1
|
Ganbold E, Kim NY, Kim YM, Sharma PK, Lee DN, Oh B, Kim HS, Song J, Lee B, Kim ES, Shin YK, Park JS, Kim ST. Reagentless aptamer based on the ultrasensitive and fast response electrochemical capacitive biosensor for EGFR detection in non-small cell lung cancer. Biosens Bioelectron 2025; 278:117319. [PMID: 40112520 DOI: 10.1016/j.bios.2025.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of lung cancer-related deaths globally, affecting both men and women. Mutations in the epidermal growth factor receptor (EGFR) are most common among patients with NSCLC, especially Asian patients. Here, we introduce an electrochemical capacitive biosensor for the early detection of NSCLC through specific identification of EGFR. A novel and reagentless EGFR aptamer was designed using the systematic evolution of ligands by exponential enrichment (SELEX) process and immobilized on a chromium (Cr)/gold (Au) electrode, with capacitance signals used for detection. The biosensor employs an interdigitated capacitor electrode (IDCE) functionalized with 3-mercaptopropionic acid (MPA), enhancing EGFR aptamer immobilization, while 6-mercapto-1-hexanol (MCH) was used for effective blocking to ensure robust and high-affinity binding to target analytes. The IDCE capacitive biosensor achieved real-time rapid detection within 3 s and demonstrated a detection limit of 0.005 ng/mL for the EGFR peptide, with a dynamic range of 10-11-10-7 ng/mL. Furthermore, the specific EGFR aptamer-immobilized IDCE biosensor was found to be regenerable and reusable up to five times using deionized water. This biosensor offers a rapid, label-free, and highly selective approach for early-stage EGFR detection in NSCLC. Its portability and scalability make it a promising tool for point-of-care diagnostic applications in biomedicine, potentially advancing the field of cancer diagnostics.
Collapse
Affiliation(s)
- Enkhzaya Ganbold
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Nam Young Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; NDAC Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu Mi Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Neuroscience Research Institute, JnPharma Inc. Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea
| | - Parshant Kumar Sharma
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Do Nam Lee
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Byeolnim Oh
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyun Soo Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Electronics Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Junghan Song
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea
| | - Byungheon Lee
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Biochemistry, School of Medicine, Kyungpook National University 680 Guckchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Eun-Seong Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Young Kee Shin
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong Su Park
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea
| | - Sang Tae Kim
- RFIC Bio Centre, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea; Neuroscience Research Institute, JnPharma Inc. Healthcare Innovation Park, Seoul National University College of Medicine, Goomi-ro, Bundanggu, Seongnam City, Gyeonggi-do 13605, Republic of Korea.
| |
Collapse
|
2
|
Brooks H, Li L, Addeo A, Stevens M, Comins C, Oltean S. Detection of genomic mutations in blood and urine free circulating tumour DNA in patients with inoperable and metastatic lung adenocarcinoma harbouring an EGFR mutation in tissue: a UK pilot study. Front Oncol 2023; 13:1197037. [PMID: 37476385 PMCID: PMC10354425 DOI: 10.3389/fonc.2023.1197037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 07/22/2023] Open
Abstract
The development of methodologies to analyse circulating tumour DNA (ctDNA) in the blood or urine of cancer patients provides an invaluable resource that can be used for diagnosis and prognosis and to evaluate response to treatments. Lung cancer has seen in the last years a revolution in treatment strategy with the use of several classes of EGFR inhibitors. However, almost invariably, resistance to such therapies appears. In this paper, we describe a pilot, longitudinal study with 20 patients with confirmed EGFR mutations in tissue biopsy for lung cancer. The objective of the study was to determine whether ctDNA from plasma and/or urine could be used to monitor the EGFR mutational status of patients with confirmed EGFR mutation-positive non-small cell lung cancer (NSCLC) during treatment with EGFR inhibitors. Blood and urine were collected monthly over periods ranging from 6 to 16 months. CtDNA was analysed in each patient for the presence of several known mutations that predispose to resistance to EGFR inhibitors. We have proven that serial monitoring of ctDNA from both plasma and urine is feasible and that patients are willing to participate in this process. We have also shown that longitudinal ctDNA monitoring may detect resistance mutations before the development of radiological and clinical disease progression.
