1
|
Llorens Martínez X, Ruiz Macarrilla L, Rey-Viñolas S, Mateos-Timoneda MA, Engel E, Mora Guix JM. Study of bone-tendon interface healing in an animal model using a synthetic scaffold and PRP. Eur J Trauma Emerg Surg 2025; 51:124. [PMID: 40019536 DOI: 10.1007/s00068-025-02796-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/09/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Biological matrices have been used to reinforce large rotator cuff tear repairs. However, rapid resorption and initial immune reactions presented challenges in clinical practice. This study evaluates whether a resorbable synthetic matrix (scaffold), used alone or with platelet-rich plasma (PRP), impacts repair processes at microscopic, ultrasound, and biomechanical levels in a rabbit model of induced tendon-bone interface injury. METHODS An experimental study was performed on 24 rabbits. Two experimental groups (n = 12 each) and a control group (n = 24) were defined. In the first group (BioP), the internal gastrocnemius tendon was sectioned and repaired to bone using double-row sutures, reinforced with a PLC (poly-L-lactic-co-ε-caprolactone) and PLA (polylactic acid) scaffold. In the second group (BioP + PRP), autologous PRP was added to the repair. The control group received no scaffold or PRP. Euthanasia was performed at 8 weeks, followed by microscopic, ultrasound, and biomechanical evaluations. RESULTS Microscopically, a granulomatous reaction limited to the foreign body was observed in both scaffold groups. The healing process was not altered in any group, showing good biocompatibility of the scaffold. Echographically, a greater sagittal diameter was observed in the group without PRP compared to the other groups. Biomechanically, no significant differences in rupture zones were found across groups, but the scaffold-only group required a higher maximum applied force before rupture. CONCLUSIONS At 8 weeks, using a degradable synthetic PLC and PLA scaffold as support at the bone-tendon interface did not significantly alter the normal repair process, showed echographic and biomechanical benefits, and PRP did not show additional benefits in our experimental model.
Collapse
Affiliation(s)
- Xavier Llorens Martínez
- Consorci Sanitari de Terrassa, Terrassa, Spain.
- Fundació Joan Costa Roma, Hospital de Terrassa, Spain.
| | - Leonardo Ruiz Macarrilla
- Fundació Joan Costa Roma, Hospital de Terrassa, Spain
- Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | | | - J M Mora Guix
- Consorci Sanitari de Terrassa, Terrassa, Spain
- Fundació Joan Costa Roma, Hospital de Terrassa, Spain
| |
Collapse
|
2
|
Tharakan S, Hadjiargyrou M, Ilyas A. The Clinical Application of Gel-Based Composite Scaffolds in Rotator Cuff Repair. Gels 2024; 11:2. [PMID: 39851973 PMCID: PMC11764754 DOI: 10.3390/gels11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
Rotator cuff tears are a common injury that can be treated with or without surgical intervention. Gel-based scaffolds have gained significant attention in the field of tissue engineering, particularly for applications like rotator cuff repair. Scaffolds can be biological, synthetic, or a mixture of both materials. Collagen, a primary constituent of the extracellular matrix (ECM) in musculoskeletal tissues, is one of the most widely used materials for gel-based scaffolds in rotator cuff repair, but other ECM-based and synthetic-based composite scaffolds have also been utilized. These composite scaffolds can be engineered to mimic the biomechanical and biological properties of natural tissues, supporting the healing process and promoting regeneration. Various clinical studies examined the effectiveness of these composite scaffolds with collagen, ECM and synthetic polymers and provided outstanding results with remarkable improvements in range of motion (ROM), strength, and pain. This review explores the material composition, manufacturing process and material properties of gel-based composite scaffolds as well as their clinical outcomes for the treatment of rotator cuff injuries.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Laboratory, New York Institute of Technology, Old Westbury, NY 11568, USA
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA;
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Laboratory, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
3
|
Sasanuma H, Takahashi T, Kawai S, Saitsu A, Kurashina W, Iijima Y, Saito T, Takeshita K. Morphological and histological evaluation of the tendon-bone junction in porcine shoulders to create a rotator cuff tear and repair model. J Orthop Sci 2024; 29:1521-1527. [PMID: 38007298 DOI: 10.1016/j.jos.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND This study aimed to morphologically and histologically examine whether pig is useful as models for rotator cuff tear (RCT). METHODS The morphology of the scapula and humerus bones was evaluated by taking X-ray and three-dimensional computed tomography (3D CT) scans of the right shoulders of five female pigs (age: 4 months). The rotator cuff (RC) footprint at the humeral insertion of these was observed and its shape was measured. Next, they underwent general anesthesia and an acute rotator cuff tear/rotator cuff repair (RCT/RCR) model was created using a deltoid split approach. Four weeks after surgery, the animals were euthanized, the shoulder joints were harvested, and the repaired RC was evaluated by hematoxylin and eosin staining and toluidine blue staining. RESULTS The scapula of the pig had a vestigial acromion, in contrast to that in humans. The supraspinatus and infraspinatus tendons were connected so as to overlap each other and attached to the postero-superior part of the greater tuberosity. These tendons were located extra-articularly, separate from the joint capsule. The average antero-posterior length of the foot print was 17.4 ± 0.7 mm on the medial margin and 19.1 ± 2.2 mm on the lateral margin. The maximum medial-to-lateral width of it was 5.1 ± 0.5 mm. In all RCT/RCR models at 4 weeks after surgery, the repaired RC compound tendon was visually confirmed to be continuous with the footprint. Histologically, it was confirmed that regeneration of the four-layer structure of the bone-tendon junction had occurred. CONCLUSION Porcine supraspinatus and infraspinatus attachment to the greater tuberosity have a structure similar to that of sheep and dogs, which is advantageous for creating the RCT/RCR model. It might be used for future in vivo studies of shoulder joint diseases. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Pigs could potentially serve as a viable model for rotator cuff tears.
