1
|
Elhidsi M, Zaini J, Rachmadi L, Asmarinah A, Kekalih A, Soeroso N, Rasmin M. Clinical and Bronchoscopy Assessment in Diagnosing the Histopathology Type of Primary Central Lung Tumors. Open Respir Med J 2024; 18:e18743064318977. [PMID: 39130646 PMCID: PMC11311725 DOI: 10.2174/0118743064318977240531100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 08/13/2024] Open
Abstract
Background The location and type of a tumor influence the prognosis of lung cancer. Primary Central Lung Tumors (PCLTs) are correlated with poor prognoses and certain histologic types. This study aimed to present a comprehensive exploration of clinical and bronchoscopic assessments for diagnosing the histopathology types of PCLTs and identified the factors associated with certain histologic types. Methods This was an observational cross-sectional study of PCLTs, defined as tumors in direct contact with hilar structures or located within the inner two-thirds of the hemithorax. We gathered demographic and clinical data, as well as data on bronchoscopy assessment and histopathology type. Tumor stage, symptoms of superior vena cava syndrome, and enlargement of lymph nodes in the paratracheal and subcarinal regions were also documented. Results Of the 895 patients, 37.87% had primary lung tumors, with 17.76% classified as PCLTs. Notably, PCLT cases exhibited a higher proportion of stage III (28.9% vs. 18.3%; p = 0.03) and Squamous Cell Carcinoma (SCC) histopathology (37.1% vs. 17.2%; p = 0.00) compared with non-PCLT cases. Bronchoscopic findings in PCLTs revealed a predilection for central airway masses (25.2%) and compressive distal airway stenosis (25.2%). Subgroup analysis of 159 PCLT cases identified 37.10% as SCC. Multivariate analysis underscored that intraluminal masses predict central SCC (odds ratio 2.075, 95% confidence interval 1.07-3.99; p = 0.028). Conclusion The proportion of stage III, SCC histopathological type, and intraluminal lesions was higher in patients with PCLT than in non-PCLT cases. The presence of intraluminal lesions can predict the histopathological type of SCC in patients with PCLTs.
Collapse
Affiliation(s)
- Mia Elhidsi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Jamal Zaini
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Lisnawati Rachmadi
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Asmarinah Asmarinah
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Aria Kekalih
- Community Medicine, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Noni Soeroso
- Pulmonology and Respiratory Medicine, Faculty of Medicine, University of North Sumatra, Medan,Indonesia
| | - Menaldi Rasmin
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Indonesia
| |
Collapse
|
2
|
Berezowska S, Maillard M, Keyter M, Bisig B. Pulmonary squamous cell carcinoma and lymphoepithelial carcinoma - morphology, molecular characteristics and differential diagnosis. Histopathology 2024; 84:32-49. [PMID: 37936498 DOI: 10.1111/his.15076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Squamous cell carcinoma (SCC) comprises one of the major groups of non-small-cell carcinoma of the lung, and is subtyped into keratinising, non-keratinising and basaloid SCC. SCC can readily be diagnosed using histomorphology alone in keratinising SCC. Confirmatory immunohistochemical analyses should always be applied in non-keratinising and basaloid tumours to exclude differential diagnoses, most prominently adenocarcinoma and high-grade neuroendocrine carcinoma, which may have important therapeutic consequences. According to the World Health Organisation (WHO) classification 2015, the diagnosis of SCC can be rendered in resections of morphologically ambiguous tumours with squamous immunophenotype. In biopsies and cytology preparations in the same setting the current guidelines propose a diagnosis of 'non-small-cell carcinoma, favour SCC' in TTF1-negative and p40-positive tumours to acknowledge a possible sampling bias and restrict extended immunohistochemical evaluation in order to preserve tissue for molecular testing. Most SCC feature a molecular 'tobacco-smoke signature' with enrichment in GG > TT mutations, in line with the strong epidemiological association of SCC with smoking. Targetable mutations are extremely rare but they do occur, in particular in younger and non- or light-smoking patients, warranting molecular investigations. Lymphoepithelial carcinoma (LEC) is a poorly differentiated SCC with a syncytial growth pattern and a usually prominent lymphoplasmacytic infiltrate and frequent Epstein-Barr virus (EBV) association. In this review, we describe the morphological and molecular characteristics of SCC and LEC and discuss the most pertinent differential diagnoses.