Collapse
Affiliation(s)
- Helen Brooks
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Ling Li
- Department of Clinical and Biomedical Sciences, Medical School, Faculty of Life Sciences and Health, University of Exeter, Exeter, United Kingdom
| | - Alfredo Addeo
- Oncology Department, University Hospital Geneva, Geneva, Switzerland
| | - Megan Stevens
- Department of Clinical and Biomedical Sciences, Medical School, Faculty of Life Sciences and Health, University of Exeter, Exeter, United Kingdom
| | - Charles Comins
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Medical School, Faculty of Life Sciences and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Li P, Liu S, Du L, Mohseni G, Zhang Y, Wang C. Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer. Clin Epigenetics 2022; 14:118. [PMID: 36153611 PMCID: PMC9509651 DOI: 10.1186/s13148-022-01337-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer (LC) is the main cause of cancer-related mortality. Most LC patients are diagnosed in an advanced stage when the symptoms are obvious, and the prognosis is quite poor. Although low-dose computed tomography (LDCT) is a routine clinical examination for early detection of LC, the false-positive rate is over 90%. As one of the intensely studied epigenetic modifications, DNA methylation plays a key role in various diseases, including cancer and other diseases. Hypermethylation in tumor suppressor genes or hypomethylation in oncogenes is an important event in tumorigenesis. Remarkably, DNA methylation usually occurs in the very early stage of malignant tumors. Thus, DNA methylation analysis may provide some useful information about the early detection of LC. In recent years, liquid biopsy has developed rapidly. Liquid biopsy can detect and monitor both primary and metastatic malignant tumors and can reflect tumor heterogeneity. Moreover, it is a minimally invasive procedure, and it causes less pain for patients. This review summarized various liquid biopsies based on DNA methylation for LC. At first, we briefly discussed some emerging technologies for DNA methylation analysis. Subsequently, we outlined cell-free DNA (cfDNA), sputum, bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid biopsy for the early detection of LC. Finally, the prognostic value of DNA methylation in cfDNA and sputum and the diagnostic value of other DNA methylation-based liquid biopsies for LC were also analyzed.
Collapse
|
4
|
Wever B, Bach S, Tibbesma M, ter Braak T, Wajon D, Dickhoff C, Lissenberg-Witte B, Hulbert A, Kazemier G, Bahce I, Steenbergen R. Detection of non-metastatic non-small-cell lung cancer in urine by methylation-specific PCR analysis: a feasibility study. Lung Cancer 2022; 170:156-164. [DOI: 10.1016/j.lungcan.2022.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022]
|
5
|
Dermody SM, Bhambhani C, Swiecicki PL, Brenner JC, Tewari M. Trans-Renal Cell-Free Tumor DNA for Urine-Based Liquid Biopsy of Cancer. Front Genet 2022; 13:879108. [PMID: 35571046 PMCID: PMC9091346 DOI: 10.3389/fgene.2022.879108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer biomarkers are a promising tool for cancer detection, personalization of therapy, and monitoring of treatment response or recurrence. “Liquid biopsy” commonly refers to minimally invasive or non-invasive sampling of a bodily fluid (i.e., blood, urine, saliva) for detection of cancer biomarkers such as circulating tumor cells or cell-free tumor DNA (ctDNA). These methods offer a means to collect frequent tumor assessments without needing surgical biopsies. Despite much progress with blood-based liquid biopsy approaches, there are limitations—including the limited amount of blood that can be drawn from a person and challenges with collecting blood samples at frequent intervals to capture ctDNA biomarker kinetics. These limitations are important because ctDNA is present at extremely low levels in plasma and there is evidence that measuring ctDNA biomarker kinetics over time can be useful for clinical prediction. Additionally, blood-based assays require access to trained phlebotomists and often a trip to a healthcare facility. In contrast, urine is a body fluid that can be self-collected from a patient’s home, at frequent intervals, and mailed to a laboratory for analysis. Multiple reports indicate that fragments of ctDNA pass from the bloodstream through the kidney’s glomerular filtration system into the urine, where they are known as trans-renal ctDNA (TR-ctDNA). Accumulating studies indicate that the limitations of blood based ctDNA approaches for cancer can be overcome by measuring TR-ctDNA. Here, we review current knowledge about TR-ctDNA in urine as a cancer biomarker approach, and discuss its clinical potential and open questions in this research field.