Collapse
Affiliation(s)
- Hideyuki Sasanuma
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Tsuneari Takahashi
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shigeo Kawai
- Tochigi Medical Center Shimotsuga, Department of Diagnostic Pathology, 420-1, Ohira, Tochigi, 329-4498, Japan
| | - Akihiro Saitsu
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Wataru Kurashina
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Iijima
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Tomohiro Saito
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Katsushi Takeshita
- Jichi Medical University Hospital, Graduate School of Medicine, Department of Orthopaedics, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
4
|
Huang S, Tam MY, Ho WHC, Wong HK, Zhou M, Zeng C, Xie D, Elmer Ker DF, Ling SK, Tuan RS, Wang DM. Establishing a rabbit model with massive supraspinatus tendon defect for investigating scaffold-assisted tendon repair. Biol Proced Online 2024; 26:31. [PMID: 39367314 PMCID: PMC11453025 DOI: 10.1186/s12575-024-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Shoulder pain and disability from rotator cuff tears remain challenging clinical problem despite advancements in surgical techniques and materials. To advance our understanding of injury progression and develop effective therapeutics using tissue engineering and regenerative medicine approaches, it is crucial to develop and utilize animal models that closely resemble the anatomy and display the pathophysiology of the human rotator cuff. Among various animal models, the rabbit shoulder defect model is particularly favored due to its similarity to human rotator cuff pathology. However, a standardized protocol for creating a massive rotator cuff defect in the rabbits is not well defined. Therefore, the objective of our study was to establish a robust and reproducible model of a rotator cuff defect to evaluate the regenerative efficacy of scaffolds. RESULTS In our study, we successfully developed a rabbit model with a massive supraspinatus tendon defect that closely resembles the common rotator cuff injuries observed in humans. This defect involved a complete transection of the tendon, spanning 10 mm in length and encompassing its full thickness and width. To ensure stable scaffolding, we employed an innovative bridging suture technique that utilized a modified Mason-Allen suture as a structural support. Moreover, to assess the therapeutic effectiveness of the model, we utilized different scaffolds, including a bovine tendon extracellular matrix (ECM) scaffold and a commercial acellular dermal matrix (ADM) scaffold. Throughout the observation period, no scaffold damage was observed. Notably, comprehensive histological analysis demonstrated that the regenerative tissue in the tendon ECM scaffold group exhibited an organized and aligned fiber structure, indicating tendon-like tissue regeneration while the tissue in the ADM group showed comparatively less organization. CONCLUSIONS This study presents a comprehensive description of the implemented procedures for the development of a highly reproducible animal model that induces massive segmental defects in rotator cuff tendons. This protocol can be universally implemented with alternative scaffolds to investigate extensive tendon defects and evaluate the efficacy of regenerative treatments. The application of our animal model offers a standardized and reproducible platform, enabling researchers to systematically evaluate, compare, and optimize scaffold designs. This approach holds significant importance in advancing the development of tissue engineering strategies for effectively repairing extensive tendon defects.
Collapse
Affiliation(s)
- Shuting Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
| | - Ming Yik Tam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Hon Caleb Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Ki Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Meng Zhou
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Zeng
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Denghui Xie
- Department of Orthopedic Surgery, Center for Orthopedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dai Fei Elmer Ker
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Samuel Kk Ling
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Liao Y, Wang J, Zhou Z, Tang B, Li H, Mu Y, Nie M, Yu S, Zhou B. Supraspinatus Tendon Reconstruction Versus the Bridging Technique in a Rat Model: Histological, Biomechanical, and Functional Outcomes. Am J Sports Med 2024; 52:2628-2638. [PMID: 39137415 DOI: 10.1177/03635465241264805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
BACKGROUND Massive irreparable rotator cuff tears (MIRCTs) are among the most challenging shoulder conditions to treat surgically. Supraspinatus tendon reconstruction (STR) is a recently introduced technique for MIRCTs based on fascia lata-muscle interface healing, which completely differs from the classic bridging technique with fascia lata-tendon interface healing. However, histological and biomechanical comparisons of the fascia-muscle and fascia-tendon interfaces have not been performed. PURPOSE To investigate the histological and biomechanical healing of the fascia-bone interface and fascia-muscle interface after chronic MIRCTs in a rat model using different surgical methods. STUDY DESIGN Controlled laboratory study. METHODS The authors established a chronic MIRCT model in the right shoulder of rats and then repaired it using the STR or bridging repair technique. Evaluations were performed at 2, 4, 8, and 12 weeks, including histological, imaging, biomechanical, and functional analyses. RESULTS Both techniques resulted in good fascia-bone interface healing based on the histological results. The STR group had significantly more cartilage formation at 8 and 12 weeks and higher Modified Tendon Maturity Score after 12 weeks at the fascia-bone interface compared with the bridging repair group and formed the typical 4-layered structure. Collagen fibers in the fascia-muscle and fascia-tendon interfaces exhibited normal muscle-tendon interface characteristics at 12 weeks. However, the STR group had more improvement in fatty infiltration compared with the bridging repair group. The ultimate failure load and stiffness did not differ between the STR and bridging repair groups 4 weeks postoperatively in both the fascia-bone interface and supraspinatus muscle-fascia-bone integrity. Movement distance and grasp time were significantly longer in the STR group than in the bridging repair group at 12 weeks and attached the level in the normal control groups. CONCLUSION These results suggest that the fascia-muscle interface from the STR technique is histologically and functionally better than the fascia-tendon interface. Moreover, this study provides a theoretical basis for the clinical use of the STR technique. CLINICAL RELEVANCE The fascia-muscle interface and fascia-tendon interface were the key points of the STR and bridging techniques, respectively. The fascia-muscle interface is histologically and functionally superior to the bridging technique, and the STR technique might be a better choice for the treatment of MIRCTs.
