1
|
Ruiz-Martínez S, Ribas X, Costas M, Landberg G, Puig T. Characterization and targeting of chemoresistant triple-negative breast cancer subtypes using amino-pyridine compounds. Biochim Biophys Acta Mol Basis Dis 2025:167899. [PMID: 40350044 DOI: 10.1016/j.bbadis.2025.167899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/25/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with limited treatment options and high relapse rates due to chemoresistance and the presence of cancer stem cells (CSCs). This study explores the molecular profile and invasive properties of two TNBC cell lines, MDA-MB-231 (Basal-Like 1; BL1 subtype) and HCC1806 (BL2 subtype), as well as their chemotherapy-resistant derivatives (doxorubicin and paclitaxel). Both cell lines exhibited CD44+ and CD24-/low profiles with significant differences in epithelial-mesenchymal transition (EMT) markers. Chemoresistant variants exhibited significant changes in CSC markers, EMT genes, and ALDH activity, particularly the upregulation of CD133, suggesting its role in chemoresistance. Analysis of embryonic pathways revealed a prominent role of Sonic Hedgehog signaling, particularly in the BL2 subtype. Resistant models also exhibited increased Notch receptor expression. This study also examined novel polyamine compounds with an amino-pyridine structure. These compounds showed significant cytotoxicity against both sensitive and resistant TNBC cells, enhancing the efficacy of standard chemotherapeutics (paclitaxel and doxorubicin). Additionally, they reduced stem-like properties and self-renewal capacity of CSCs. This comprehensive characterization of TNBC cell lines and their chemoresistant variants underscores the molecular heterogeneity of TNBC and highlights potential therapeutic targets and strategies to enhance treatment efficacy and overcome resistance.
Collapse
Affiliation(s)
- Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Spain; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sweden.
| | - Xavi Ribas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Spain.
| | - Miquel Costas
- QBIS-CAT Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Spain.
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, Sweden.
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, Spain.
| |
Collapse
|
2
|
Dey S, Dinakar YH, R S, Jain V, Jain R. Navigating the therapeutic landscape for breast cancer: targeting breast cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2387-2406. [PMID: 39441235 DOI: 10.1007/s00210-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is a common and deadly malignancy that affects women globally, and breast cancer stem cells (BCSCs) play an important role in tumorigenesis, development, metastasis, and recurrence. Traditional therapies often fail to eliminate BCSCs, leading to treatment resistance and relapse. This review explores the therapeutic strategies which are designed to target BCSCs, including inhibition of key signaling pathway and targeting receptor. This paper also explores the approaches to targeting BCSCs including chemotherapy, phytomedicines, and nanotechnology. Nanotechnology has gained a lot of importance in cancer therapy because of its ability to deliver therapeutic agents with more precision and minimal side effects. Various chemotherapeutic drugs, siRNAs, or gene editing tools are delivered efficiently with the use of nanocarriers which target pathways, receptors, and proteins associated with BCSCs. Over the past few years, stimuli-responsive and receptor-targeted nanocarriers have been explored for better therapeutic effects. In recent times, strategies such as chimeric antigen receptor (CAR) T-cell therapy, ablation therapy, and cell-free therapies are explored for targeting these stem cells. This review provides a recent developmental overview of strategies to attack BCSCs from conventional chemotherapeutic agents to nanotechnological platforms such as polymeric, lipidic, and metal-based nanoparticles and advanced technologies like CAR T cell therapies.
Collapse
Affiliation(s)
- Soudeep Dey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Soundarya R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
3
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
4
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
5
|
Malla R, Jyosthsna K, Rani G, Purnachandra Nagaraju G. CD44/PD-L1-mediated networks in drug resistance and immune evasion of breast cancer stem cells: Promising targets of natural compounds. Int Immunopharmacol 2024; 138:112613. [PMID: 38959542 DOI: 10.1016/j.intimp.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Cancer stem cells (CSCs) significantly interfere with immunotherapy, leading to challenges such as low response rates and acquired resistance. PD-L1 expression is associated with the CSC population's overexpression of CD44. Mounting evidence suggests that the breast cancer stem cell (BCSC) marker CD44 and the immune checkpoint PD-L1 contribute to treatment failure through their networks. Natural compounds can overcome therapy resistance in breast cancer by targeting mechanisms underlying resistance in BCSCs. This review provides an updated insight into the CD44 and PD-L1 networks of BCSCs in mediating metastasis and immune evasion. The review critically examines existing literature, providing a comprehensive understanding of the topic and emphasizing the impact of natural flavones on the signaling pathways of BCSCs. Additionally, the review discusses the potential of natural compounds in targeting CD44 and PD-L1 in breast cancer (BC). Natural compounds consistently show potential in targeting regulatory mechanisms of BCSCs, inducing loss of stemness, and promoting differentiation. They offer a promising approach for developing alternative therapeutic strategies to manage breast cancer.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Kattula Jyosthsna
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - G Rani
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
6
|
Heidarnejad K, Nooreddin Faraji S, Mahfoozi S, Ghasemi Z, Sadat Dashti F, Asadi M, Ramezani A. Breast cancer immunotherapy using scFv antibody-based approaches, a systematic review. Hum Immunol 2024; 85:111090. [PMID: 39214066 DOI: 10.1016/j.humimm.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Kamran Heidarnejad
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shirin Mahfoozi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghasemi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Dashti
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Asadi
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Sargiacomo C, Klepinin A. Density Gradient Centrifugation Is an Effective Tool to Isolate Cancer Stem-like Cells from Hypoxic and Normoxia Triple-Negative Breast Cancer Models. Int J Mol Sci 2024; 25:8958. [PMID: 39201646 PMCID: PMC11354270 DOI: 10.3390/ijms25168958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence has indicated that stemness-related genes are associated with the aggressiveness of triple-negative breast cancer (TNBC). Because no universal markers for breast CSCs are available, we applied the density gradient centrifugation method to enrich breast CSCs. We demonstrated that the density centrifugation method allows for the isolation of cancer stem cells (CSCs) from adherent and non-adherent MCF7 (Luminal A), MDA-MB-231 (TNBC) and MDA-MB-468 (TNBC) breast cancer cells. The current study shows that the CSCs' enriched fraction from Luminal A and TNBC cells have an increased capacity to grow anchorage-independently. CSCs from adherent TNBC are mainly characterized by metabolic plasticity, whereas CSCs from Luminal A have an increased mitochondrial capacity. Moreover, we found that non-adherent growth CSCs isolated from large mammospheres have a higher ability to grow anchorage-independently compared to CSCs isolated from small mammospheres. In CSCs, a metabolic shift towards glycolysis was observed due to the hypoxic environment of the large mammosphere. Using a bioinformatic analysis, we indicate that hypoxia HYOU1 gene overexpression is associated with the aggressiveness, metastasis and poor prognosis of TNBC. An in vitro study demonstrated that HYOU1 overexpression increases breast cancer cells' stemness and hyperactivates their metabolic activity. In conclusion, we show that density gradient centrifugation is a non-marker-based approach to isolate metabolically flexible (normoxia) CSCs and glycolytic (hypoxic) CSCs from aggressive TNBC.