Collapse
Affiliation(s)
- Sarah M. Dermody
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Chandan Bhambhani
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Paul L. Swiecicki
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - J. Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Health System, Ann Arbor, MI, United States
| | - Muneesh Tewari
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Center for Computational Biology and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Muneesh Tewari,
| |
Collapse
|
6
|
Kolesar J, Peh S, Thomas L, Baburaj G, Mukherjee N, Kantamneni R, Lewis S, Pai A, Udupa KS, Kumar An N, Rangnekar VM, Rao M. Integration of liquid biopsy and pharmacogenomics for precision therapy of EGFR mutant and resistant lung cancers. Mol Cancer 2022; 21:61. [PMID: 35209919 PMCID: PMC8867675 DOI: 10.1186/s12943-022-01534-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Abstract
The advent of molecular profiling has revolutionized the treatment of lung cancer by comprehensively delineating the genomic landscape of the epidermal growth factor receptor (EGFR) gene. Drug resistance caused by EGFR mutations and genetic polymorphisms of drug metabolizing enzymes and transporters impedes effective treatment of EGFR mutant and resistant lung cancer. This review appraises current literature, opportunities, and challenges associated with liquid biopsy and pharmacogenomic (PGx) testing as precision therapy tools in the management of EGFR mutant and resistant lung cancers. Liquid biopsy could play a potential role in selection of precise tyrosine kinase inhibitor (TKI) therapies during different phases of lung cancer treatment. This selection will be based on the driver EGFR mutational status, as well as monitoring the development of potential EGFR mutations arising during or after TKIs treatment, since some of these new mutations may be druggable targets for alternative TKIs. Several studies have identified the utility of liquid biopsy in the identification of EGFR driver and acquired resistance with good sensitivities for various blood-based biomarkers. With a plethora of sequencing technologies and platforms available currently, further evaluations using randomized controlled trials (RCTs) in multicentric, multiethnic and larger patient cohorts could enable optimization of liquid-based assays for the detection of EGFR mutations, and support testing of CYP450 enzymes and drug transporter polymorphisms to guide precise dosing of EGFR TKIs.
Collapse
Affiliation(s)
- Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Spencer Peh
- Department of Pharmacy Practice & Science, University of Kentucky, Lexington, KY, 40536, USA
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nayonika Mukherjee
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raveena Kantamneni
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shirley Lewis
- Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ananth Pai
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Naveena Kumar An
- Department of Surgical Oncology, Kasturba Medical College, Manipal Comprehensive Cancer Care Centre, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vivek M Rangnekar
- Markey Cancer Centre and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
7
|
Bach S, Wever BMM, van de Wiel MA, Veltman JD, Hashemi SMS, Kazemier G, Bahce I, Steenbergen RDM. Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer patients. Epigenetics 2021; 17:1057-1069. [PMID: 34605346 PMCID: PMC9542718 DOI: 10.1080/15592294.2021.1982511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
High levels of methylated DNA in urine represent an emerging biomarker for non-small cell lung cancer (NSCLC) detection and are the subject of ongoing research. This study aimed to investigate the circadian variation of urinary cell-free DNA (cfDNA) abundance and methylation levels of cancer-associated genes in NSCLC patients. In this prospective study of 23 metastatic NSCLC patients with active disease, patients were asked to collect six urine samples during the morning, afternoon, and evening of two subsequent days. Urinary cfDNA concentrations and methylation levels of CDO1, SOX17, and TAC1 were measured at each time point. Circadian variation and between- and within-subject variability were assessed using linear mixed models. Variability was estimated using the Intraclass Correlation Coefficient (ICC), representing reproducibility. No clear circadian patterns could be recognized for cfDNA concentrations or methylation levels across the different sampling time points. Significantly lower cfDNA concentrations were found in males (p=0.034). For cfDNA levels, the between- and within-subject variability were comparable, rendering an ICC of 0.49. For the methylation markers, ICCs varied considerably, ranging from 0.14 to 0.74. Test reproducibility could be improved by collecting multiple samples per patient. In conclusion, there is no preferred collection time for NSCLC detection in urine using methylation markers, but single measurements should be interpreted carefully, and serial sampling may increase test performance. This study contributes to the limited understanding of cfDNA dynamics in urine and the continued interest in urine-based liquid biopsies for cancer diagnostics.