Collapse
Affiliation(s)
- Yatao Liao
- Department of Sports Medicine, First Affiliated Hospital of Hospital of Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Sports Medicine, First Affiliated Hospital of Hospital of Army Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Sports Medicine, First Affiliated Hospital of Hospital of Army Medical University, Chongqing, China
| | - Bowen Tang
- Department of Sports Medicine, First Affiliated Hospital of Hospital of Army Medical University, Chongqing, China
| | - Huaisheng Li
- Department of Sports Medicine, First Affiliated Hospital of Hospital of Army Medical University, Chongqing, China
| | - Yuexi Mu
- Department of Sports Medicine, Second Affiliated Hospital of Hospital of Chongqing Medical University, Chongqing, China
| | - Mao Nie
- Department of Sports Medicine, Second Affiliated Hospital of Hospital of Chongqing Medical University, Chongqing, China
| | - Sai Yu
- Department of Sports Medicine, Second Affiliated Hospital of Hospital of Chongqing Medical University, Chongqing, China
| | - Binghua Zhou
- Department of Sports Medicine, First Affiliated Hospital of Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Gould HP, Rate WR, Harrell RA, Abbasi P, Fillar AL. Effect of Poly-L-Lactic Acid Mesh Augmentation on Cyclic Gap Formation in Transosseous Patellar Tendon Repair: A Biomechanical Study. J Knee Surg 2023; 36:1224-1229. [PMID: 36049770 DOI: 10.1055/s-0042-1755374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
No previous study has investigated poly-L-lactic acid (PLLA) surgical mesh augmentation in the repair of inferior pole patellar tendon rupture. We compared the biomechanical properties of transosseous patellar tendon repair with PLLA surgical mesh augmentation to transosseous repair without augmentation. Ten matched pairs of cadaveric knees were used. Specimens in each pair were randomized to undergo the transosseous technique alone or the transosseous technique augmented with a PLLA surgical mesh. An inferior pole patellar tendon rupture was simulated and the repair procedure was performed. Specimens were cyclically loaded for 500 cycles. Gap formation was measured using two sensors placed medial and lateral to the repair site. After cyclic loading, load to failure was determined by pulling the tendon at a constant rate until a sudden decrease in load occurred. The primary outcome measure was cyclic gap formation at the medial and lateral sensors. Compared with controls, specimens that underwent PLLA mesh-augmented repair had significantly lower medial gap formation at all testing intervals up to 500 cycles (p < 0.05) and significantly lower lateral gap formation at all testing intervals from 10 to 500 cycles (p < 0.05). Transosseous patellar tendon repair augmented with a PLLA woven mesh device provided significantly greater resistance to gap formation compared with transosseous repair alone. These results suggest that PLLA mesh augmentation of the transosseous technique is biomechanically effective for patellar tendon repair.
Collapse
Affiliation(s)
- Heath P Gould
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - William R Rate
- Georgetown University School of Medicine, Washington, District of Columbia
| | - Ryan A Harrell
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Pooyan Abbasi
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| | - Allison L Fillar
- Department of Orthopaedic Surgery, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
7
|
Liu Q, Qi J, Zhu W, Thoreson AR, An KN, Steinmann SP, Zhao C. The Effect of Pulling Angle on Rotator Cuff Mechanical Properties in a Canine In Vitro Model. Bioengineering (Basel) 2023; 10:599. [PMID: 37237669 PMCID: PMC10215708 DOI: 10.3390/bioengineering10050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to examine the effect of pulling angle on time-zero mechanical properties of intact infraspinatus tendon or infraspinatus tendon repaired with the modified Mason-Allen technique in a canine model in vitro. Thirty-six canine shoulder samples were used. Twenty intact samples were randomly allocated into functional pull (135°) and anatomic pull (70°) groups (n = 10 per group). The remaining sixteen infraspinatus tendons were transected from the insertion and repaired using the modified Mason-Allen technique before being randomly allocated into functional pull or anatomic pull groups (n = 8 per group). Load to failure testing was performed on all specimens. The ultimate failure load and ultimate stress of the functional pulled intact tendons were significantly lower compared with anatomic pulled tendons (1310.2 ± 167.6 N vs. 1687.4 ± 228.2 N, p = 0.0005: 55.6 ± 8.4 MPa vs. 67.1 ± 13.3 MPa, p = 0.0334). For the tendons repaired with the modified Mason-Allen technique, no significant differences were observed in ultimate failure load, ultimate stress or stiffness between functional pull and anatomic pull groups. The variance of pulling angle had a significant influence on the biomechanical properties of the rotator cuff tendon in a canine shoulder model in vitro. Load to failure of the intact infraspinatus tendon was lower at the functional pulling position compared to the anatomic pulling position. This result indicates that uneven load distribution across tendon fibers under functional pull may predispose the tendon to tear. However, this mechanical character is not presented after rotator cuff repair using the modified Mason-Allen technique.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | | | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott P. Steinmann
- Department of Orthopedic Surgery, University of Tennessee Health Science Center College of Medicine, Chattanooga, TN 37450, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Zhong Y, Jin W, Gao H, Sun L, Wang P, Zhang J, Ong MTY, Sai Chuen Bruma F, Chen S, Chen J. A Knitted PET Patch Enhances the Maturation of Regenerated Tendons in Bridging Reconstruction of Massive Rotator Cuff Tears in a Rabbit Model. Am J Sports Med 2023; 51:901-911. [PMID: 36802867 DOI: 10.1177/03635465231152186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Although nondegradable synthetic grafts for bridging reconstruction of massive rotator cuff tears (MRCTs) have shown satisfactory clinical outcomes, their function and details on graft-tendon healing and enthesis regeneration have not been fully studied. HYPOTHESIS The knitted polyethylene terephthalate (PET) patch as a nondegradable synthetic graft could provide sustained mechanical support, facilitating enthesis and tendon regeneration in the treatment of MRCTs. STUDY DESIGN Controlled laboratory study. METHODS A knitted PET patch was fabricated for bridging reconstruction (PET group) in a New Zealand White rabbit model of MRCTs (negative control group), and an autologous Achilles tendon was used as a control (autograft group). The animals were sacrificed, and tissue samples were harvested for gross observation as well as histological and biomechanical analyses at 4, 8, and 12 weeks postoperatively. RESULTS Histological analysis showed no significant difference in the graft-bone interface score between the PET and autograft groups at 4, 8, and 12 weeks postoperatively. Interestingly, in the PET group, Sharpey-like fibers were observed at 8 weeks, while fibrocartilage formation and the ingrowth of chondrocytes were recognized at 12 weeks. Meanwhile, the tendon maturing score was significantly higher in the PET group than in the autograft group (19.7 ± 1.5 vs 15.3 ± 1.2, respectively; P = .008) at 12 weeks, with parallel-oriented collagen fibers around the knitted PET patch. Moreover, the ultimate failure load of the PET group was similar to that of a healthy rabbit tendon at 8 weeks (125.6 ± 13.6 vs 130.8 ± 28.6 N, respectively; P > .05) and no different from that of the autograft group at 4, 8, and 12 weeks. CONCLUSION The knitted PET patch could not only immediately reconstruct the mechanical support for the torn tendon postoperatively in the rabbit model of MRCTs but also enhanced maturation of the regenerated tendon by fibrocartilage formation and improved the organization of collagen fibers. Herein, the knitted PET patch could be a promising candidate graft adopted in bridging reconstruction of MRCTs. CLINICAL RELEVANCE A nondegradable knitted PET patch can safely bridge MRCTs with satisfactory mechanical strength and the promotion of tissue regeneration.