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK;
| | - Aleksandr Klepinin
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK;
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| |
Collapse
|
8
|
Romaniuk-Drapała A, Totoń E, Taube M, Idzik M, Rubiś B, Lisiak N. Breast Cancer Stem Cells and Tumor Heterogeneity: Characteristics and Therapeutic Strategies. Cancers (Basel) 2024; 16:2481. [PMID: 39001543 PMCID: PMC11240630 DOI: 10.3390/cancers16132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer is one of the most frequently detected malignancies worldwide. It is responsible for more than 15% of all death cases caused by cancer in women. Breast cancer is a heterogeneous disease representing various histological types, molecular characteristics, and clinical profiles. However, all breast cancers are organized in a hierarchy of heterogeneous cell populations, with a small proportion of cancer stem cells (breast cancer stem cells (BCSCs)) playing a putative role in cancer progression, and they are responsible for therapeutic failure. In different molecular subtypes of breast cancer, they present different characteristics, with specific marker profiles, prognoses, and treatments. Recent efforts have focused on tackling the Wnt, Notch, Hedgehog, PI3K/Akt/mTOR, and HER2 signaling pathways. Developing diagnostics and therapeutic strategies enables more efficient elimination of the tumor mass together with the stem cell population. Thus, the knowledge about appropriate therapeutic methods targeting both "normal" breast cancer cells and breast cancer stem cell subpopulations is crucial for success in cancer elimination.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Magdalena Taube
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Malgorzata Idzik
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Collegium Pharmaceuticum, Rokietnicka Str. 3, 60-806 Poznan, Poland
| |
Collapse
|
9
|
Hermansyah D, Syarifah S, Muhar AM, Putra A. Unveiling Paclitaxel-Induced Mesenchymal Stem Cells: orchestrating Nrf2 Modulation and Apoptosis in CD44+/CD24- Cancer Stem Cells. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:319-328. [PMID: 38978966 PMCID: PMC11228077 DOI: 10.2147/bctt.s457548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Background Mesenchymal Stem Cells (MSCs) and Cancer Stem Cells (CSC) play pivotal roles in cancer progression and therapeutic responses. This study aimed to explored the effect of MSCs induced by paclitaxel on CSC expressing the CD44+/CD24- phenotype, focusing on Nrf2 modulation and apoptosis induction. Methods MSCs were characterized for adherence, differentiation potential, and surface markers via standard culture, staining assays, and flow cytometry, respectively. CSCs isolated from MDA-MB-231 using MACS and were characterized based on morphology and CD44+/CD24- expression. Co-culture experiments evaluated the cytotoxic effect of Paclitaxel-induced MSCs on CSC viability using MTT assays. Flow cytometry analysis assessed apoptosis induction via annexin V-PI staining and Nrf2 and Caspase-3 gene expression were measure by qRT-PCR analysis. Results MSCs exhibited typical adherence and differentiation capabilities, confirming their mesenchymal lineage. CSCs displayed an elongated morphology and expressed CD44+/CD24-, characteristic of stem-like behavior. Paclitaxel induced dose-dependent Nrf2 gene expression in MSCs. Co-culture with Paclitaxel-induced MSCs reduced CSC viability in a dose-dependent manner, with a significant decrease observed at a 5:1 MSCs:CSC ratio. Co-culture decreased the Nrf2 gene expression and increased apoptosis in CSCs, with higher caspase-3 gene expression compared to solitary paclitaxel treatment. Conclusion Paclitaxel-induced MSCs decreased Nrf2 expression and significantly decreased CSC viability while enhancing apoptosis. This suggests a potential strategy to mitigate paclitaxel resistance in CD44+/CD24- CSCs. Leveraging Paclitaxel-induced MSCs presents a promising avenue for targeting Nrf2 and promoting apoptosis in CSCs, potentially improving the efficacy of chemotherapy and addressing resistance mechanisms in cancer treatment.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Siti Syarifah
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Department of Doctoral Degree Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research Indonesia, Semarang, Central Java, Indonesia
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Central Java, Indonesia
| |
Collapse
|
10
|
Yaghjyan L, Heng YJ, Baker GM, Murthy D, Mahoney MB, Rosner B, Tamimi RM. Associations of stem cell markers CD44, CD24 and ALDH1A1 with mammographic breast density in women with benign breast biopsies. Br J Cancer 2024; 131:325-333. [PMID: 38849477 PMCID: PMC11263693 DOI: 10.1038/s41416-024-02743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND We examined associations of CD44, CD24 and ALDH1A1 breast stem cell markers with mammographic breast density (MBD), a well-established breast cancer (BCa) risk factor. METHODS We included 218 cancer-free women with biopsy-confirmed benign breast disease within the Nurses' Health Study (NHS) and NHSII. The data on BCa risk factors were obtained from biennial questionnaires. Immunohistochemistry (IHC) was done on tissue microarrays. For each core, the IHC expression was assessed using a semi-automated platform and expressed as percent of positively stained cells for each marker out of the total cell count. MBD was assessed with computer-assisted techniques. Generalised linear regression was used to examine the associations of each marker with square root-transformed percent density (PD), absolute dense and non-dense areas (NDA), adjusted for BCa risk factors. RESULTS Stromal CD44 and ALDH1A1 expression was positively associated with PD (≥ 10% vs. <10% β = 0.56, 95% confidence interval [CI] [0.06; 1.07] and β = 0.81 [0.27; 1.34], respectively) and inversely associated with NDA (β per 10% increase = -0.17 [-0.34; -0.01] and β for ≥10% vs. <10% = -1.17 [-2.07; -0.28], respectively). Epithelial CD24 expression was inversely associated with PD (β per 10% increase = -0.14 [-0.28; -0.01]. Stromal and epithelial CD24 expression was positively associated with NDA (β per 10% increase = 0.35 [0.2 × 10-2; 0.70] and β per 10% increase = 0.34 [0.11; 0.57], respectively). CONCLUSION Expression of stem cell markers is associated with MBD.
Collapse
Affiliation(s)
- Lusine Yaghjyan
- University of Florida, College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, Gainesville, FL, USA.
| | - Yujing J Heng
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Divya Murthy
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matt B Mahoney
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
12
|
Ramović Hamzagić A, Gazdić Janković M, Cvetković D, Nikolić D, Nikolić S, Milivojević Dimitrijević N, Kastratović N, Živanović M, Miletić Kovačević M, Ljujić B. Machine Learning Model for Prediction of Development of Cancer Stem Cell Subpopulation in Tumurs Subjected to Polystyrene Nanoparticles. TOXICS 2024; 12:354. [PMID: 38787133 PMCID: PMC11125870 DOI: 10.3390/toxics12050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Cancer stem cells (CSCs) play a key role in tumor progression, as they are often responsible for drug resistance and metastasis. Environmental pollution with polystyrene has a negative impact on human health. We investigated the effect of polystyrene nanoparticles (PSNPs) on cancer cell stemness using flow cytometric analysis of CD24, CD44, ABCG2, ALDH1 and their combinations. This study uses simultaneous in vitro cell lines and an in silico machine learning (ML) model to predict the progression of cancer stem cell (CSC) subpopulations in colon (HCT-116) and breast (MDA-MB-231) cancer cells. Our findings indicate a significant increase in cancer stemness induced by PSNPs. Exposure to polystyrene nanoparticles stimulated the development of less differentiated subpopulations of cells within the tumor, a marker of increased tumor aggressiveness. The experimental results were further used to train an ML model that accurately predicts the development of CSC markers. Machine learning, especially genetic algorithms, may be useful in predicting the development of cancer stem cells over time.
Collapse
Affiliation(s)
- Amra Ramović Hamzagić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Gazdić Janković
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Danijela Cvetković
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dalibor Nikolić
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sandra Nikolić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Nikolina Kastratović
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marko Živanović
- Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marina Miletić Kovačević
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Biljana Ljujić
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
13
|
Beauchamp E, Gamma JM, Cromwell CR, Moussa EW, Pain R, Kostiuk MA, Acevedo-Morantes C, Iyer A, Yap M, Vincent KM, Postovit LM, Julien O, Hubbard BP, Mackey JR, Berthiaume LG. Multiomics analysis identifies oxidative phosphorylation as a cancer vulnerability arising from myristoylation inhibition. J Transl Med 2024; 22:431. [PMID: 38715059 PMCID: PMC11075276 DOI: 10.1186/s12967-024-05150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.
Collapse
Affiliation(s)
| | - Jay M Gamma
- Department of Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Christopher R Cromwell
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eman W Moussa
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rony Pain
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Morris A Kostiuk
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Claudia Acevedo-Morantes
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aishwarya Iyer
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Krista M Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lynne M Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Luc G Berthiaume
- Pacylex Pharmaceuticals Inc., Edmonton, AB, Canada.
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Lin X, Wang Y, Fang K, Guo Z, Lin N, Li L. The application of nanoparticles in theranostic systems targeting breast cancer stem cells: current progress and future challenges. Stem Cell Res Ther 2023; 14:356. [PMID: 38072976 PMCID: PMC10712155 DOI: 10.1186/s13287-023-03584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is one of the diseases with the highest female mortality rates in the world and is closely related to breast cancer stem cells (BCSCs). Conventional breast cancer chemotherapy drugs target noncancer stem cells (non-CSCs), while cancer stem cells (CSCs) can still survive, which is an important reason for breast cancer drug resistance and local recurrence or distant metastasis. How to eradicate BCSCs while killing BCs is the key factor to improve the effect, and it is also an important scientific problem to be solved urgently. Therefore, targeted BCSC therapy has become a research hotspot. Interestingly, the emergence of nanotechnology provides a new idea for targeting BCSCs. This study summarizes the current application status of nanomaterials in targeting BCSCs, and attempts to construct a new type of lipid nanoparticle (LNP) that can target BCSCs through mRNA, providing a new idea for the treatment of BC.
Collapse
Affiliation(s)
- Xinyu Lin
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Ying Wang
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Kai Fang
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Zijian Guo
- Department of Oncological Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Nan Lin
- Qilu Hospital of Shandong University, Shandong, 250000, China
| | - Lihua Li
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
15
|
Guha A, Goswami KK, Sultana J, Ganguly N, Choudhury PR, Chakravarti M, Bhuniya A, Sarkar A, Bera S, Dhar S, Das J, Das T, Baral R, Bose A, Banerjee S. Cancer stem cell-immune cell crosstalk in breast tumor microenvironment: a determinant of therapeutic facet. Front Immunol 2023; 14:1245421. [PMID: 38090567 PMCID: PMC10711058 DOI: 10.3389/fimmu.2023.1245421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Breast cancer (BC) is globally one of the leading killers among women. Within a breast tumor, a minor population of transformed cells accountable for drug resistance, survival, and metastasis is known as breast cancer stem cells (BCSCs). Several experimental lines of evidence have indicated that BCSCs influence the functionality of immune cells. They evade immune surveillance by altering the characteristics of immune cells and modulate the tumor landscape to an immune-suppressive type. They are proficient in switching from a quiescent phase (slowly cycling) to an actively proliferating phenotype with a high degree of plasticity. This review confers the relevance and impact of crosstalk between immune cells and BCSCs as a fate determinant for BC prognosis. It also focuses on current strategies for targeting these aberrant BCSCs that could open avenues for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Aishwarya Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Jasmine Sultana
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Pritha Roy Choudhury
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Mohona Chakravarti
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anirban Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Saurav Bera
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sukanya Dhar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Juhina Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tapasi Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Pharmaceutical Technology Biotechnology National Institute of Pharmaceutical Education and Research (NIPER) Sahibzada Ajit Singh (S.A.S.) Nagar, Mohali, Punjab, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
16
|
Kim SL, Choi HS, Lee DS. BRD4/nuclear PD-L1/RelB circuit is involved in the stemness of breast cancer cells. Cell Commun Signal 2023; 21:315. [PMID: 37924094 PMCID: PMC10623882 DOI: 10.1186/s12964-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer diagnosed in women worldwide. BC stem cells (BCSCs) have been known to be involved in the carcinogenesis of the breast and contribute to therapeutic resistance. The programmed death-ligand 1 (PD-L1) expression of BC correlated with a poor prognosis. Immunotherapies that target PD-L1 have great potential and have been successful when applied to cancer treatment. However, whether PD-L1 regulates BCSC formation is unknown. METHODS BCSCs were enriched by serum-free suspension culture. The properties of BCSCs were examined by mammosphere formation assay, CD44+/Cd24-, aldehyde dehydrogenase (ALDH) assay, CSC marker analysis, and mammosphere growth assay. To elucidate the functions of bromodomain-containing protein 4 (BRD4), nuclear PD-L1, and RelB proteins in the stemness of BCSCs, mammosphere formation was examined using BRD4 inhibitor and degrader, PD-L1 degrader, and RelB inhibitor. The antitumor function of 3',4',7,8-tetrahydroxyflavone (THF), a specific BRD4 inhibitor, was studied through in vivo tumor model and mouse studies, and the protein levels of c-Myc, PD-L1, and RelB were examined in tumor model under THF treatment. RESULTS BRD4 was upregulated in breast CSCs and regulates the stemness of BCs. The downregulation of BRD4 using BRD4 PROTAC, ARV-825, and BRD4 inhibitor, (+)-JQ1, inhibits mammosphere formation and reduces the levels of breast CSC markers (CD44+/CD24- and ALDH1), stem cell marker genes, and mammosphere growth. BRD4 inhibitor (JQ1) and degrader (ARV825) downregulate membrane and nuclear fractions of PD-L1 through the inhibition of PD-L1 transcript levels. The knockdown of PD-L1 inhibits mammosphere formation. Verteporfin, a PD-L1 degrader, inhibits the transcripts and protein levels of PD-L1 and downregulates the transcript and protein levels of RelB. Calcitriol, a RelB inhibitor, and the knockdown of RelB using si-RelB regulate mammosphere formation through interleukin-6 (IL-6) expression. THF is a natural product and a potent selective BRD4 inhibitor, inhibits mammosphere formation, and reduces the levels of CD44+/CD24- and mammosphere growth by downregulating c-Myc, PD-L1, and RelB. 3',4',7,8-THF shows tumoricidal activity and increased levels of CD3+CD4+ and CD3+CD8+ T-cells in the tumor and tumor-draining lymph nodes (TDLNs) in the murine tumor model using 4T1 and MC38 cells. CONCLUSIONS The results show the first evidence of the essential role of the BRD4/nuclear PD-L1/RelB axis in breast CSC formation. The nuclear PD-L1 regulates RelB, and the RelB/p65 complex induces IL6 and breast CSC formation. Targeting nuclear PD-L1 represents a potential and novel tool for immunotherapies of intractable BC. Video Abstract.