Collapse
Affiliation(s)
- Sander Bach
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Birgit M M Wever
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Joris D Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sayed M S Hashemi
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Geert Kazemier
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Idris Bahce
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Magios N, Bozorgmehr F, Volckmar AL, Kazdal D, Kirchner M, Herth FJ, Heussel CP, Eichhorn F, Meister M, Muley T, Elshafie RA, Fischer JR, Faehling M, Kriegsmann M, Schirmacher P, Bischoff H, Stenzinger A, Thomas M, Christopoulos P. Real-world implementation of sequential targeted therapies for EGFR-mutated lung cancer. Ther Adv Med Oncol 2021; 13:1758835921996509. [PMID: 34408792 PMCID: PMC8366107 DOI: 10.1177/1758835921996509] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/27/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Epidermal growth factor receptor-mutated (EGFR+) non-small-cell lung cancer (NSCLC) patients failing tyrosine kinase inhibitors (TKI) can benefit from next-line targeted therapies, but implementation is challenging. Methods: EGFR+ NSCLC patients treated with first/second-generation (1G/2G) TKI at our institution with a last follow-up after osimertinib approval (February 2016), were analyzed retrospectively, and the results compared with published data under osimertinib. Results: A total of 207 patients received erlotinib (37%), gefitinib (16%) or afatinib (47%). The median age was 66 years, with a predominance of female (70%), never/light-smokers (69%). T790M testing was performed in 174/202 progressive cases (86%), positive in 93/174 (53%), and followed by osimertinib in 87/93 (94%). Among the 135 deceased patients, 94 (70%) received subsequent systemic treatment (43% chemotherapy, 39% osimertinib), while 30% died without, either before (4%) or after progression, due to rapid clinical deterioration (22%), patient refusal of further therapy (2%), or severe competing illness (2%). Lack of subsequent treatment was significantly (4.5x, p < 0.001) associated with lack of T790M testing, whose most frequent cause (in approximately 50% of cases) was also rapid clinical decline. Among the 127 consecutive patients with failure of 1G/2G TKI started after November 2015, 47 (37%) received osimertinib, with a median overall survival of 36 months versus 24 and 21 months for patients with alternative and no subsequent therapies (p = 0.003). Conclusion: Osimertinib after 1G/2G TKI failure prolongs survival, but approximately 15% and 30% of patients forego molecular retesting and subsequent treatment, respectively, mainly due to rapid clinical deterioration. This is an important remediable obstacle to sequential TKI treatment for EGFR+ NSCLC. It pertains also to other actionable resistance mechanisms emerging under 1G/2G inhibitors or osimertinib, whose rate for lack of next-line therapy is similar (approximately 35% in the FLAURA/AURA3 trials), and highlights the need for closer monitoring alongside broader profiling of TKI-treated EGFR+ NSCLC in the future.
Collapse
Affiliation(s)
- Nikolaus Magios
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Farastuk Bozorgmehr
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Herth
- Department of Pneumology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Claus-Peter Heussel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Rami A Elshafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen R Fischer
- Department of Thoracic Oncology, Lungenklinik Löwenstein, Löwenstein, Germany
| | - Martin Faehling
- Department of Cardiology, Angiology and Pneumology, Klinikum Esslingen, Esslingen, Germany
| | - Mark Kriegsmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Helge Bischoff
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | | | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Röntgenstraße 1, Heidelberg, Baden-Württemberg 69126, Germany
| |
Collapse
|
9
|
Ferreira D, Miranda J, Martins-Lopes P, Adega F, Chaves R. Future Perspectives in Detecting EGFR and ALK Gene Alterations in Liquid Biopsies of Patients with NSCLC. Int J Mol Sci 2021; 22:ijms22083815. [PMID: 33916986 PMCID: PMC8067613 DOI: 10.3390/ijms22083815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/28/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of death worldwide. Alterations in such genes as EGFR and ALK are considered important biomarkers in NSCLC due to the existence of targeted therapies with specific tyrosine kinase inhibitors (TKIs). However, specific resistance-related mutations can occur during TKI treatment, which often result in therapy inefficacy. Liquid biopsies arise as a reliable tool for the early detection of these types of alterations, allowing a non-invasive follow-up of the patients. Furthermore, they can be essential for cancer screening, initial diagnosis and to check surgery success. Despite the great advantages of liquid biopsies in NSCLC and the high input that next-generation sequencing (NGS) approaches can provide in this field, its use in oncology is still limited. With improvement of assay sensitivity and the establishment of clinical guidelines for liquid biopsy analysis, it is expected that they will be used in routine procedures. This review focuses on the usefulness of liquid biopsies of NSCLC patients as a means to detect alterations in EGFR and ALK genes and in disease management, highlighting the impact of NGS methods.
