfee CS, Nichol A, Hodgson C. Acute respiratory distress syndrome phenotypes with distinct clinical outcomes in PHARLAP trial cohort. CRIT CARE RESUSC 2021; 23:163-170. [PMID: 38045528 PMCID: PMC10692525 DOI: 10.51893/2021.2.oa3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure (PHARLAP) randomised controlled trial compared an open lung ventilation strategy with control ventilation, and found that open lung ventilation did not reduce the number of ventilatorfree days (VFDs) or mortality in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Parsimonious models can identify distinct phenotypes of ARDS (hypo-inflammatory and hyperinflammatory) which are associated with different outcomes and treatment responses. Objective: To test the hypothesis that a parsimonious model would identify patients with distinctly different clinical outcomes in the PHARLAP study. Design, setting and participants: Blood and lung lavage samples were collected in a subset of PHARLAP patients who were recruited in Australian and New Zealand centres. A previously validated parsimonious model (interleukin-8, soluble tumour necrosis factor receptor-1 and bicarbonate) was used to classify patients with blood samples into hypo-inflammatory and hyperinflammatory groups. Generalised linear modelling was used to examine the interaction between inflammatory phenotype and treatment group (intervention or control). Main outcome measure: The primary outcome was number of VFDs at Day 28. Results: Data for the parsimonious model were available for 56 of 115 patients (49%). Within this subset, 38 patients (68%) and 18 patients (32%) were classified as having hypo-inflammatory and hyperinflammatory phenotypes, respectively. Patients with the hypo- inflammatory phenotype had more VFDs at Day 28 when compared with those with the hyperinflammatory phenotype (median [IQR], 19.5[11-24] versus 8[0-21];P= 0.03). Patients with the hyperinflammatory phenotype had numerically fewer VFDs when managed with an open lung strategy than when managed with control "protective" ventilation (median [IQR], 0 [0-19] versus 16 [8-22]). Conclusion: In the PHARLAP trial, ARDS patients classified as having a hyperinflammatory phenotype, with a parsimonious three-variable model, had fewer VFDs at Day 28 compared with patients classified as having a hypo-inflammatory phenotype. Future clinical studies of ventilatory strategies should consider incorporating distinct ARDS phenotypes into their trial design.
Collapse
Affiliation(s)
- Shailesh Bihari
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
| | - Andrew Bersten
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
| | - Eldho Paul
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
| | - Shay McGuinness
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Cardiothoracic and Vascular Intensive Care Unit-, Auckland, City Hospital- Auckland- New Zealand
- Medical Research Institute of New Zealand-, Wellington- New Zealand
| | - Dani Dixon
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
| | - Pratik Sinha
- Division of Pulmonary- Critical Care- Allergy and Sleep Medicine Department of Medicine- University of California San Francisco-, San Francisco, - Calif-, USA
| | - Carolyn S. Calfee
- Division of Pulmonary- Critical Care- Allergy and Sleep Medicine Department of Medicine- University of California San Francisco-, San Francisco, - Calif-, USA
| | - Alistair Nichol
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Intensive Care Unit- The Alfred-, Melbourne, - VIC-, Australia
- University College Dublin Clinical Research Centre- St Vincent's University Hospital-, Dublin- Ireland
| | - Carol Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Intensive Care Unit- The Alfred-, Melbourne, - VIC-, Australia
- Contributed equally to the manuscript
| | - for the PHARLAP Study Investigators
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Cardiothoracic and Vascular Intensive Care Unit-, Auckland, City Hospital- Auckland- New Zealand
- Medical Research Institute of New Zealand-, Wellington- New Zealand
- Division of Pulmonary- Critical Care- Allergy and Sleep Medicine Department of Medicine- University of California San Francisco-, San Francisco, - Calif-, USA
- Intensive Care Unit- The Alfred-, Melbourne, - VIC-, Australia
- University College Dublin Clinical Research Centre- St Vincent's University Hospital-, Dublin- Ireland
- Contributed equally to the manuscript
| |
Collapse
|
50
|
Jouan Y, Baranek T, Si-Tahar M, Paget C, Guillon A. Lung compartmentalization of inflammatory biomarkers in COVID-19-related ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:120. [PMID: 33761985 PMCID: PMC7988241 DOI: 10.1186/s13054-021-03513-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Faculté de Médecine de Tours, Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, Centre Hospitalier Régional Universitaire, 2 Bd Tonnellé, 37044, Tours Cedex 9, France.,Service de chirurgie cardiaque et de réanimation chirurgicale cardio-vasculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Faculté de Médecine de Tours, Université de Tours, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Faculté de Médecine de Tours, Université de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France.,Faculté de Médecine de Tours, Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France. .,Faculté de Médecine de Tours, Université de Tours, Tours, France. .,Service de Médecine Intensive Réanimation, Centre Hospitalier Régional Universitaire, 2 Bd Tonnellé, 37044, Tours Cedex 9, France.
| |
Collapse
|