Collapse
Affiliation(s)
- Su-Lim Kim
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju, 63243, Republic of Korea
- Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hack Sun Choi
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju, 63243, Republic of Korea.
| | - Dong-Sun Lee
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju, 63243, Republic of Korea.
- Graduate Program for Bio-health/Innovative Drug Development using Subtropical Bio-Resources, Jeju National University, Jeju, 63243, Republic of Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju, 63243, Republic of Korea.
| |
Collapse
|
17
|
Tsintarakis A, Papalouka C, Kontarini C, Zoumpourlis P, Karakostis K, Adamaki M, Zoumpourlis V. The Intricate Interplay between Cancer Stem Cells and Oncogenic miRNAs in Breast Cancer Progression and Metastasis. Life (Basel) 2023; 13:1361. [PMID: 37374142 DOI: 10.3390/life13061361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Complex signaling interactions between cancer cells and their microenvironments drive the clonal selection of cancer cells. Opposing forces of antitumor and tumorigenic potential regulate the survival of the fittest clones, while key genetic and epigenetic alterations in healthy cells force them to transform, overcome cell senescence, and proliferate in an uncontrolled manner. Both clinical samples and cancer cell lines provide researchers with an insight into the complex structure and hierarchy of cancer. Intratumor heterogeneity allows for multiple cancer cell subpopulations to simultaneously coexist within tumors. One category of these cancer cell subpopulations is cancer stem cells (CSCs), which possess stem-like characteristics and are not easily detectable. In the case of breast cancer, which is the most prevalent cancer type among females, such subpopulations of cells have been isolated and characterized via specific stem cell markers. These stem-like cells, known as breast cancer stem cells (BCSCs), have been linked to major events during tumorigenesis including invasion, metastasis and patient relapse following conventional therapies. Complex signaling circuitries seem to regulate the stemness and phenotypic plasticity of BCSCs along with their differentiation, evasion of immunosurveillance, invasiveness and metastatic potential. Within these complex circuitries, new key players begin to arise, with one of them being a category of small non-coding RNAs, known as miRNAs. Here, we review the importance of oncogenic miRNAs in the regulation of CSCs during breast cancer formation, promotion and metastasis, in order to highlight their anticipated usage as diagnostic and prognostic tools in the context of patient stratification and precision medicine.
Collapse
Affiliation(s)
- Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Chara Papalouka
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Christina Kontarini
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Konstantinos Karakostis
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
18
|
Sakibuzzaman M, Mahmud S, Afroze T, Fathma S, Zakia UB, Afroz S, Zafar F, Hossain M, Barua A, Akter S, Chowdhury HI, Ahsan E, Eshan SH, Fariza TT. Pathology of breast cancer metastasis and a view of metastasis to the brain. Int J Neurosci 2023; 133:544-554. [PMID: 34044732 DOI: 10.1080/00207454.2021.1935929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Despite the advances in diagnosis and management of breast cancer, metastasis has been responsible for the staggering percentage of breast cancer-related death. Mortality threat can be explained mostly by the lack of proper understanding of the diversity of pathological features and underlying mechanism of breast cancer metastasis and effective targeted therapy. Breast cancer stem cells (BCSCs) are the potential source of tumor cells spread to distant organs. BCSCs targeted therapy can suppress the breast cancer progression to metastasis. Spreading of tumor cells to the bone, lung, liver, and brain occurs through a distinct non-random process; called metastasis organotropism. Recently, brain metastasis in breast cancer patients has been detected more frequently, causing a significant clinical burden. BRCA1 and BRCA2 associated breast cancers carry a remarkably higher propensity of CNS metastasis. BRCA1 and BRCA2 associated breast cancers commonly have the propensity to be the triple-negative (TN) and hormone receptors (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative molecular subtypes, respectively. Regardless of molecular subtypes, metastasis is most commonly evident at the bone. Heterogeneity is a critical pathological feature, leads to therapeutic resistance. BCSCs, biomarkers expression patterns, and mutations contribute to heterogeneity. In this paper, we discuss crucial pathological features of breast cancer metastasis, emphasizing metastasis organotropism and heterogeneity; and mechanisms of breast cancer metastasis, highlighting the pathways of metastasis to the brain. We consider that this paper reinforces future research areas and benefits the general readers, physicians, and researchers to identify potential areas to develop targeted therapies.
Collapse
Affiliation(s)
- Md Sakibuzzaman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shahriar Mahmud
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Sawsan Fathma
- Bangladesh Medical College and Hospital, Dhaka, Bangladesh
| | | | - Sabrina Afroz
- Faridpur Medical College and Hospital, Faridpur, Bangladesh
| | - Farzina Zafar
- Shaheed Suhrawardy Medical College and Hospital, Dhaka, Bangladesh
| | - Maksuda Hossain
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amit Barua
- Institute of Applied Health Sciences, Chattogram, Bangladesh
| | - Sabiha Akter
- Sher-E-Bangla Medical College and Hospital, Barisal, Bangladesh
| | | | - Eram Ahsan
- Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Shayet Hossain Eshan
- Department of Internal Medicine, Amita Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | | |
Collapse
|
19
|
Varsha VK, Savita JK, Girish HC, Shyamala K. Role of hypoxia and epithelial-mesenchymal transition in the formation and maintenance of oral cancer stem cells in oral squamous cell carcinomas and metastatic lymph node: An immunohistochemical analysis. J Oral Maxillofac Pathol 2023; 27:307-314. [PMID: 37854934 PMCID: PMC10581292 DOI: 10.4103/jomfp.jomfp_368_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 10/20/2023] Open
Abstract
Background Inspite of having advanced treatment modalities the overall survival rate in oral squamous cell carcinoma (OSCC) remains poor. This is considered to be mainly due to local recurrence and distant metastasis. Various studies have concentrated on the role of oral cancer stem cells (OCSCs) in the progression and metastasis of OSCC. However, the role of tumor microenvironment components has been less delved into. Hence clarity on cell biology and metastatic potential OCSCs is essential for the development of more effective anti-cancer treatment. Aim To establish the role of OCSCs in different grades of OSCC and metastatic lymph nodes through the expression of cluster of differentiation 44 (CD44). To demonstrate and correlate the role of hypoxia and Epithelial mesenchymal transition (EMT) in the various grades and metastatic lymph nodes in the formation and maintenance of OCSCs by employing Hypoxia-inducible factor-1 Alpha (HIF 1α) and Snail respectively. Method and Material A total of 36 cases of OSCC, 12 from each grade and 12 normal oral mucosal tissues were included in the study. Immunohistochemical staining was performed for the demonstration of CD44, HIF1α, and Snail. Statistics Descriptive analysis, Chi-square, and Spearman's rank correlation were used to analyze frequency and proportion, to compare expression and correlate between lesion proper and lymph node in each group respectively. Results Significant expression of CD44, HIF1 α, and Snail among advancing grades of OSCC and their metastatic lymph node were observed. A positive correlation was seen between them. Conclusions The prognosis of OSCC can be improved by better understanding and targeting the molecules involved in the formation and maintenance of OCSCs.