Collapse
Affiliation(s)
- Daniela Ferreira
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Juliana Miranda
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Paula Martins-Lopes
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filomena Adega
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
| | - Raquel Chaves
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal; (D.F.); (J.M.); (P.M.-L.); (F.A.)
- Correspondence: ; Tel.: +351-259-350936
| |
Collapse
|
10
|
Ferro M, La Civita E, Liotti A, Cennamo M, Tortora F, Buonerba C, Crocetto F, Lucarelli G, Busetto GM, Del Giudice F, de Cobelli O, Carrieri G, Porreca A, Cimmino A, Terracciano D. Liquid Biopsy Biomarkers in Urine: A Route towards Molecular Diagnosis and Personalized Medicine of Bladder Cancer. J Pers Med 2021; 11:jpm11030237. [PMID: 33806972 PMCID: PMC8004687 DOI: 10.3390/jpm11030237] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer (BC) is characterized by high incidence and recurrence rates together with genomic instability and elevated mutation degree. Currently, cystoscopy combined with cytology is routinely used for diagnosis, prognosis and disease surveillance. Such an approach is often associated with several side effects, discomfort for the patient and high economic burden. Thus, there is an essential demand of non-invasive, sensitive, fast and inexpensive biomarkers for clinical management of BC patients. In this context, liquid biopsy represents a very promising tool that has been widely investigated over the last decade. Liquid biopsy will likely be at the basis of patient selection for precision medicine, both in terms of treatment choice and real-time monitoring of therapeutic effects. Several different urinary biomarkers have been proposed for liquid biopsy in BC, including DNA methylation and mutations, protein-based assays, non-coding RNAs and mRNA signatures. In this review, we summarized the state of the art on different available tests concerning their potential clinical applications for BC detection, prognosis, surveillance and response to therapy.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology of European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.F.); (O.d.C.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
| | - Antonietta Liotti
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
| | - Michele Cennamo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
| | - Fabiana Tortora
- Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy;
| | - Carlo Buonerba
- CRTR Rare Tumors Reference Center, AOU Federico II, 80131 Naples, Italy;
- Environment & Health Operational Unit, Zoo-Prophylactic Institute of Southern Italy, 80055 Portici, Italy
| | - Felice Crocetto
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy;
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy;
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Del Giudice
- Department of Urology, Sapienza University of Rome, 00185 Rome, Italy; (F.D.G.); (G.C.)
| | - Ottavio de Cobelli
- Department of Urology of European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.F.); (O.d.C.)
- Dipartimento di Oncologia ed Ematoncologia-DIPO-Università degli Studi di Milano, 20122 Milan, Italy
| | - Giuseppe Carrieri
- Department of Urology, Sapienza University of Rome, 00185 Rome, Italy; (F.D.G.); (G.C.)
| | - Angelo Porreca
- Department of Urology, Veneto Institute of Oncology, 31033 Padua, Italy;
| | - Amelia Cimmino
- Institute of Genetics and Biophysics, National Research Council, 80131 Naples, Italy
- Correspondence: or (A.C.); (D.T.); Tel.: +39-81-746-3617 (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
- Correspondence: or (A.C.); (D.T.); Tel.: +39-81-746-3617 (D.T.)