Collapse
Affiliation(s)
- Yuting Zhong
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhe Jin
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Han Gao
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Luyi Sun
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Wang
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Michael Tim Yun Ong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Fu Sai Chuen Bruma
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Shiyi Chen
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Chen
- Institute of Sports Medicine of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Xie Y, Zhang F, Akkus O, King MW. A collagen/PLA hybrid scaffold supports tendon-derived cell growth for tendon repair and regeneration. J Biomed Mater Res B Appl Biomater 2022; 110:2624-2635. [PMID: 35779243 PMCID: PMC9795886 DOI: 10.1002/jbm.b.35116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022]
Abstract
A rotator cuff tendon tear is a common shoulder injury with a relatively high rate of recurrence after surgical repair. In order to reinforce the repair and reduce the risk of clinical complications, a patch scaffold is typically sutured over the tendon tear to provide post-surgical mechanical support. However, despite considerable research effort in this area, a patch scaffold that provides both superior initial mechanical properties and supports cell proliferation at the same time has not yet been achieved. In this study, we engineered a collagen/poly(lactic acid) (COL/PLA) hybrid yarn to leverage mechanical strength of PLA yarn and the bioactivity of collagen. The COL/PLA yarns were used to fabricate a tissue engineering scaffold using textile weaving technology. This hybrid scaffold had a tensile strength of 354.0 ± 36.0 N under dry conditions and 267.2 ± 15.9 N under wet conditions, which was satisfactory to maintain normal tendon function. By introducing COL yarns into the hybrid scaffold, the proliferation of tendon-derived cells was significantly improved on the scaffold. Cell coverage after 28-days of in vitro cell culture was noticeably higher on the COL yarns compared to the PLA yarns as a result of a larger number of cells and more spread cell morphology on collagen. Cells spread in multiple directions on COL yarns, which resembled a more natural cell attachment on extracellular matrix. On the contrary, the cells attached to the PLA filaments presented an elongated morphology along the fiber's axial direction. Combining the mechanical robustness of PLA and the biological activity of collagen, the woven COL/PLA hybrid scaffold has shown its potential to be a promising candidate for tendon repair applications.
Collapse
Affiliation(s)
- Yu Xie
- Wilson College of TextilesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Fan Zhang
- Wilson College of TextilesNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ozan Akkus
- Department of Mechanical and Aerospace EngineeringCase Western Reserve UniversityClevelandOhioUSA,Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA,Department of OrthopedicsCase Western Reserve UniversityClevelandOhioUSA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State UniversityRaleighNorth CarolinaUSA,College of TextilesDonghua UniversityShanghaiPeople's Republic of China
| |
Collapse
|
10
|
Zhang G, Zhou X, Hu S, Jin Y, Qiu Z. Large animal models for the study of tendinopathy. Front Cell Dev Biol 2022; 10:1031638. [PMID: 36393858 PMCID: PMC9640604 DOI: 10.3389/fcell.2022.1031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Tendinopathy has a high incidence in athletes and the aging population. It can cause pain and movement disorders, and is one of the most difficult problems in orthopedics. Animal models of tendinopathy provide potentially efficient and effective means to develop understanding of human tendinopathy and its underlying pathological mechanisms and treatments. The selection of preclinical models is essential to ensure the successful translation of effective and innovative treatments into clinical practice. Large animals can be used in both micro- and macro-level research owing to their similarity to humans in size, structure, and function. This article reviews the application of large animal models in tendinopathy regarding injuries to four tendons: rotator cuff, patellar ligament, Achilles tendon, and flexor tendon. The advantages and disadvantages of studying tendinopathy with large animal models are summarized. It is hoped that, with further development of animal models of tendinopathy, new strategies for the prevention and treatment of tendinopathy in humans will be developed.
Collapse
Affiliation(s)
- Guorong Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuyan Zhou
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Hu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| |
Collapse
|
11
|
Chen C, Shi Q, Li M, Chen Y, Zhang T, Xu Y, Liao Y, Ding S, Wang Z, Li X, Zhao C, Sun L, Hu J, Lu H. Engineering an enthesis-like graft for rotator cuff repair: An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact Mater 2022; 16:451-471. [PMID: 35386315 PMCID: PMC8965727 DOI: 10.1016/j.bioactmat.2021.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 02/09/2023] Open
Abstract
Rotator cuff (RC) attaches to humerus across a triphasic yet continuous tissue zones (bone-fibrocartilage-tendon), termed "enthesis". Regrettably, rapid and functional enthesis regeneration is challenging after RC tear. The existing grafts bioengineered for RC repair are insufficient, as they were engineered by a scaffold that did not mimic normal enthesis in morphology, composition, and tensile property, meanwhile cannot simultaneously stimulate the formation of bone-fibrocartilage-tendon tissues. Herein, an optimized decellularization approach based on a vacuum aspiration device (VAD) was developed to fabricate a book-shaped decellularized enthesis matrix (O-BDEM). Then, three recombinant growth factors (CBP-GFs) capable of binding collagen were synthesized by fusing a collagen-binding peptide (CBP) into the N-terminal of BMP-2, TGF-β3, or GDF-7, and zone-specifically tethered to the collagen of O-BDEM to fabricate a novel scaffold (CBP-GFs/O-BDEM) satisfying the above-mentioned requirements. After ensuring the low immunogenicity of CBP-GFs/O-BDEM by a novel single-cell mass cytometry in a mouse model, we interleaved urine-derived stem cell-sheets into this CBP-GFs/O-BDEM to bioengineer an enthesis-like graft. Its high-performance on regenerating enthesis was determined in a canine model. These findings indicate this CBP-GFs/O-BDEM may be an excellent scaffold for constructing enthesis-like graft to patch large/massive RC tears, and provide breakthroughs in fabricating graded interfacial tissue.
Collapse
Affiliation(s)
- Can Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qiang Shi
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Muzhi Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Tao Zhang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Xu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yunjie Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shulin Ding
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhanwen Wang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xing Li
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunfeng Zhao
- Division of Orthopedic Research and Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905, United States
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Corresponding author. Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan, China.