Collapse
Affiliation(s)
- VK Varsha
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| | - JK Savita
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| | - HC Girish
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| | - K Shyamala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
21
|
Zekri ARN, Bahnassy A, Mourad M, Malash I, Ahmed O, Abdellateif MS. Genetic profiling of different phenotypic subsets of breast cancer stem cells (BCSCs) in breast cancer patients. Cancer Cell Int 2022; 22:423. [PMID: 36585652 PMCID: PMC9805169 DOI: 10.1186/s12935-022-02841-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) have a crucial role in breast carcinogenesis, development, and progression. The aim of the current study is to characterize the BCSCs through the genetic profiling of different BCSCs phenotypic subsets to determine their related genetic pathways. METHODS Fresh tumor tissue samples were obtained from 31 breast cancer (BC) patients for (1) Mammosphere culture. (2) Magnetic separation of the BCSCs subsets using CD24, CD44, and CD326 Microbeads. (3) Flow cytometry (FCM) assay using CD44, CD24, and EpCAM. (4) RT-PCR profiler Arrays using stem cell (SC) panel of 84 genes for four group of cells (1) CD44+/CD24-/EpCAM- BCSCs, (2) CD44+/CD24- /EpCAM+ BCSCs, (3) mammospheres, and (4) normal breast tissues. RESULTS The BCSCs (CD44+/CD24-/EpCAM-) showed significant downregulation in 13 genes and upregulation in 15, where the CD44, GJB1 and GDF3 showed the maximal expression (P = 0.001, P = 0.003 and P = 0.007); respectively). The CD44+/CD24-/EpCAM+ BCSCs showed significant upregulation in 28 genes, where the CD44, GDF3, and GJB1 showed maximal expression (P < 0.001, P = 0.001 and P = 0.003; respectively). The mammospheres showed significant downregulation in 9 genes and a significant upregulation in 35 genes. The maximal overexpression was observed in GJB1 and FGF2 (P = 0.001, P = 0.001; respectively). The genes which achieved significant overexpression in all SC subsets were CD44, COL9A1, FGF1, FGF2, GDF3, GJA1, GJB1, GJB2, HSPA9, and KRT15. While significant downregulation in BMP2, BMP3, EP300, and KAT8. The genes which were differentially expressed by the mammospheres compared to the other BCSC subsets were CCND2, FGF3, CD4, WNT1, KAT2A, NUMB, ACAN, COL2A1, TUBB3, ASCL2, FOXA2, ISL1, DTX1, and DVL1. CONCLUSION BCSCs have specific molecular profiles that differ according to their phenotypes which could affect patients' prognosis and outcome.
Collapse
Affiliation(s)
- Abdel-Rahman N. Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Abeer Bahnassy
- grid.7776.10000 0004 0639 9286Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magda Mourad
- grid.7776.10000 0004 0639 9286Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ibrahim Malash
- grid.7776.10000 0004 0639 9286Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S. Abdellateif
- grid.7776.10000 0004 0639 9286Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Bonuccelli G, Sotgia F, Lisanti MP. Identification of natural products and FDA-approved drugs for targeting cancer stem cell (CSC) propagation. Aging (Albany NY) 2022; 14:9466-9483. [PMID: 36455875 PMCID: PMC9792210 DOI: 10.18632/aging.204412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Here, we report the identification of key compounds that effectively inhibit the anchorage-independent growth and propagation of cancer stem cells (CSCs), as determined via screening using MCF7 cells, a human breast adenocarcinoma cell line. More specifically, we employed the mammosphere assay as an experimental format, which involves the generation of 3D spheroid cultures, using low-attachment plates. These positive hit compounds can be divided into 5 categories: 1) dietary supplements (quercetin and glucosamine); 2) FDA-approved drugs (carvedilol and ciprofloxacin); 3) natural products (aloe emodin, aloin, tannic acid, chlorophyllin copper salt, azelaic acid and adipic acid); 4) flavours (citral and limonene); and 5) vitamins (nicotinamide and nicotinic acid). In addition, for the compounds quercetin, glucosamine and carvedilol, we further assessed their metabolic action, using the Seahorse to conduct metabolic flux analysis. Our results indicate that these treatments can affect glycolytic flux and suppress oxidative mitochondrial metabolism (OXPHOS). Therefore, quercetin, glucosamine and carvedilol can reprogram the metabolic phenotype of breast cancer cells. Despite having diverse chemical structures, these compounds all interfere with mitochondrial metabolism. As these compounds halt CSCs propagation, ultimately, they may have therapeutic potential.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
23
|
Targeting Breast Cancer Stem Cells Using Naturally Occurring Phytoestrogens. Int J Mol Sci 2022; 23:ijms23126813. [PMID: 35743256 PMCID: PMC9224163 DOI: 10.3390/ijms23126813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer therapies have made significant strides in improving survival for patients over the past decades. However, recurrence and drug resistance continue to challenge long-term recurrence-free and overall survival rates. Mounting evidence supports the cancer stem cell model in which the existence of a small population of breast cancer stem cells (BCSCs) within the tumor enables these cells to evade conventional therapies and repopulate the tumor, giving rise to more aggressive, recurrent tumors. Thus, successful breast cancer therapy would need to target these BCSCs, as well the tumor bulk cells. Since the Women’s Health Initiative study reported an increased risk of breast cancer with the use of conventional hormone replacement therapy in postmenopausal women, many have turned their attention to phytoestrogens as a natural alternative. Phytoestrogens are plant compounds that share structural similarities with human estrogens and can bind to the estrogen receptors to alter the endocrine responses. Recent studies have found that phytoestrogens can also target BCSCs and have the potential to complement conventional therapy eradicating BCSCs. This review summarized the latest findings of different phytoestrogens and their effect on BCSCs, along with their mechanisms of action, including selective estrogen receptor binding and inhibition of molecular pathways used by BCSCs. The latest results of phytoestrogens in clinical trials are also discussed to further evaluate the use of phytoestrogen in the treatment and prevention of breast cancer.
Collapse
|
24
|
Kim T, Johnston J, Castillo-Lluva S, Cimas FJ, Hamby S, Gonzalez-Moreno S, Villarejo-Campos P, Goodall AH, Velasco G, Ocana A, Muthana M, Kiss-Toth E. TRIB1 regulates tumor growth via controlling tumor-associated macrophage phenotypes and is associated with breast cancer survival and treatment response. Theranostics 2022; 12:3584-3600. [PMID: 35664073 PMCID: PMC9131267 DOI: 10.7150/thno.72192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 11/05/2022] Open
Abstract
Molecular mechanisms that regulate tumor-associated macrophage (TAM) phenotype and function are incompletely understood. The pseudokinase TRIB1 has been reported as a regulator of macrophage phenotypes, both in mouse and human systems. Methods: Bioinformatic analysis was used to investigate the link between TRIB1 expression in breast cancer and therapeutic response to chemotherapy. In vivo models of breast cancer included immune-competent mice to characterize the consequences of altered (reduced or elevated) myeloid Trib1 expression on tumor growth and composition of stromal immune cell populations. Results: TRIB1 was highly expressed by TAMs in breast cancer and high TRIB1 expression correlated with response to chemotherapy and patient survival. Both overexpression and knockout of myeloid Trib1 promote mouse breast tumor growth, albeit through different molecular mechanisms. Myeloid Trib1 deficiency led to an early acceleration of tumor growth, paired with a selective reduction in perivascular macrophage numbers in vivo and enhanced oncogenic cytokine expression in vitro. In contrast, elevated levels of Trib1 in myeloid cells led to an increased late-stage mammary tumor volume, coupled with a reduction of NOS2 expressing macrophages and an overall reduction of macrophages in hypoxic tumor regions. In addition, we show that myeloid Trib1 is a previously unknown, negative regulator of the anti-tumor cytokine IL-15, and that increased myeloid Trib1 expression leads to reduced IL-15 levels in mammary tumors, with a consequent reduction in the number of T-cells that are key to anti-tumor immune responses. Conclusions: Together, these results define a key role for TRIB1 in chemotherapy responses for human breast cancer and provide a mechanistic understanding for the importance of the control of myeloid TRIB1 expression in the development of this disease.
Collapse
Affiliation(s)
- Taewoo Kim
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Jessica Johnston
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology, Complutense University and Instituto de Investigación Sanitaria Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Francisco J Cimas
- Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria Clínico San Carlos (IdISSC), Madrid and Universidad de Castilla La Mancha (UCLM), Albacete, Spain
| | - Stephen Hamby
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester and Leicester NIHR Biomedical Research Centre, Leicester, UK
| | | | | | - Alison H Goodall
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester and Leicester NIHR Biomedical Research Centre, Leicester, UK
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Complutense University and Instituto de Investigación Sanitaria Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Alberto Ocana
- Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria Clínico San Carlos (IdISSC), Madrid and Universidad de Castilla La Mancha (UCLM), Albacete, Spain
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Sheffield, S10 2RX, UK
- Biological Research Centre of the Hungarian Academy of Sciences, Temesvari krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
25
|
Ishtiah AA, Yahaya BH. The Enrichment of Breast Cancer Stem Cells from MCF7 Breast Cancer Cell Line Using Spheroid Culture Technique. Methods Mol Biol 2022; 2429:475-484. [PMID: 35507182 DOI: 10.1007/978-1-0716-1979-7_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most common malignancy worldwide in females, representing 29% of all cancer new cases and 14% of cancer deaths in the world. Amongst the reasons for the high mortality rate is resistance to chemotherapy resulting in therapeutic failure. Various studies have shown that the presence of cancer stem cells (CSCs) in breast tumors is responsible for chemotherapy resistance and tumor recurrence. This CSC population possesses the characteristics of normal stem cells, including their ability to self-renewal and give rise to other epithelial cells. One thing that unique to the CSC population is their ability to escape from chemotherapy drugs; this can make them resistant to therapy and able to repopulate the cancer. Isolation and enrichment of breast CSCs (BCSCs) is required in order to study their characteristics and the behavior that enables them to drive breast tumor development, in order to develop better therapies. This chapter describes a method for the isolation and enrichment of BCSCs from the MCF7 breast cancer cell line, which consists of a heterogeneous breast cancer cell population. This method depends on cancer stem cell behavior, specifically an ability to self-renew and form spheroids in harsh conditions that allow only cancer cells with stem cell characteristics to survive and form spheroids.