| |
Collapse
|
11
|
Xu FZ, Zhang YB. Correlation analysis between serum neuron-specific enolase and the detection of gene mutations in lung adenocarcinoma. J Thorac Dis 2021; 13:552-561. [PMID: 33717528 PMCID: PMC7947504 DOI: 10.21037/jtd-20-1633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Lung cancer is a chronic, progressive and malignant disease associated with ever-growing incidence and mortality. Targeted therapy plays an important role in the clinical treatment of lung cancer. Besides, neuron-specific enolase (NSE), an intracellular enzyme, is highly correlated with the targeted treatment outcome in patients with non-small cell lung cancer (NSCLC). The present study aimed to explore the correlation of NSE with the detection of gene mutations. Methods It is a case-control study. From June 2017 to October 2019, the newly diagnosed patients with lung adenocarcinoma were enrolled from the First Affiliated Hospital of Anhui Medical University. Next-generation sequencing (NGS) was conducted in these patients. Kruskal-Wallis test was used to calculate the difference in NSE levels between mutant and non-mutant group and the differences were compared between blood and tissue samples. Results Compared with patients with no gene mutation (15.4±7.8 mmol/L), the NSE levels in patients with gene mutations were remarkably increased in blood sample group (22.2±12.9 mmol/L) (P<0.05). Besides, the linear regression model was applied for analysis which further emphasized the close relationship between them. The area under the ROC curve (AUC) of NSE was 0.7300 [95% confidence interval (CI): 0.6059-0.8541] and optimal threshold was 18.5650 U/mL with a sensitivity of 87.50% and a specificity of 52.08%. In addition, NSE levels increased in blood sample group, suggesting that the occurrence of polygenic mutation with dismal prognosis, but no correlation was detected in tissue sample group. Conclusions This study elucidates the functional role of NSE, and findings in this study notably increase the gene detection efficiency for lung adenocarcinoma.
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan-Bei Zhang
- Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Choudhury NJ, Yang SR, Arcila M, Mohanty AS, Boire A, Drilon A. Genomic Characterization of a RET Inhibitor-Resistant RET Fusion-Positive Lung Cancer by CSF Cell-Free DNA Hybrid Capture-Based Sequencing. JCO Precis Oncol 2020; 4:2000188. [PMID: 33381675 DOI: 10.1200/po.20.00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Noura J Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Soo-Ryum Yang
- Department of Pathology, Diagnostic Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maria Arcila
- Department of Pathology, Diagnostic Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abhinita S Mohanty
- Department of Pathology, Diagnostic Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medical College, New York, NY
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Cornell Medical College, New York, NY
| |
Collapse
|
13
|
Augustus E, Van Casteren K, Sorber L, van Dam P, Roeyen G, Peeters M, Vorsters A, Wouters A, Raskin J, Rolfo C, Zwaenepoel K, Pauwels P. The art of obtaining a high yield of cell-free DNA from urine. PLoS One 2020; 15:e0231058. [PMID: 32251424 PMCID: PMC7135229 DOI: 10.1371/journal.pone.0231058] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/14/2020] [Indexed: 12/18/2022] Open
Abstract
Although liquid biopsies offer many advantages over tissue biopsies, they are not yet standard practice. An important reason for the lack of implementation is the unavailability of well standardized techniques and guidelines, especially for pre-analytical conditions which are an important factor causing the current sensitivity issues. To overcome these limitations, we investigated the effect of several pre-analytical conditions on the concentration of cell-free DNA (cfDNA) and cellular genomic DNA (gDNA) contamination. Urine samples from healthy volunteers (HVs) and cancer patients were collected and processed according to specific pre-analytical conditions. Our results show that in samples with a relatively small volume more than 50% of the cfDNA can be found in the first 50 mL of the urine sample. The total DNA concentration increased again when samples were collected more than 3.5 hours apart. Adding preservative to urine samples is recommended to obtain high concentrations of cfDNA. To remove the cellular content, high speed centrifugation protocols as 4,000g 10min or 3,000g 15min are ideal for urine collected in cfDNA Urine Preserve (Streck). Although this study was a pilot study and needs to be confirmed in a larger study population, clear trends in the effect of several pre-analytical conditions were observed.