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Corresponding author. Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
13
|
Mechanical Properties of Animal Tendons: A Review and Comparative Study for the Identification of the Most Suitable Human Tendon Surrogates. Processes (Basel) 2022. [DOI: 10.3390/pr10030485] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanical response of a tendon to load is strictly related to its complex and highly organized hierarchical structure, which ranges from the nano- to macroscale. In a broader context, the mechanical properties of tendons during tensile tests are affected by several distinct factors, due in part to tendon nature (anatomical site, age, training, injury, etc.) but also depending on the experimental setup and settings. This work aimed to present a systematic review of the mechanical properties of tendons reported in the scientific literature by considering different anatomical regions in humans and several animal species (horse, cow, swine, sheep, rabbit, dog, rat, mouse, and foal). This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. The literature research was conducted via Google Scholar, PubMed, PicoPolito (Politecnico di Torino’s online catalogue), and Science Direct. Sixty studies were selected and analyzed. The structural and mechanical properties described in different animal species were reported and summarized in tables. Only the results from studies reporting the strain rate parameter were considered for the comparison with human tendons, as they were deemed more reliable. Our findings showed similarities between animal and human tendons that should be considered in biomechanical evaluation. An additional analysis of the effects of different strain rates showed the influence of this parameter.
Collapse
|
14
|
Washington KS, Shemshaki NS, Laurencin CT. The Role of Nanomaterials and Biological Agents on Rotator Cuff Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022; 7:440-449. [PMID: 35005215 DOI: 10.1007/s40883-020-00171-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rotator cuff is a musculotendon unit responsible for movement in the shoulder. Rotator cuff tears represent a significant number of musculoskeletal injuries in the adult population. In addition, there is a high incidence of retear rates due to various complications within the complex anatomical structure and the lack of proper healing. Current clinical strategies for rotator cuff augmentation include surgical intervention with autograft tissue grafts and beneficial impacts have been shown, but challenges still exist because of limited supply. For decades, nanomaterials have been engineered for the repair of various tissue and organ systems. This review article provides a thorough summary of the role nanomaterials, stem cells and biological agents have played in rotator cuff repair to date and offers input on next generation approaches for regenerating this tissue.
Collapse
Affiliation(s)
- Kenyatta S Washington
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
15
|
Johnson J, von Stade D, Regan D, Easley J, Chow L, Dow S, Romeo T, Schlegel T, McGilvray K. Tendon midsubstance trauma as a means for the development of translatable chronic rotator cuff degeneration in an ovine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1616. [PMID: 34926660 PMCID: PMC8640899 DOI: 10.21037/atm-21-2749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic degeneration of rotator cuff tendons is a major contributing factor to the unacceptably high prevalence of rotator cuff repair surgery failures. The etiology of chronic rotator cuff degeneration is not well understood, and current therapies are not effective, necessitating preclinical research to fill this knowledge gap. Unfortunately, current large animal models rely on enthesis disruption as a means of model generation, which is not representative of human patients with chronic rotator cuff degeneration prior to full-thickness tears. Following, the goal of this study was to develop and characterize a translational large-animal model of chronic rotator cuff degeneration without enthesis release. METHODS A midsubstance damage model [i.e., "combed fenestration" (CF)] in adult sheep was generated by creating 16 longitudinal cuts within the top third of the infraspinatus tendon thickness. Tendon integrity was characterized through exhaustive non-destructive biomechanical stress relaxation testing [peak stress, peak load, percent relaxation, and cross-sectional area (CSA)], followed by histopathological degeneration scoring and analysis (Bonar score), histomorphological analysis of collagen organization and fatty atrophy (percent adipose area), and gene expression analyses. RESULTS The CF model tendons exhibited significantly decreased mechanical properties as evidenced by decreased peak stress (P<0.025) and increased percent relaxation (18-week vs. Control, P<0.035) at multiple strain magnitudes and across all timepoints. At all timepoints, the CF tendons exhibited pathological changes aligned with tendon degeneration, as evidenced by increased Bonar scoring (P<0.001) and decreased collagen organization (6-week vs. Control, P=0.013). Increases in intramuscular adipose content were also documented through histomorphology analysis (6- and 18-week vs. Control, P<0.077). Significant changes in gene expression were noted at all timepoints. CONCLUSIONS These data reveal that this new ovine CF model of chronic rotator cuff degeneration results in tendons with decreased mechanical properties, degenerative pathology characteristics, and gene expression profiles that aligned with the degenerative changes that have been noted in humans with tendinopathy. For these reasons, we believe this novel large animal model of chronic rotator cuff degeneration is a translational platform in which to test devices, therapies, and/or technologies aimed at repairing damage to the shoulder.
Collapse
Affiliation(s)
- James Johnson
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Devin von Stade
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Daniel Regan
- Department of Microbiology, Immunology, & Pathology, Flint Animal Cancer Center, Fort Collins, CO, USA
| | - Jeremiah Easley
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Steven Dow
- Department of Microbiology, Immunology, & Pathology, Flint Animal Cancer Center, Fort Collins, CO, USA
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Tony Romeo
- Rothman Orthopaedic Institute, New York, NY, USA
| | - Ted Schlegel
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kirk McGilvray
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Lu V, Tennyson M, Zhang J, Khan W. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Tendon and Ligament Repair-A Systematic Review of In Vivo Studies. Cells 2021; 10:cells10102553. [PMID: 34685532 PMCID: PMC8533909 DOI: 10.3390/cells10102553] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Tendon and ligament injury poses an increasingly large burden to society. This systematic review explores whether mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) can facilitate tendon/ligament repair in vivo. On 26 May 2021, a systematic search was performed on PubMed, Web of Science, Cochrane Library, Embase, to identify all studies that utilised MSC-EVs for tendon/ligament healing. Studies administering EVs isolated from human or animal-derived MSCs into in vivo models of tendon/ligament injury were included. In vitro, ex vivo, and in silico studies were excluded, and studies without a control group were excluded. Out of 383 studies identified, 11 met the inclusion criteria. Data on isolation, the characterisation of MSCs and EVs, and the in vivo findings in in vivo models were extracted. All included studies reported better tendon/ligament repair following MSC-EV treatment, but not all found improvements in every parameter measured. Biomechanics, an important index for tendon/ligament repair, was reported by only eight studies, from which evidence linking biomechanical alterations to functional improvement was weak. Nevertheless, the studies in this review showcased the safety and efficacy of MSC-EV therapy for tendon/ligament healing, by attenuating the initial inflammatory response and accelerating tendon matrix regeneration, providing a basis for potential clinical use in tendon/ligament repair.