Collapse
Affiliation(s)
- Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Marie Maillard
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mark Keyter
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Guerrieri C, Lindner M, Sesti J, Chakraborti A, Hudacko R. Pulmonary squamous cell carcinoma with a lepidic-pagetoid growth pattern. Pathologica 2022; 114:304-311. [DOI: 10.32074/1591-951x-450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
|
4
|
Xie X, Li X, Tang W, Xie P, Tan X. Primary tumor location in lung cancer: the evaluation and administration. Chin Med J (Engl) 2021; 135:127-136. [PMID: 34784305 PMCID: PMC8769119 DOI: 10.1097/cm9.0000000000001802] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Lung cancer continues to be the leading cause of cancer-related death in the world, which is classically subgrouped into two major histological types: Non-small cell lung cancer (NSCLC) (85% of patients) and small-cell lung cancer (SCLC) (15%). Tumor location has been reported to be associated with the prognosis of various solid tumors. Several types of cancer often occur in a specific region and are more prone to spread to predilection locations, including colorectal cancer, prostate cancer, gastric cancer, ovarian cancer, cervical cancer, bladder cancer, lung tumor, and so on. Besides, tumor location is also considered as a risk factor for lung neoplasm with chronic obstructive pulmonary disease/emphysema. Additionally, the primary lung cancer location is associated with specific lymph node metastasis. And the recent analysis has shown that the primary location may affect metastasis pattern in metastatic NSCLC based on a large population. Numerous studies have enrolled the "location" factor in the risk model. Anatomy location and lobe-specific location are both important in prognosis. Therefore, it is important for us to clarify the characteristics about tumor location according to various definitions. However, the inconsistent definitions about tumor location among different articles are controversial. It is also a significant guidance in multimode therapy in the present time. In this review, we mainly aim to provide a new insight about tumor location, including anatomy, clinicopathology, and prognosis in patients with lung neoplasm.
Collapse
Affiliation(s)
- Xueqi Xie
- School of Medicine and Life Sciences, Shandong First Medical University, Jinan, Shandong 250117, China Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | | | | | | | | |
Collapse
|
5
|
Weidemann S, Böhle JL, Contreras H, Luebke AM, Kluth M, Büscheck F, Hube-Magg C, Höflmayer D, Möller K, Fraune C, Bernreuther C, Rink M, Simon R, Menz A, Hinsch A, Lebok P, Clauditz T, Sauter G, Uhlig R, Wilczak W, Steurer S, Burandt E, Krech R, Dum D, Krech T, Marx A, Minner S. Napsin A Expression in Human Tumors and Normal Tissues. Pathol Oncol Res 2021; 27:613099. [PMID: 34257582 PMCID: PMC8262149 DOI: 10.3389/pore.2021.613099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Background: Novel aspartic proteinase of the pepsin family A (Napsin A, TAO1/TAO2) is a functional aspartic proteinase which is involved in the maturation of prosurfactant protein B in type II pneumocytes and the lysosomal protein catabolism in renal cells. Napsin A is highly expressed in adenocarcinomas of the lung and is thus commonly used to affirm this diagnosis. However, studies have shown that other tumors can also express Napsin A. Methods: To comprehensively determine Napsin A expression in normal and tumor tissue, 11,957 samples from 115 different tumor types and subtypes as well as 500 samples of 76 different normal tissue types were evaluable by immunohistochemistry on tissue microarrays. Results: Napsin A expression was present in 16 different tumor types. Adenocarcinoma of the lung (85.6%), clear cell adenocarcinoma of the ovary (71.7%), clear cell adenocarcinoma of the endometrium (42.8%), papillary renal cell carcinoma (40.2%), clear cell (tubulo) papillary renal cell carcinoma (16.7%), endometrial serous carcinoma (9.3%), papillary thyroid carcinoma (9.3%) and clear cell renal cell carcinoma (8.2%) were among the tumors with the highest prevalence of Napsin A positivity. In papillary and clear cell renal cell carcinoma, reduced Napsin A expression was linked to adverse clinic-pathological features (p ≤ 0.03). Conclusion: This methodical approach enabled us to identify a ranking order of tumors according to their relative prevalence of Napsin A expression. The data also show that loss of Napsin A is linked to tumor dedifferentiation in renal cell carcinomas.