Collapse
Affiliation(s)
- Elien Augustus
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
- * E-mail:
| | - Kaat Van Casteren
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, KU Leuven (KUL), Leuven, Belgium
| | - Laure Sorber
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Peter van Dam
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Multidisciplinary Breast Unit, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Geert Roeyen
- Department of Hepato-Pancreato-Biliary and Transplant Surgery, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Department of Oncology, Antwerp University Hospital, Antwerp (UZA), Belgium
| | - Alex Vorsters
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp (UA), Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
| | - Jo Raskin
- Department of Pulmonology and Thoracic Oncology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Christian Rolfo
- Thoracic Medical Oncology and the Early Clinical Trials at the University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center (UMGCCC), Baltimore, Maryland, United States of America
| | - Karen Zwaenepoel
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research Antwerp (CORE), University of Antwerp (UA), Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), Edegem, Belgium
| |
Collapse
|
14
|
Jain S, Lin SY, Song W, Su YH. Urine-Based Liquid Biopsy for Nonurological Cancers. Genet Test Mol Biomarkers 2019; 23:277-283. [PMID: 30986103 DOI: 10.1089/gtmb.2018.0189] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS The use of circulating cell-free DNA for detection of cancer genetics has been studied extensively. Liquid biopsy often refers to the use of blood as a minimally invasive source of body fluid for detecting circulating tumor DNA (ctDNA). However, urine collection, which is completely noninvasive, has been shown to also have great promise to serve as an alternate body fluid source for ctDNA. In this review article, we focus on the clinical utility of urine for genetic liquid biopsy of nonurological cancers. CONCLUSION Although still in early stages as compared with blood-based liquid biopsy, recent studies have demonstrated the value of urine-based liquid biopsies for: nonurological cancer screening; early detection; monitoring for recurrence and metastasis; and therapeutic efficacy. Overall, the completely noninvasive and patient-friendly nature of the urine-based biopsy warrants further development and offers a promising alternative to blood-based biopsies.
Collapse
Affiliation(s)
- Surbhi Jain
- 1 JBS Science, Inc., Doylestown, Pennsylvania
| | | | - Wei Song
- 1 JBS Science, Inc., Doylestown, Pennsylvania
| | - Ying-Hsiu Su
- 2 Department of Translational Medical Science, The Baruch S. Blumberg Institute, Doylestown, Pennsylvania
| |
Collapse
|
15
|
Muluhngwi P, Valdes Jr R, Fernandez-Botran R, Burton E, Williams B, Linder MW. Cell-free DNA diagnostics: current and emerging applications in oncology. Pharmacogenomics 2019; 20:357-380. [DOI: 10.2217/pgs-2018-0174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy is a noninvasive dynamic approach for monitoring disease over time. It offers advantages including limited risks of blood sampling, opportunity for more frequent sampling, lower costs and theoretically non-biased sampling compared with tissue biopsy. There is a high degree of concordance between circulating tumor DNA mutations versus primary tumor mutations. Remote sampling of circulating tumor DNA can serve as viable option in clinical diagnostics. Here, we discuss the progress toward broad adoption of liquid biopsy as a diagnostic tool and discuss knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Roland Valdes Jr
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Eric Burton
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Brian Williams
- Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mark W Linder
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
16
|
Saarenheimo J, Eigeliene N, Andersen H, Tiirola M, Jekunen A. The Value of Liquid Biopsies for Guiding Therapy Decisions in Non-small Cell Lung Cancer. Front Oncol 2019; 9:129. [PMID: 30891428 PMCID: PMC6411700 DOI: 10.3389/fonc.2019.00129] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Targeted therapies have allowed for an individualized treatment approach in non-small-cell lung cancer (NSCLC). The initial therapeutic decisions and success of targeted therapy depend on genetic identification of personal tumor profiles. Tissue biopsy is the gold standard for molecular analysis, but non-invasive or minimally invasive liquid biopsy methods are also now used in clinical practice, allowing for later monitoring and optimization of the cancer treatment. The inclusion of liquid biopsy in the management of NSCLC provides strong evidence on early treatment response, which becomes a basis for determining disease progression and the need for changes in treatment. Liquid biopsies can drive the decision making for treatment strategies to achieve better patient outcomes. Cell-free DNA and circulating tumor cells obtained from the blood are promising markers for determining patient status. They may improve cancer treatments, allow for better treatment control, enable early interventions, and change decision making from reactive actions toward more predictive early interventions. This review aimed to present current knowledge on and the usefulness of liquid biopsy studies in NSCLC from the perspective of how it has allowed individualized treatments according to gene profiling and how the method may alter the treatment decisions in the future.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland.,Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Natalja Eigeliene