Collapse
Affiliation(s)
- Anan A Ishtiah
- Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Sains@Bertam, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Sains@Bertam, Penang, Malaysia.
| |
Collapse
|
26
|
Evaluation of breast cancer stem cells in human primary breast carcinoma and their role in aggressive behavior of the disease. J Clin Transl Res 2021; 7:687-700. [PMID: 34778599 PMCID: PMC8580523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND AIM To delineate the underlying molecular mechanisms responsible for the intratumoral enrichment of breast cancer stem cells (BCSCs) in aggressive breast tumors, we evaluated the frequency and characteristics of BCSCs within the tumor tissue in primary human breast carcinomas. We assessed the expression profiles of various genes in cancer cells (CC) and stromal cells (SC) from these tumors to delineate the role played by the cellular niche in de novo origin or expansion of intra-tumoral cancer stem cells (CSC). METHOD The study included primary tumor and adjacent normal breast tissue specimens from chemotherapy-naïve breast carcinoma patients. The BCSCs, identified as Lin-CD44+CD24- and aldehyde dehydrogenase 1 A1 positive, were enumerated. The flow-cytometrically sorted stromal, and CC were processed for gene expression profiling using a custom-designed polymerase chain reaction array of genes known to facilitate disease progression. RESULTS The frequency of BCSCs within the tumor mass correlated significantly with histopathological and molecular grades of tumors, indicating a direct relationship of BCSC with the aggressive behavior of breast cancer. Further, a significantly increased expression of the genes associated with growth factors, cytokines and matricellular proteins in tumors were found in high BCSCs compared to Lo-BCSC tumors, suggesting the possible contribution of stromal and CC in an intratumoral expansion of CSCs. Similarly, a significant upregulation of genes associated with hypoxia and angiogenesis in Hi-BCSCs tumors further supported the role of a hypoxic environment. CONCLUSION Overall, the findings suggest the molecular crosstalk between SC and CC potentially (directly or indirectly) contributes to the expansion of CSC. RELEVANCE FOR PATIENTS The current study highlights the importance of CSC as a potential future predictive/prognostic marker for aggressive breast cancer. The present study predicts the potential risk stratification based on the frequency of BCSCs in primary breast tumors and existing prognostic factors.
Collapse
|
27
|
Nisticò C, Pagliari F, Chiarella E, Fernandes Guerreiro J, Marafioti MG, Aversa I, Genard G, Hanley R, Garcia-Calderón D, Bond HM, Mesuraca M, Tirinato L, Spadea MF, Seco JC. Lipid Droplet Biosynthesis Impairment through DGAT2 Inhibition Sensitizes MCF7 Breast Cancer Cells to Radiation. Int J Mol Sci 2021; 22:10102. [PMID: 34576263 PMCID: PMC8466244 DOI: 10.3390/ijms221810102] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most frequent cancer in women worldwide and late diagnosis often adversely affects the prognosis of the disease. Radiotherapy is commonly used to treat breast cancer, reducing the risk of recurrence after surgery. However, the eradication of radioresistant cancer cells, including cancer stem cells, remains the main challenge of radiotherapy. Recently, lipid droplets (LDs) have been proposed as functional markers of cancer stem cells, also being involved in increased cell tumorigenicity. LD biogenesis is a multistep process requiring various enzymes, including Diacylglycerol acyltransferase 2 (DGAT2). In this context, we evaluated the effect of PF-06424439, a selective DGAT2 inhibitor, on MCF7 breast cancer cells exposed to X-rays. Our results demonstrated that 72 h of PF-06424439 treatment reduced LD content and inhibited cell migration, without affecting cell proliferation. Interestingly, PF-06424439 pre-treatment followed by radiation was able to enhance radiosensitivity of MCF7 cells. In addition, the combined treatment negatively interfered with lipid metabolism-related genes, as well as with EMT gene expression, and modulated the expression of typical markers associated with the CSC-like phenotype. These findings suggest that PF-06424439 pre-treatment coupled to X-ray exposure might potentiate breast cancer cell radiosensitivity and potentially improve the radiotherapy effectiveness.
Collapse
Affiliation(s)
- Clelia Nisticò
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Francesca Pagliari
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Emanuela Chiarella
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Joana Fernandes Guerreiro
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 1397), 2695-066 Bobadela LRS, Portugal
| | - Maria Grazia Marafioti
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Ilenia Aversa
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Geraldine Genard
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Rachel Hanley
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Daniel Garcia-Calderón
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Heather Mandy Bond
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Maria Mesuraca
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Luca Tirinato
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.N.); (E.C.); (M.G.M.); (I.A.); (H.M.B.); (M.M.)
| | - Joao Carlos Seco
- Division of BioMedical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany; (F.P.); (J.F.G.); (G.G.); (R.H.); (D.G.-C.)
- Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
29
|
Kumari M, Krishnamurthy PT, Sola P. Targeted Drug Therapy to Overcome Chemoresistance in Triple-negative Breast Cancer. Curr Cancer Drug Targets 2021; 20:559-572. [PMID: 32370716 DOI: 10.2174/1568009620666200506110850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative Breast Cancer (TNBC) is the most aggressive and prevailing breast cancer subtype. The chemotherapeutics used in the treatment of TNBC suffer from chemoresistance, dose-limiting toxicities and off-target side effects. As a result, conventional chemotherapeutics are unable to prevent tumor growth, metastasis and result in failure of therapy. Various new targets such as BCSCs surface markers (CD44, CD133, ALDH1), signaling pathways (IL-6/JAK/STAT3, notch), pro and anti-apoptotic proteins (Bcl-2, Bcl-xL, DR4, DR5), hypoxic factors (HIF-1α, HIF-2α) and drug efflux transporters (ABCC1, ABCG2 and ABCB1) have been exploited to treat TNBC. Further, to improve the efficacy and safety of conventional chemotherapeutics, researchers have tried to deliver anticancer agents specifically to the TNBCs using nanocarrier based drug delivery. In this review, an effort has been made to highlight the various factors responsible for the chemoresistance in TNBC, novel molecular targets of TNBC and nano-delivery systems employed to achieve sitespecific drug delivery to improve efficacy and reduce off-target side effects.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| | - Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, (A Constituent College of JSS Academy of Higher Education & Research), Ooty, Tamilnadu, India
| |
Collapse
|
30
|
Liu H, Qin H, Zhou Y, Yuan Y, Liu Y, Chen Y, Yang Y, Ni H, Xi T, Zheng L. HET0016 attenuates the stemness of breast cancer cells through targeting CYP4Z1. Mol Carcinog 2021; 60:413-426. [PMID: 33866606 DOI: 10.1002/mc.23302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/06/2023]
Abstract
Ours and other previous studies have shown that CYP4Z1 is specifically and highly expressed in breast cancer, and acts as a promoter for the stemness of breast cancer cells. Here, we explored whether targeting CYP4Z1 could attenuate the stemness of breast cancer cells using HET0016, which has been confirmed to be an inhibitor of CYP4Z1 by us and others. Using the transcriptome-sequencing analysis, we found that HET0016 suppressed the expression of cancer stem cell (CSC) markers and stem cell functions. Additionally, HET0016 indeed reduced the stemness of breast cancer cells, as evident by the decrease of stemness marker expression, CD44+ /CD24- subpopulation with stemness, mammary-spheroid formation, and tumor-initiating ability. Moreover, HET0016 suppressed the metastatic capability through in vitro and in vivo experiments. Furthermore, we confirmed that HET0016 suppressed CYP4Z1 activity, and HET0016-induced inhibition on the stemness and metastasis of breast cancer cells was rescued by CYP4Z1 overexpression. Thus, our results demonstrate that HET0016 can attenuate the stemness of breast cancer cells through targeting CYP4Z1.
Collapse
Affiliation(s)
- Hai Liu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hai Qin
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Zhou
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yin Yuan
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yichen Liu
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ying Chen
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Yang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Haiwei Ni
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Xi
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lufeng Zheng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
31
|
Song K, Farzaneh M. Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res Ther 2021; 12:245. [PMID: 33863385 PMCID: PMC8052733 DOI: 10.1186/s13287-021-02321-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second common cancer and the leading cause of malignancy among females overall. Breast cancer stem cells (BCSCs) are a small population of breast cancer cells that play a critical role in the metastasis of breast cancer to other organs in the body. BCSCs have both self-renewal and differentiation capacities, which are thought to contribute to the aggressiveness of metastatic lesions. Therefore, targeting BCSCs can be a suitable approach for the treatment and metastasis of breast cancer. Growing evidence has indicated that the Wnt, NFκB, Notch, BMP2, STAT3, and hedgehog (Hh) signaling pathways govern epithelial-to-mesenchymal transition (EMT) activation, growth, and tumorigenesis of BCSCs in the primary regions. miRNAs as the central regulatory molecules also play critical roles in BCSC self-renewal, metastasis, and drug resistance. Hence, targeting these pathways might be a novel therapeutic approach for breast cancer diagnosis and therapy. This review discusses known signaling mechanisms involved in the stimulation or prevention of BCSC self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Kai Song
- Xuzhou Vocational College of Bioengineering, Xuzhou, 221006, Jiangsu, China.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
32
|
Hyaluronic acid (HA)-coated naproxen-nanoparticles selectively target breast cancer stem cells through COX-independent pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112024. [PMID: 33947532 DOI: 10.1016/j.msec.2021.112024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Cytotoxic chemotherapy continues to be the main therapeutic option for patients with metastatic breast cancer. Several studies have reported a significant association between chronic inflammation, carcinogenesis and the presence of cancer stem cells (CSC). We hypothesized that the use of non-steroidal anti-inflammatory drugs targeted to the CSC population could help reducing tumor progression and dissemination in otherwise hard to treat metastatic breast cancer. Within this study cationic naproxen (NAP)-bearing polymeric nanoparticles (NPs) were obtained by self-assembly and they were coated with hyaluronic acid (HA) via electrostatic interaction. HA-coated and uncoated NAP-bearing NPs with different sizes were produced by changing the ionic strength of the aqueous preparation solutions (i.e. 300 and 350 nm or 100 and 130 nm in diameter, respectively). HA-NPs were fully characterized in terms of physicochemical parameters and biological response in cancer cells, macrophages and endothelial cells. Our results revealed that HA-coating of NPs provided a better control in NAP release and improved their hemocompatibility, while ensuring a strong CSC-targeting in MCF-7 breast cancer cells. Furthermore, the best polymeric NPs formulation significantly (p < 0.001) reduced MCF-7 cells viability when compared to free drug (i.e. 45 ± 6% for S-HA-NPs and 87 ± 10% for free NAP) by p53-dependent induction of apoptosis; and the migration of these cell line was also significantly (p < 0.01) reduced by the nano-formulated NAP (i.e. 76.4% of open wound for S-HA-NPs and 61.6% of open wound for NAP). This increased anti-cancer activity of HA-NAP-NPs might be related to the induction of apoptosis through alterations of the GSK-3β-related COX-independent pathway. Overall, these findings suggest that the HA-NAP-NPs have the potential to improve the treatment of advanced breast cancer by increasing the anti-proliferative effect of NAP within the CSC subpopulation.