Collapse
Affiliation(s)
- Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Lukas Böhle
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrina Contreras
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Lin MW, Huang YL, Yang CY, Kuo SW, Wu CT, Chang YL. The Differences in Clinicopathologic and Prognostic Characteristics Between Surgically Resected Peripheral and Central Lung Squamous Cell Carcinoma. Ann Surg Oncol 2018; 26:217-229. [PMID: 30456676 DOI: 10.1245/s10434-018-6993-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary peripheral-type squamous cell carcinoma (p-SqCC) has been increasing in incidence. However, little is known about the clinicopathologic features of p-SqCC. This study aimed to investigate the clinicopathologic characteristics and clinical outcomes of p-SqCC compared with central-type SqCC (c-SqCC) in a large cohort of surgically resected lung SqCC patients with long-term follow-up results. METHODS The study included 268 patients with SqCC who underwent surgical resection at the authors' institute from January 1990 to September 2013. The mean follow-up period was 67.1 months. The clinicopathologic and genetic characteristics were investigated in relation to their association with progression-free survival (PFS) and overall survival (OS) based on tumor location. RESULTS The study cohort included 120 patients with p-SqCC and 148 patients with c-SqCC. Compared with c-SqCC, p-SqCC was correlated with older age (p = 0.002), female sex (p = 0.033), better performance status (p < 0.001), smaller tumor (p = 0.004), less lymph node metastasis (p < 0.001), and an earlier pathologic stage (p < 0.001). Despite the clinicopathologic differences, tumor location was not significantly correlated with clinical outcomes. For the p-SqCC patients, the multivariate analysis showed a significant correlation of lymphovascular invasion (PFS, p < 0.001; OS, p < 0.001) and lymph node metastasis (p = 0.007; OS, p = 0.022) with poor PFS and OS, but a significant correlation of incomplete tumor resection (PFS, p = 0.009) only with poor PFS. CONCLUSIONS The clinicopathologic features differed between the p-SqCC and c-SqCC patients. Lymphovascular invasion and lymph node metastasis were independent prognostic factors of p-SqCC. These prognostic factors may be potentially used as indicators for adjuvant therapies to be used with patients who have p-SqCC.
Collapse
Affiliation(s)
- Mong-Wei Lin
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yao Yang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuenn-Wen Kuo
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yih-Leong Chang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
7
|
Machado-Rugolo J, Fabro AT, Ascheri D, Farhat C, Ab'Saber AM, de Sá VK, Nagai MA, Takagaki T, Terra R, Parra ER, Capelozzi VL. Usefulness of complementary next-generation sequencing and quantitative immunohistochemistry panels for predicting brain metastases and selecting treatment outcomes of non-small cell lung cancer. Hum Pathol 2018; 83:177-191. [PMID: 30218756 DOI: 10.1016/j.humpath.2018.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
Abstract
To demonstrate the usefulness of complementary next-generation sequencing (NGS) and immunohistochemistry (IHC) counting, we analyzed 196 patients with non-small cell lung cancer who underwent surgical resection and adjuvant chemotherapy. Formalin-fixed, paraffin-embedded samples of adenocarcinoma (ADC), squamous cell carcinoma, and large cell carcinoma were used to prepare tissue microarrays and were examined by protein H-score IHC image analysis and NGS for oncogenes and proto-oncogenes and genes of tumor suppressors, immune checkpoints, epithelial-mesenchymal transition factors, tyrosine kinase receptors, and vascular endothelial growth factors. In patients with brain metastases, primary tumors expressed lower PIK3CA protein levels. Overexpression of p53 and a higher PD-L1 protein H-score were detected in patients who underwent surgical treatment followed by chemotherapy as compared with those who underwent only surgical treatment The absence of brain metastases was associated with wild-type sequences of genes EGFR, CD267, CTLA-4, and ZEB1. The combination of protein overexpression according to IHC and mutation according to NGS was rare (ie, represented by a very low percentage of concordant cases), except for p53 and vascular endothelial growth factor. Our data suggest that protein levels detected by IHC may be a useful complementary tool when mutations are not detected by NGS and also support the idea to expand this approach beyond ADC to include squamous cell carcinoma and even large cell carcinoma, particularly for patients with unusual clinical characteristics. Conversely, well-pronounced immunogenotypic features seemed to predict the clinical outcome after univariate and multivariate analyses. Patients with a solid ADC subtype and mutated genes EGFR, CTLA4, PDCD1LG2, or ZEB1 complemented with PD-L1 or p53 protein lower expression that only underwent surgical treatment who develop brain metastases may have the worst prognosis.
Collapse
Affiliation(s)
- Juliana Machado-Rugolo
- Clinicas Hospital, Faculty of Medicine, State University of São Paulo, Botucatu 18618-682, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Daniel Ascheri
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Cecília Farhat
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Alexandre Muxfeldt Ab'Saber
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | - Vanessa Karen de Sá
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School, São Paulo 01246-903, Brazil
| | | | - Teresa Takagaki
- Division of Pneumology, Heart Institute (Incor), Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Ricardo Terra
- Department of Thoracic Surgery, Institute of Cancer of São Paulo, São Paulo 01246-903, Brazil; Department of Thoracic Surgery, Heart Institute (Incor), São Paulo 01246-903, Brazil
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vera Luiza Capelozzi
- Laboratory of Genomics and Histomorphometry, Department of Pathology, University of São Paulo Medical School, São Paulo 01246-903, Brazil.
| |
Collapse
|
8
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|