Collapse
Affiliation(s)
- Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Maria Tennyson
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (V.L.); (J.Z.)
| | - Wasim Khan
- Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence: ; Tel.: +44-(0)-7791-025554
| |
Collapse
|
17
|
Broomfield C, Meis N, Johnson J, Regan D, McGilvray K, Puttlitz C. Optimization of ovine bone decalcification for increased cellular detail: a parametric study. J Histotechnol 2021; 45:29-35. [PMID: 34382505 DOI: 10.1080/01478885.2021.1951053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There are many published methods of decalcifying bone for paraffin histology; however, the current literature lacks details regarding the processing of ovine tissue. Ovine bone tissue presents challenges, as samples are often denser and larger than other comparative animal models, thus increasing decalcification times. Trifluoroacetic Acid (TFAA) has previously been used to decalcify ovine bone samples for histological analysis. Unfortunately, TFAA is a strong acid and often results in loss of cellular detail, especially in the connected soft tissue. This is generally manifested as over staining with eosin, and a decrease in cellular features which impacts overall histological interpretation. It is well known that leaving tissue in acid for long periods degrades cellular detail; therefore, minimizing decalcification time is critical to accurately determine cellular morphology. Six decalcification solutions (8% TFAA, 20% TFAA, 8% formic acid, 20% formic acid, Formical-4, and XLCal, and three temperatures (room temperature, 30°C, 37°C), were examined to determine their effects on cellular detail in ovine vertebrae and humeral heads. These data clearly indicate that 20% formic acid at 30°C yielded better decalcification rates (2.6 d ± 0.9 d) and cellular detail (none to mild changes) for the vertebrae samples, and 20% formic acid at RT yielded the best cellular detail (none to minimal loss) for humerus samples with a moderate amount of time (6.5 d ± 1.7). These results should establish the optimal demineralization procedures for ovine bone used in scientific studies resulting in improved cellular detail while minimizing decalcification times.
Collapse
Affiliation(s)
- C Broomfield
- Orthopaedic Bioengineering Research Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - N Meis
- Orthopaedic Bioengineering Research Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - J Johnson
- Orthopaedic Bioengineering Research Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - D Regan
- Flint Animal Cancer Center, Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, CO, USA
| | - K McGilvray
- Orthopaedic Bioengineering Research Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - C Puttlitz
- Orthopaedic Bioengineering Research Lab, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Johnson J, von Stade D, Regan D, Easley J, Chow L, Dow S, Romeo T, Schlegel T, McGilvray K. Enthesis trauma as a means for the development of translatable chronic rotator cuff degeneration in an ovine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:741. [PMID: 34268354 PMCID: PMC8246224 DOI: 10.21037/atm-21-354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Untreated rotator cuff tears lead to irreversible tendon degeneration, resulting in unacceptable repair prognosis. The inability of current animal models of degenerated rotator cuff tendons to more fully emulate the manifestation and degree of pathology seen in humans with a previously torn rotator cuff tendon (s) significantly impairs the development of novel therapeutics. Therefore, the objective of this study was to develop a large-animal translational model of enthesis damage to the rotator cuff tendons to mimic the chronic degenerative changes that occur in patients that demonstrate clinical manifestations of tendinopathy. METHODS A partial enthesis tear model (i.e., sharp transection) in adult sheep was created by cutting the tendon fibers perpendicularly through the enthesis midpoint, while leaving the other portion of the tendon in-tact. To assess tendon integrity, non-destructive biomechanical tests were performed, followed by histopathological, histomorphological, and gene expression analysis. Samples of degenerated human rotator cuff tendons obtained from patients undergoing reverse total shoulder arthroplasty to use for comparative pathological analysis. RESULTS In the sheep model, transected tendons at all timepoints had significantly decreased mechanical properties. Histopathologic evaluation and Bonar scoring revealed that the tendons in sheep underwent degenerative changes similar in magnitude and manifestation as the degenerated human tendon samples. Furthermore, similar levels of collagen disorganization were noted between the 6 and 12-week ovine samples and the degenerated human samples. CONCLUSIONS These findings indicate that the new sheep model of rotator cuff injury reliably recapitulates the structural and cellular changes that occur clinically in humans with chronic rotator cuff tendon injuries and suggest that this new model is well suited to evaluation of new therapeutic interventions.
Collapse
Affiliation(s)
- James Johnson
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Devin von Stade
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Daniel Regan
- Flint Animal Cancer Center and Department of Microbiology, Immunology, & Pathology, CSU Flint Animal Cancer Center, Fort Collins, CO, USA
| | - Jeremiah Easley
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, Colorado State University, Ft. Collins, CO, USA
| | - Steven Dow
- Flint Animal Cancer Center and Department of Microbiology, Immunology, & Pathology, CSU Flint Animal Cancer Center, Fort Collins, CO, USA
- Department of Clinical Sciences, Center for Immune and Regenerative Medicine, Colorado State University, Ft. Collins, CO, USA
| | - Tony Romeo
- Rothman Orthopaedic Institute, New York, New York, USA
| | - Ted Schlegel
- Department of Orthopedics/University of Colorado School of Medicine, Aurora, CO, USA
| | - Kirk McGilvray
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
19
|
Lakhani A, Sharma E, Kapila A, Khatri K. Known data on applied regenerative medicine in tendon healing. Bioinformation 2021; 17:514-527. [PMID: 34602779 PMCID: PMC8450149 DOI: 10.6026/97320630017514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022] Open
Abstract
Tendons and ligaments are important structures in the musculoskeletal system. Ligaments connect various bones and provide stability in complex movements of joints in the knee. Tendon is made of dense connective tissue and transmits the force of contraction from muscle to bone. They are injured due to direct trauma in sports or roadside accidents. Tendon healing after repair is often poor due to the formation of fibro vascular scar tissues with low mechanical property. Regenerative techniques such as PRP (platelet-rich plasma), stem cells, scaffolds, gene therapy, cell sheets, and scaffolds help augment repair and regenerate tissue in this context. Therefore, it is of interest to document known data (repair process, tissue regeneration, mechanical strength, and clinical outcome) on applied regenerative medicine in tendon healing.