Collapse
|
33
|
Flores-Huerta N, Silva-Cázares MB, Arriaga-Pizano LA, Prieto-Chávez JL, López-Camarillo C. LncRNAs and microRNAs as Essential Regulators of Stemness in Breast Cancer Stem Cells. Biomolecules 2021; 11:380. [PMID: 33802575 PMCID: PMC7998729 DOI: 10.3390/biom11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is an aggressive disease with a high incidence in women worldwide. Two decades ago, a controversial hypothesis was proposed that cancer arises from a subpopulation of "tumor initiating cells" or "cancer stem cells-like" (CSC). Today, CSC are defined as small subset of somatic cancer cells within a tumor with self-renewal properties driven by the aberrant expression of genes involved in the maintenance of a stemness-like phenotype. The understanding of the underlying cellular and molecular mechanisms involved in the maintenance of CSC subpopulation are fundamental in the development and persistence of breast cancer. Nowadays, the hypothesis suggests that genetic and epigenetic alterations give rise to breast cancer stem cells (bCSC), which are responsible for self-renewal, tumor growth, chemoresistance, poor prognosis and low survival in patients. However, the prominence of bCSC, as well as the molecular mechanisms that regulates and promotes the malignant phenotypes, are still poorly understood. The role of non-coding RNAs (ncRNAs), such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) acting as oncogenes or tumor suppressor genes has been recently highlighted by a plethora of studies in breast cancer. These ncRNAs positively or negatively impact on different signaling pathways that govern the cancer hallmarks associated with bCSC, making them attractive targets for therapy. In this review, we present a current summary of the studies on the pivotal roles of lncRNAs and microRNAs in the regulation of genes associated to stemness of bCSC.
Collapse
Affiliation(s)
- Nadia Flores-Huerta
- Laboratorio de Oncogenómica y Proteómica del Cáncer, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, 03100 CDMX, Mexico;
| | - Macrina B. Silva-Cázares
- Doctorado Institucional en Ingeniería y Ciencias de los Materiales, Universidad Autónoma de San Luis Potosí, 78210 San Luis Potosí, Mexico;
| | - Lourdes A. Arriaga-Pizano
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 CDMX, Mexico;
| | - Jessica L. Prieto-Chávez
- Laboratorio de Citometría de Flujo, Centro de Instrumentos, Coordinación de Investigación en Salud, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 CDMX, Mexico;
| | - César López-Camarillo
- Laboratorio de Oncogenómica y Proteómica del Cáncer, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, 03100 CDMX, Mexico;
| |
Collapse
|
34
|
Vazquez N, Lopez A, Cuello V, Persans M, Schuenzel E, Innis-Whitehouse W, Keniry M. NVP-BEZ235 or JAKi Treatment leads to decreased survival of examined GBM and BBC cells. Cancer Treat Res Commun 2021; 27:100340. [PMID: 33636591 DOI: 10.1016/j.ctarc.2021.100340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Cancer cells almost universally harbor constitutively active Phosphatidylinositol-3 Kinase (PI3K) Pathway activity via mutation of key signaling components and/or epigenetic mechanisms. Scores of PI3K Pathway inhibitors are currently under investigation as putative chemotherapeutics. However, feedback and stem cell mechanisms induced by PI3K Pathway inhibition can lead to reduced treatment efficacy. To address therapeutic barriers, we examined whether JAKi would reduce stem gene expression in a setting of PI3K Pathway inhibition in order to improve treatment efficacy. We targeted the PI3K Pathway with NVP-BEZ235 (dual PI3K and mTOR inhibitor) in combination with the Janus Kinase inhibitor JAKi in glioblastoma (GBM) and basal-like breast cancer (BBC) cell lines. We examined growth, gene expression, and apoptosis in cells treated with NVP-BEZ235 and/or JAKi. Growth and recovery assays showed no significant impact of dual treatment with NVP-BEZ235/JAKi compared to NVP-BEZ235 treatment alone. Gene expression and flow cytometry revealed that single and dual treatments induced apoptosis. Stem gene expression was retained in dual NVP-BEZ235/JAKi treatment samples. Future in vivo studies may give further insight into the impact of combined NVP-BEZ235/JAKi treatment in GBM and BBC.
Collapse
Affiliation(s)
- Neftali Vazquez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Alma Lopez
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Victoria Cuello
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Michael Persans
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Erin Schuenzel
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Wendy Innis-Whitehouse
- School of Medicine, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States
| | - Megan Keniry
- Department of Biology, University of Texas- Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, United States.
| |
Collapse
|
35
|
Das PK, Siddika MA, Asha SY, Aktar S, Rakib MA, Khanam JA, Pillai S, Islam F. MicroRNAs, a Promising Target for Breast Cancer Stem Cells. Mol Diagn Ther 2021; 24:69-83. [PMID: 31758333 DOI: 10.1007/s40291-019-00439-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactivation of the stem cell programme in breast cancer is significantly associated with persistent cancer progression and therapeutic failure. Breast cancer stem cells (BCSCs) are involved in the process of breast cancer initiation, metastasis and cancer relapse. Among the various important cues found in the formation and progression of BCSCs, microRNAs (miRNAs or miRs) play a pivotal role by regulating the expression of various tumour suppressor genes or oncogenes. Accordingly, there is evidence that miRNAs are associated with BCSC self-renewal, differentiation, invasion, metastasis and therapy resistance, and therefore cancer recurrence. miRNAs execute their roles by regulating the expression of stemness markers, activation of signalling pathways or their components and regulation of transcription networks in BCSCs. Therefore, a better understanding of the association between BCSCs and miRNAs has the potential to help design more effective and safer therapeutic solutions against breast cancer. Thus, an miRNA-based therapeutic strategy may open up new horizons for the treatment of breast cancer in the future. In view of this, we present the progress to date of miRNA research associated with stemness marker expression, signalling pathways and activation of transcription networks to regulate the self-renewal, differentiation and therapy resistance properties of BCSCs.
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mst Ayesha Siddika
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Saharia Yeasmin Asha
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh. .,Institute for Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
36
|
Schott DS, Pizon M, Pachmann U, Pachmann K, Schobert R, Wittig A, Mäurer M. Influence of adjuvant radiotherapy on circulating epithelial tumor cells and circulating cancer stem cells in primary non-metastatic breast cancer. Transl Oncol 2021; 14:101009. [PMID: 33453469 PMCID: PMC7811056 DOI: 10.1016/j.tranon.2021.101009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
CETCs have the same molecular properties as the cells in the primary tumor. Circulating cancer stem cells can be successfully identified in the blood of breast cancer patients and monitored during RT. Patients after neoadjuvant chemotherapy had the highest number of CETCs prior to RT but the CETC counts decreased significantly during RT indicating that this group of patients could most likely benefit from adjuvant RT. Increase in cCSC numbers during RT could be a predictor for early recurrence of cancer disease.
Background : There is an unmet need to identify biomarkers that directly reflect response to adjuvant radiotherapy (RT). Circulating epithelial tumor cells (CETCs) represent the liquid component of solid tumors and are responsible for metastatic relapse. CETC subsets with cancer stem cell characteristics, circulating cancer stem cells (cCSCs), play a pivotal role in the metastatic cascade. Monitoring the most aggressive subpopulation of CETCs could reflect the aggressiveness of the remaining tumor burden. There is limited data on the detection and monitoring changes in CETC and cCSC numbers during RT in early breast cancer. Methods : CETC numbers were analyzed prior to, at midterm and at the end of RT in 52 primary non-metastatic breast cancer patients. Hormone receptor status was determined in CETCs prior to and at the end of RT. For the identification of cCSCs cell suspensions from the peripheral blood of patients were cultured in vitro under conditions favoring growth of tumorspheres. Results : Hormone receptor status in CETCs before RT was comparable to that in primary tumor tissue. Prior to RT numbers of CETCs correlated with aggressiveness of primary tumors. cCSCs could be successfully identified and monitored during RT. Prior to RT patients treated with neoadjuvant chemotherapy had significantly higher numbers of CETCs and tumorspheres compared to patients after adjuvant chemotherapy. During RT, the number of CETCs decreased continuously in patients after neoadjuvant chemotherapy but not after adjuvant chemotherapy. Conclusion : Monitoring the number of CETCs and the CETC subset with cancer stem cell properties during RT may provide additional clinically useful prognostic information.