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - Heidi Andersen
- Department of Pulmonology, Vasa Central Hospital, Vaasa, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland.,Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
17
|
An efficient and cost-effective method for purification of small sized DNAs and RNAs from human urine. PLoS One 2019; 14:e0210813. [PMID: 30721243 PMCID: PMC6363378 DOI: 10.1371/journal.pone.0210813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Urine holds great promise as a non-invasive sampling method for molecular diagnostics. The cell-free nucleic acids of urine however are small, labile, and difficult to purify. Here an efficient method for the purification of these nucleic acids is presented. An empirically derived protocol was devised by first identifying conditions that allowed recovery of a 100 base pair (bp) DNA, followed by optimization using a quantitative polymerase chain reaction (qPCR) assay. The resulting method efficiently purifies both small sized DNAs and RNAs from urine, which when combined with quantitative reverse transcription PCR (qRTPCR), demonstrably improves detection sensitivity. Fractionation experiments reveal that nucleic acids in urine exist both in the cell-free and cellular fraction, roughly in equal proportion. Consistent with previous studies, amplicons > 180bp show a marked loss in PCR sensitivity for cell-free nucleic acids. Finally, the lysis buffer developed here also doubles as an effective preservative, protecting against nucleic acid degradation for at least two weeks under simulated field conditions. With this method, volumes of up to 25ml of whole urine can be purified in a high-throughput and cost-effective manner. Coupled with its ability to purify both DNA and RNA, the described method may have broad applicability for improving the diagnostic utility of urine, particularly for the detection of low abundant targets.
Collapse
|
18
|
Receptor Tyrosine Kinase Fusions and BRAF Kinase Fusions are Rare but Actionable Resistance Mechanisms to EGFR Tyrosine Kinase Inhibitors. J Thorac Oncol 2018; 13:1312-1323. [DOI: 10.1016/j.jtho.2018.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/05/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022]
|
19
|
Hu T, Shen H, Huang H, Song M, Yang Z, Zhou Y, Zhao G. Urinary circulating DNA profiling in non-small cell lung cancer patients following treatment shows prognostic potential. J Thorac Dis 2018; 10:4137-4146. [PMID: 30174858 DOI: 10.21037/jtd.2018.06.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Disease relapse in non-small cell lung cancer (NSCLC) requires close monitoring for early detection. The aim of the current study examines the use of urinary circulating DNA for patients after first line therapies. Methods EGFR positive NSCLC patients in stages I-III were profiled using digital droplet PCR (ddPCR). Urinary circulating DNA was collected prior to treatment and all monitored patients had detectable EGFR mutations. Post treatment urinary DNA measurements were taken at multiple time intervals. Results were matched to disease-free survival. Results Among the 213 patients recruited, 130 had matched EGFR profiles to corresponding tumor tissues. Concentrations of mutant DNA varied with different patients and mean concentration was 220±237 copies/mL. Measurements taken post-treatment showed a significant number of patients with undetectable EGFR mutations in their urine samples. Other patients registered a significant decline in urinary DNA concentrations. For measurements taken post treatment (6-month), we observed a significant increase of positively identified EGFR mutations in urine samples. In the patient group with higher urinary DNA concentration, 91% of the cohort experienced recurrence. Conclusions Our results indicated that urinary DNA measurements can potentially be useful for disease monitoring of minimal residual disease (MRD) in NSCLC. This can complement current serial radiographic imaging to provide early detection for lung cancer relapse.
Collapse
Affiliation(s)
- Tianjun Hu
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Haibo Shen
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Hongbo Huang
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Meijun Song
- Department of Emergency Medicine, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Zhenghua Yang
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Yingjie Zhou
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315010, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315010, China
| |
Collapse
|