Collapse
Affiliation(s)
- Amit Lakhani
- Dr Br Ambedkar State Institute of Medical Sciences, Mohali Punjab, India
| | - Ena Sharma
- Maharishi Markandeshwar College of Dental Sciences and Hospital Mullana, Ambala, Haryana, India
| | | | - Kavin Khatri
- All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
20
|
Xie Y, Chen J, Celik H, Akkus O, King MW. Evaluation of an electrochemically aligned collagen yarn for textile scaffold fabrication. Biomed Mater 2021; 16:025001. [PMID: 33494084 DOI: 10.1088/1748-605x/abdf9e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen is the major component of the extracellular matrix in human tissues and widely used in the fabrication of tissue engineered scaffolds for medical applications. However, these forms of collagen gels and films have limitations due to their inferior strength and mechanical performance and their relatively fast rate of degradation. A new form of continuous collagen yarn has recently been developed for potential usage in fabricating textile tissue engineering scaffolds. In this study, we prepared the continuous electrochemical aligned collagen yarns from acid-soluble collagen that was extracted from rat tail tendons (RTTs) using 0.25 M acetic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Fourier transform infrared spectroscopy confirmed that the major component of the extracted collagen contained alpha 1 and alpha 2 chains and the triple helix structure of Type 1 collagen. The collagen solution was processed to monofilament yarns in continuous lengths by using a rotating electrode electrochemical compaction device. Exposing the non-crosslinked collagen yarns and the collagen yarns crosslinked with 1-ethyl-3-(-3-dimethyl-aminopropyl) carbodiimide hydrochloride to normal physiological hydrolytic degradation conditions showed that both yarns were able to maintain their tensile strength during the first 6 weeks of the study. Cardiosphere-derived cells showed significantly enhanced attachment and proliferation on the collagen yarns compared to synthetic polylactic acid filaments. Moreover, the cells were fully spread and covered the surface of the collagen yarns, which confirmed the superiority of collagen in terms of promoting cellular adhesion. The results of this work indicated that the aligned RTT collagen yarns are favorable for fabricating biotextile scaffolds and are encouraging for further studies of various textile structure for different tissue engineering applications.
Collapse
Affiliation(s)
- Yu Xie
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
21
|
Lim TK, Dorthé E, Williams A, D'Lima DD. Nanofiber Scaffolds by Electrospinning for Rotator Cuff Tissue Engineering. Chonnam Med J 2021; 57:13-26. [PMID: 33537215 PMCID: PMC7840345 DOI: 10.4068/cmj.2021.57.1.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Rotator cuff tears continue to be at risk of retear or failure to heal after surgical repair, despite the use of various surgical techniques, which stimulate development of novel scaffolding strategies. They should be able to address the known causes of failure after the conventional rotator cuff repair: (1) failure to reproduce the normal tendon healing process, (2) resultant failure to reproduce four zones of the enthesis, and (3) failure to attain sufficient mechanical strength after repair. Nanofiber scaffolds are suited for this application because they can be engineered to mimic the ultrastructure and properties of the native rotator cuff tendon. Among various methods for tissue-engineered nanofibers, electrospinning has recently been highlighted in the rotator cuff field. Electrospinning can create fibrous and porous structures that resemble natural tendon's extracellular matrix. Other advantages include the ability to create relatively large surface-to-volume ratios, the ability to control fiber size from the micro to the nano scale, and the flexibility of material choices. In this review, we will discuss the anatomical and mechanical features of the rotator cuff tendon, their potential impacts on improper healing after repair, and the current knowledge of the use of electrospinning for rotator cuff tissue engineering.
Collapse
Affiliation(s)
- Tae Kang Lim
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.,Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Erik Dorthé
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Austin Williams
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
22
|
Abstract
The shoulder is a complex joint composed mostly of static and dynamic capsuloligamentous structures and plays an important role in forelimb lameness. Its complex anatomy and biomechanics necessitate thorough examination and diagnostic work-up for accurate diagnosis. This article provides an updated review of common canine shoulder pathologies, including osteochondrosis, bicipital and supraspinatus tendinopathies, infraspinatus contracture, medial shoulder syndrome, and luxation.
Collapse
Affiliation(s)
- Rebecca Stokes
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Iowa State University, Vet Med, 1800 Christensen Drive, Ames, IA 50011, USA
| | - David Dycus
- Department of Orthopedic Surgery, Nexus Veterinary Bone & Joint Center, Baltimore, MD 21224, USA.
| |
Collapse
|
23
|
No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904511. [PMID: 31814177 DOI: 10.1002/adma.201904511] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Engineering synthetic scaffolds to repair and regenerate ruptured native tendon and ligament (T/L) tissues is a significant engineering challenge due to the need to satisfy both the unique biological and biomechanical properties of these tissues. Long-term clinical outcomes of synthetic scaffolds relying solely on high uniaxial tensile strength are poor with high rates of implant rupture and synovitis. Ideal biomaterials for T/L repair and regeneration need to possess the appropriate biological and biomechanical properties necessary for the successful repair and regeneration of ruptured tendon and ligament tissues.
Collapse
Affiliation(s)
- Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Miguel Castilho
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yogambha Ramaswamy
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW, 2006, Australia
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
24
|
Easley J, Johnson J, Regan D, Hackett E, Romeo AA, Schlegel T, Broomfield C, Puttlitz C, McGilvray K. Partial Infraspinatus Tendon Transection as a Means for the Development of a Translational Ovine Chronic Rotator Cuff Disease Model. Vet Comp Orthop Traumatol 2020; 33:212-219. [PMID: 32232814 DOI: 10.1055/s-0040-1701650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Rotator cuff tendon tears are the most common soft tissue injuries in the shoulder joint. Various animal models have been described for this condition, but all current translational animal models have inherent weaknesses in their ability to generate chronically degenerated rotator cuff tendons. The objective of this study was to evaluate a partial infraspinatus tendon transection model as a means of creating a chronically degenerated rotator cuff tendon in an ovine model and compare the injury characteristics of this model to those observed in human patients with severe chronic rotator cuff tendon injuries. STUDY DESIGN The infraspinatus tendons of six sheep were partially detached followed by capping of the detached medial section of the tendon with Gore-Tex. Human tissue samples of the supraspinatus tendon were harvested from patients undergoing primary reverse shoulder arthroplasty and served as positive controls of chronic rotator cuff tendinopathy. RESULTS Transected sheep tendons were characterized predominantly by an acute reactive and reparative pathological process as compared with the chronic degenerative changes observed in the human tendons. In contrast, the non-transected portion of the ovine tendon showed histological changes, which were more chronic and degenerative in nature when compared with the transected tendon. CONCLUSION Overall, histological features of the non-transected portion of ovine tendon were more similar to those observed in the chronic degenerated human tendon.