Collapse
Affiliation(s)
| | - Monika Pizon
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany.
| | - Ulrich Pachmann
- Transfusion Center Bayreuth, Kurpromenade 2, 95448 Bayreuth, Germany.
| | | | | | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Jena, Germany.
| | - Matthias Mäurer
- Department of Radiotherapy and Radiation Oncology, University Hospital Jena, Jena, Germany.
| |
Collapse
|
37
|
MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer. Cancer Cell Int 2021; 21:31. [PMID: 33413418 PMCID: PMC7792222 DOI: 10.1186/s12935-020-01716-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common cancer among women and accounts for 30% of all female malignancies worldwide. Breast cancer stem cells (BCSCs) are a small population of breast cancer cells that exhibit multiple characteristics including differentiation capacity, self-renewal and therapeutic resistance. Recently, BCSCs have attracted attention due to their modulation of breast tumor behaviors and drug resistance. miRNAs are small noncoding mRNAs involved in virtually all biological processes, including stem cell development, maintenance and differentiation. In breast cancer, miRNAs appear to be multi-faceted since they can act as either suppressors or oncogenes to regulate breast cancer progression. This review summarizes the critical roles of miRNAs in regulating multiple signaling pathways such as Wnt/β-catenin, Notch, PI3K/AKT/mTOR, BMI-1 and STAT3 that are important for the BCSC maintenance.
Collapse
|
38
|
Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12:E3765. [PMID: 33327542 PMCID: PMC7765014 DOI: 10.3390/cancers12123765] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| | | | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
39
|
He L, Yu A, Deng L, Zhang H. Eradicating the Roots: Advanced Therapeutic Approaches Targeting Breast Cancer Stem Cells. Curr Pharm Des 2020; 26:2009-2021. [PMID: 32183663 DOI: 10.2174/1381612826666200317132949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/08/2020] [Indexed: 12/30/2022]
Abstract
Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation. Therapeutic strategies designed to target BCSCs may ultimately result in effective interventions for the treatment of breast cancer. Novel strategies including nanomedicine, oncolytic virus therapy, immunotherapy and induced differentiation therapy are emerging and proved to be efficient in anti-BCSCs therapy. In this review, we summarized breast tumor biology and the current challenges of breast cancer therapies, focused on breast cancer stem cells, and introduced promising therapeutic strategies targeting BCSCs.
Collapse
Affiliation(s)
- Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Anran Yu
- The State University of New York, Buffalo, NY 12246, United States
| | - Li Deng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongwei Zhang
- School of Pharmacy, MCPHS University, Boston, MA 02115, United States
| |
Collapse
|
40
|
Ahn YT, Kim MS, Kim YS, An WG. Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53. Mar Drugs 2020; 18:md18110577. [PMID: 33233699 PMCID: PMC7699712 DOI: 10.3390/md18110577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Astaxanthin (AST) is a product made from marine organisms that has been used as an anti-cancer supplement. It reduces pontin expression and induces apoptosis in SKBR3, a breast cancer cell line. Using Western blotting and qRT-PCR analyses, this study revealed that in the T47D and BT20 breast cancer cell lines, AST inhibits expression of pontin and mutp53, as well as the Oct4 and Nanog cancer stem cell (CSC) stemness genes. In addition, we explored the mechanism by which AST eradicates breast cancer cells using pontin siRNAs. Pontin knockdown by pontin siRNA reduced proliferation, Oct4 and Nanog expression, colony and spheroid formation, and migration and invasion abilities in breast cancer cells. In addition, reductions in Oct4, Nanog, and mutp53 expression following rottlerin treatment confirmed the role of pontin in these cells. Therefore, pontin may play a central role in the regulation of CSC properties and in cell proliferation following AST treatment. Taken together, these findings demonstrate that AST can repress CSC stemness genes in breast cancer cells, which implies that AST therapy could be used to improve the efficacy of other anti-cancer therapies against breast cancer cells.
Collapse
Affiliation(s)
- Yong Tae Ahn
- Research Institute for Longevity and Well-Being, Pusan National University, Busan 46241, Korea;
| | - Min Sung Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Youn Sook Kim
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan 50612, Korea;
| | - Won Gun An
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Correspondence: ; Tel.: +82-51-510-8455
| |
Collapse
|
41
|
Warrier S, Patil M, Bhansali S, Varier L, Sethi G. Designing precision medicine panels for drug refractory cancers targeting cancer stemness traits. Biochim Biophys Acta Rev Cancer 2020; 1875:188475. [PMID: 33188876 DOI: 10.1016/j.bbcan.2020.188475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| | - Manasi Patil
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Sanyukta Bhansali
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117 600, Singapore
| |
Collapse
|
42
|
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Front Oncol 2020; 10:1657. [PMID: 33014829 PMCID: PMC7498570 DOI: 10.3389/fonc.2020.01657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen and progesterone regulate the growth and development of human tissues, including the reproductive system and breasts, through estrogen and progesterone receptors, respectively. These receptors are also important indicators for the clinical prognosis of breast cancer and various reproductive cancers. Many studies have reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression, metastasis, and recurrence. Although the role of estrogen and progesterone in human organs and various cancers has been studied, the molecular mechanisms underlying the action of these hormones on CSCs remain unclear. Therefore, further elucidation of the effects of estrogen and progesterone on CSCs should provide a new direction for developing pertinent therapies. In this review, we summarize the current knowledge on the estrogen and progesterone axis involved in cancer stemness and discuss potential therapeutic strategies to inhibit CSCs by targeting relevant pathways.
Collapse
Affiliation(s)
- Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,The Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wen-Hao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
Jeon SA, Kim DW, Lee DB, Cho JY. NEDD4 Plays Roles in the Maintenance of Breast Cancer Stem Cell Characteristics. Front Oncol 2020; 10:1680. [PMID: 33014839 PMCID: PMC7509455 DOI: 10.3389/fonc.2020.01680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type with poor prognosis among the breast cancers and has a high population of cancer stem cells (CSCs), which are the main target to cure and inhibit TNBC. In this study, we examined the role of neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) in the proliferation, migration, and CSC characteristics of MDA-MB-231, a TNBC cell line. Interestingly, the Kaplan–Meier plotter showed that the survival rate of patients with a higher expression level of NEDD4 was significantly shorter than those of patients with a lower expression only in relatively aggressive and higher stage (grade 3) breast cancer patients. The knockdown of NEDD4 drastically decreased the proliferation, migration, and mammosphere formation in MDA-MB-231 cells. A proteomic analysis revealed the alteration of CSC-related proteins; notably, Myc targets stem cell-like signatures in siNEDD4-treated MDA-MB-231. An immunoassay also showed that the expression and the activity of breast CSC markers are decreased in NEDD4-deleted MDA-MB-231. Taken together, these results indicate that NEDD4 is involved in the maintenance of populations and characteristics of breast CSCs.
Collapse
Affiliation(s)
- Seon-Ae Jeon
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Da-Bin Lee
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Veterinary Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Jain V, Kumar H, Anod HV, Chand P, Gupta NV, Dey S, Kesharwani SS. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326:628-647. [PMID: 32653502 DOI: 10.1016/j.jconrel.2020.07.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer (BC) is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) in which the three major receptors i.e. estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), are absent is known to express the most aggressive phenotype and increased metastasis which results in the development of resistance to chemotherapy. It offers various therapeutic advantages in treating BC and TNBC. Nanotechnology offers various unique characteristics such as small size (nanometric), active and passive targeting, and the ability to attach multiple targeting moieties, controlled release, and site-specific targeting. This review focuses on conventional drug therapies, recent treatment strategies, and unique therapeutic approaches available for BC and TNBC. The role of breast cancer stem cells in the recurrence of BC and TNBC has also been highlighted. Several chemotherapeutic agents delivered using nanocarriers such as polymeric nanoparticles/micelles, metallic/inorganic NPs, and lipid-based NPs (Liposome, solid-lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs)), etc. with excellent responses in the treatment of BC/TNBC along with breast cancer stem cells have been discussed in details. Moreover, the application of nanomedicine including CRISPR nanoparticle, exosomes for the treatment of BC/TNBC and other molecular targets available such as poly (ADP-ribose) polymerase (PARP), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor (VEGF), etc. for further exploration have also been discussed.
Collapse
Affiliation(s)
- Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Haritha V Anod
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Pallavi Chand
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Surajit Dey
- College of Pharmacy, Roseman University of Health Sciences, Henderson, NV, USA
| | | |
Collapse
|
45
|
Kong D, Hughes CJ, Ford HL. Cellular Plasticity in Breast Cancer Progression and Therapy. Front Mol Biosci 2020; 7:72. [PMID: 32391382 PMCID: PMC7194153 DOI: 10.3389/fmolb.2020.00072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
With the exception of non-melanoma skin cancer, breast cancer is the most frequently diagnosed malignant disease among women, with the majority of mortality being attributable to metastatic disease. Thus, even with improved early screening and more targeted treatments which may enable better detection and control of early disease progression, metastatic disease remains a significant problem. While targeted therapies exist for breast cancer patients with particular subtypes of the disease (Her2+ and ER/PR+), even in these subtypes the therapies are often not efficacious once the patient's tumor metastasizes. Increases in stemness or epithelial-to-mesenchymal transition (EMT) in primary breast cancer cells lead to enhanced plasticity, enabling tumor progression, therapeutic resistance, and distant metastatic spread. Numerous signaling pathways, including MAPK, PI3K, STAT3, Wnt, Hedgehog, and Notch, amongst others, play a critical role in maintaining cell plasticity in breast cancer. Understanding the cellular and molecular mechanisms that regulate breast cancer cell plasticity is essential for understanding the biology of breast cancer progression and for developing novel and more effective therapeutic strategies for targeting metastatic disease. In this review we summarize relevant literature on mechanisms associated with breast cancer plasticity, tumor progression, and drug resistance.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Pharmacology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
46
|
Mansoori B, Duijf PHG, Mohammadi A, Najafi S, Roshani E, Shanehbandi D, Hajiasgharzadeh K, Shirjang S, Ditzel HJ, Kazemi T, Mokhtarzadeh A, Gjerstorff MF, Baradaran B. Overexpression of HMGA2 in breast cancer promotes cell proliferation, migration, invasion and stemness. Expert Opin Ther Targets 2020; 24:255-265. [PMID: 32172636 DOI: 10.1080/14728222.2020.1736559] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Despite improved therapeutic strategies for early-stage breast cancer, the most common cancer type in women, relapse remains common and the underlying mechanisms for this progression remain poorly understood. To gain more insight, we studied the DNA-binding protein HMGA2 in breast cancer development and stemness. We demonstrated that HMGA2 is overexpressed in breast cancer tissues at the mRNA and protein levels (P value <0.0001). HMGA2 knockdown and overexpression in breast cancer cells revealed that HMGA2 promotes cell proliferation and protects against apoptosis via the intrinsic pathway. HMGA2 knockdown also causes cell cycle arrest in G2/M phase. In addition, we found that HMGA2 increases breast cancer cell migration and invasion (P value <0.001) and promotes the acquisition of cancer stem cell features, both in vitro, in colony formation (P value <0.01) and spheroid assays, and in breast cancer tissues. Overexpression of HMGA2 in breast cancer spurs the acquisition of several hallmarks of cancer, including increased cell proliferation, migration, invasion and stemness, and decreased apoptosis. Thus, targeting HMGA2 could represent an effective strategy to block breast cancer progression.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Aging Research Institute, Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Institute for Clinical Research, Odense University Hospital, Odense, Denmark
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Gaio E, Conte C, Esposito D, Reddi E, Quaglia F, Moret F. CD44 Targeting Mediated by Polymeric Nanoparticles and Combination of Chlorine TPCS 2a-PDT and Docetaxel-Chemotherapy for Efficient Killing of Breast Differentiated and Stem Cancer Cells In Vitro. Cancers (Basel) 2020; 12:E278. [PMID: 31979218 PMCID: PMC7072409 DOI: 10.3390/cancers12020278] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The presence of rare but highly tumorigenic cancer stem cells (CSCs) within the tumors is recognized as one of the major reasons of failure of conventional chemotherapies, mainly attributed to the development of drug resistance and increasing metastatic potential. Here, we propose a therapeutic strategy based on the simultaneous delivery of docetaxel (DTX) and the photosensitizer meso-tetraphenyl chlorine disulfonate (TPCS2a) using hyaluronic acid (HA) coated polymeric nanoparticles (HA-NPs) for the targeting and killing of CD44 over-expressing breast cancer (BC) cells, both differentiated and CSCs (CD44high/CD24low population), thus combining chemotherapy and photodynamic therapy (PDT). Using the CD44high MDA-MB-231 and the CD44low MCF-7 cells, we demonstrated the occurrence of CD44-mediated uptake of HA-NPs both in monolayers and mammosphere cultures enriched in CSCs. Cell treatments showed that combination therapy using co-loaded NPs (HA@DTX/TPCS2a-NPs) had superior efficacy over monotherapies (HA@DTX-NPs or HA@TPCS2a-NPs) in reducing the self-renewal capacity, measured as mammosphere formation efficiency, and in eradicating the CSC population evaluated with aldehyde dehydrogenase activity assay and CD44/CD24 immunostaining. In summary, these in vitro studies demonstrated for the first time the potential of the combination of DTX-chemotherapy and TPCS2a-PDT for killing CSCs using properly designed NPs.
Collapse
Affiliation(s)
- Elisa Gaio
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Elena Reddi
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| |
Collapse
|
48
|
Das PK, Rakib MA, Khanam JA, Pillai S, Islam F. Novel Therapeutics Against Breast Cancer Stem Cells by Targeting Surface Markers and Signaling Pathways. Curr Stem Cell Res Ther 2019; 14:669-682. [DOI: 10.2174/1574888x14666190628104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
Breast cancer remains to be one of the deadliest forms of cancers, owing to
the drug resistance and tumor relapse caused by breast cancer stem cells (BCSCs) despite notable advancements
in radio-chemotherapies.
Objective:
To find out novel therapeutics against breast cancer stem cells by aiming surface markers
and signaling pathways.
Methods:
A systematic literature search was conducted through various electronic databases including,
Pubmed, Scopus, Google scholar using the keywords "BCSCs, surface markers, signaling pathways
and therapeutic options against breast cancer stem cell. Articles selected for the purpose of this review
were reviewed and extensively analyzed.
Results:
Novel therapeutic strategies include targeting BCSCs surface markers and aberrantly activated
signaling pathways or targeting their components, which play critical roles in self-renewal and defense,
have been shown to be significantly effective against breast cancer. In this review, we represent a
number of ways against BCSCs surface markers and hyper-activated signaling pathways to target this
highly malicious entity of breast cancer more effectively in order to make a feasible and useful strategy
for successful breast cancer treatment. In addition, we discuss some characteristics of BCSCs in disease
progression and therapy resistance.
Conclusion:
BCSCs involved in cancer pathogenesis, therapy resistance and cancer recurrence. Thus,
it is suggested that a multi-dimensional therapeutic approach by targeting surface markers and aberrantly
activated signaling pathways of BCSCs alone or in combination with each other could really be
worthwhile in the treatment of breast cancer.
Collapse
Affiliation(s)
- Plabon K. Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. A. Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Jahan A. Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
49
|
Wanandi SI, Syahrani RA, Arumsari S, Wideani G, Hardiany NS. Profiling of Gene Expression Associated with Stemness and Aggressiveness of ALDH1A1-Expressing Human Breast Cancer Cells. Malays J Med Sci 2019; 26:38-52. [PMID: 31728117 PMCID: PMC6839666 DOI: 10.21315/mjms2019.26.5.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
Background It has been widely reported that breast cancer aggressiveness may be driven by breast cancer stem cells (BCSCs). BCSCs display stemness properties that include self-renewal, tumourigenicity and pluripotency. The regulation of gene expression may have important roles in BCSC stemness and aggressiveness. Thus, the aim of this study was to examine the stemness and aggressiveness gene expression profile of BCSCs compared to MCF-7 and MDA-MB-231 breast cancer cells. Methods Human ALDH1+ BCSCs were grown in serum-free Dulbecco’s Modified Eagle Medium (DMEM)/F12, while MCF-7 and MDA-MB-231 were cultured in DMEM supplemented with 10% foetal bovine serum under standard conditions. Total RNA was extracted using the Tripure Isolation Reagent. The relative mRNA expressions of OCT4, ALDH1A1 and CD44 associated with stemness as well as TGF-β1, TβR1, ERα1 and MnSOD associated with aggressiveness in BCSCs and MCF-7 cells were determined using the quantitative real-time PCR (qRT-PCR). Results The mRNA expressions of OCT4 (5.19-fold ± 0.338; P = 0.001), ALDH1A1 (3.67-fold ± 0.523; P = 0.006), CD44 (2.65-fold ± 0.307; P = 0.006), TGF-β1 (22.89-fold ± 6.840; P = 0.015), TβR1 (3.74-fold ± 1.446; P = 0.045) and MnSOD (4.6-fold ± 1.096; P = 0.014) were higher in BCSCs than in MCF-7 but were almost similar to MDA-MB-231 cells. In contrast, the ERα1 expression of BCSCs (0.97-fold ± 0.080; P = 0.392) was similar to MCF-7 cells, indicating that BSCSs are oestrogen-dependent breast cancer cells. Conclusion The oestrogen-dependent BCSCs express stemness and aggressiveness genes at a higher level compared to oestrogen-dependent MCF-7 but are almost similar to oestrogen-independent MDA-MB-231 cells.
Collapse
Affiliation(s)
- Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Molecular Biology and Proteomics Core Facilities, IMERI-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Resda Akhra Syahrani
- Molecular Biology and Proteomics Core Facilities, IMERI-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sekar Arumsari
- Molecular Biology and Proteomics Core Facilities, IMERI-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gita Wideani
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Novi Silvia Hardiany
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Molecular Biology and Proteomics Core Facilities, IMERI-Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
50
|
Kim JH, Choi HS, Kim SL, Lee DS. The PAK1-Stat3 Signaling Pathway Activates IL-6 Gene Transcription and Human Breast Cancer Stem Cell Formation. Cancers (Basel) 2019; 11:cancers11101527. [PMID: 31658701 PMCID: PMC6826853 DOI: 10.3390/cancers11101527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) have unique properties, including self-renewal, differentiation, and chemoresistance. In this study, we found that p21-activated kinase (PAK1) inhibitor (Group I, PAK inhibitor, IPA-3) and inactivator (ivermectin) treatments inhibit cell proliferation and that tumor growth of PAK1-knockout cells in a mouse model is significantly reduced. IPA-3 and ivermectin inhibit CSC formation. PAK1 physically interacts with Janus Kinase 2 (JAK2), and JAK2 inhibitor (TG101209) treatment inhibits mammosphere formation and reduces the nuclear PAK1 protein level. PAK1 interacts with signal transducer and activator of transcription 3 (Stat3), and PAK1 and Stat3 colocalize in the nucleus. We show through electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and reporter assays that the PAK1/Stat3 complex binds to the IL-6 promoter and regulates the transcription of the IL-6 gene. Inhibition of PAK1 and JAK2 in mammospheres reduces the nuclear pStat3 and extracellular IL-6 levels. PAK1 inactivation inhibits CSC formation by decreasing pStat3 and extracellular IL-6 levels. Our results reveal that JAK2/PAK1 dysregulation inhibits the Stat3 signaling pathway and CSC formation, the PAK1/Stat3 complex regulates IL-6 gene expression, PAK1/Stat3 signaling regulates CSC formation, and PAK1 may be an important target for treating breast cancer.
Collapse
Affiliation(s)
- Ji-Hyang Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
| | - Su-Lim Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
| | - Dong-Sun Lee
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea.
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, SARI, Jeju 63243, Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea.
- School of Biomaterials Science and Technology, College of Applied Life Science, Jeju National University, Jeju 63243, Korea.
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|