Collapse
Affiliation(s)
- Jeremiah Easley
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, Colorado, United States
| | - James Johnson
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, United States
| | - Daniel Regan
- Flint Animal Cancer Center and Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins, Colorado, United States
| | - Eileen Hackett
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, Colorado, United States
| | - Anthony A Romeo
- Rothman Orthopaedic Institute, New York, New York, United States
| | - Ted Schlegel
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Cecily Broomfield
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, United States
| | - Christian Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, United States
| | - Kirk McGilvray
- Orthopaedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
25
|
Easley J, Puttlitz C, Hackett E, Broomfield C, Nakamura L, Hawes M, Getz C, Frankle M, St Pierre P, Tashjian R, Cummings PD, Abboud J, Harper D, McGilvray K. A prospective study comparing tendon-to-bone interface healing using an interposition bioresorbable scaffold with a vented anchor for primary rotator cuff repair in sheep. J Shoulder Elbow Surg 2020; 29:157-166. [PMID: 31401128 DOI: 10.1016/j.jse.2019.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the biomechanical and histologic properties of rotator cuff repairs using a vented anchor attached to a bioresorbable interpositional scaffold composed of aligned PLGA (poly(l-lactide-co-glycoside)) microfibers in an animal model compared to standard anchors in an ovine model. METHODS Fifty-six (n = 56) skeletally mature sheep were randomly assigned to a repair of an acute infraspinatus tendon detachment using a innovative anchor-PLGA scaffold device (Treatment) or a similar anchor without the scaffold (Control). Animals were humanely euthanized at 7 and 12 weeks post repair. Histologic and biomechanical properties of the repairs were evaluated and compared. RESULTS The Treatment group had a significantly higher fibroblast count at 7 weeks compared to the Control group. The tendon bone repair distance, percentage perpendicular fibers, new bone formation at the tendon-bone interface, and collagen type III deposition was significantly greater for the Treatment group compared with the Control group at 12 weeks (P ≤ .05). A positive correlation was identified in the Treatment group between increased failure loads at 12 weeks and the following parameters: tendon-bone integration, new bone formation, and collagen type III. No statistically significant differences in biomechanical properties were identified between Treatment and Control Groups (P > .05). CONCLUSIONS Use of a vented anchor attached to a bioresorbable interpositional scaffold composed of aligned PLGA microfibers improves the histologic properties of rotator cuff repairs in a sheep model. Improved histology was correlated with improved final construct strength at the 12-week time point.
Collapse
Affiliation(s)
- Jeremiah Easley
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Christian Puttlitz
- Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Eileen Hackett
- Preclinical Surgical Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Cecily Broomfield
- Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Lucas Nakamura
- Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA
| | | | - Charles Getz
- Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark Frankle
- Florida Orthopaedic Institute, Shoulder and Elbow Service, Tampa, FL, USA; Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Patrick St Pierre
- Shoulder and Elbow Service, Desert Orthopedic Center, Eisenhower Health, Rancho Mirage, CA, USA
| | - Robert Tashjian
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Joseph Abboud
- The Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Kirk McGilvray
- Orthopedic Bioengineering Research Laboratory, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
26
|
Karuppaiah K, Sinha J. Scaffolds in the management of massive rotator cuff tears: current concepts and literature review. EFORT Open Rev 2019; 4:557-566. [PMID: 31598334 PMCID: PMC6771075 DOI: 10.1302/2058-5241.4.180040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Injuries to the rotator cuff (RC) are common and could alter shoulder kinematics leading to arthritis. Synthetic and biological scaffolds are increasingly being used to bridge gaps, augment RC repair and enhance healing potential. Our review evaluates the clinical applications, safety and outcome following the use of scaffolds in massive RC repair. A search was performed using EBSCO-Hosted Medline, CINAHL, Cochrane and PubMed using various combinations of the keywords ‘rotator cuff’, ‘scaffold’, ‘biological scaffold’, ‘massive rotator cuff tear’ ‘superior capsular reconstruction’ and ‘synthetic scaffold’ between 1966 and April 2018. The studies that were most relevant to the research question were selected. All articles relevant to the subject were retrieved, and their bibliographies hand searched. Synthetic, biosynthetic and biological scaffolds are increasingly being used for the repair/reconstruction of the rotator cuff. Allografts and synthetic grafts have revealed more promising biomechanical and early clinical results than xenografts. The retear rates and local inflammatory reactions were alarmingly high in earlier xenografts. However, this trend has reduced considerably with newer versions. Synthetic patches have shown lower retear rates and better functional outcome than xenografts and control groups. The use of scaffolds in the treatment of rotator cuff tear continues to progress. Analysis of the current literature supports the use of allografts and synthetic grafts in the repair of massive cuff tears in reducing the retear rate and to provide good functional outcome. Though earlier xenografts have been fraught with complications, results from newer ones are promising. Prospective randomized controlled trials from independent centres are needed before widespread use can be recommended.
Cite this article: EFORT Open Rev 2019;4:557-566. DOI: 10.1302/2058-5241.4.180040
Collapse
Affiliation(s)
- Karthik Karuppaiah
- Upper Limb Unit, Department of Orthopaedic Surgery, King's College Hospital, London, UK
| | - Joydeep Sinha
- Upper Limb Unit, Department of Orthopaedic Surgery, King's College Hospital, London, UK
| |
Collapse
|
27
|
Saveh-Shemshaki N, S.Nair L, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater 2019; 94:64-81. [PMID: 31128319 DOI: 10.1016/j.actbio.2019.05.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The rotator cuff consists of a cuff of soft tissue responsible for rotating the shoulder. Rotator cuff tendon tears are responsible for a significant source of disability and pain in the adult population. Most rotator cuff tendon tears occur at the bone-tendon interface. Tear size, patient age, fatty infiltration of muscle, have a major influence on the rate of retear after surgical repair. The high incidence of retears (up to 94% in some studies) after surgery makes rotator cuff injuries a critical musculoskeletal problem to address. The limitations of current treatments motivate regenerative engineering approaches for rotator cuff regeneration. Various fiber-based matrices are currently being investigated due to their structural similarity with native tendons and their ability to promote regeneration. This review will discuss the current approaches for rotator cuff regeneration, recent advances in fabrication and enhancement of nanofiber-based matrices and the development and use of complex nano/microstructures for rotator cuff regeneration. STATEMENT OF SIGNIFICANCE: Regeneration paradigms for musculoskeletal tissues involving the rotator cuff of the shoulder have received great interest. Novel technologies based on nanomaterials have emerged as possible robust solutions for rotator cuff injury and treatment due to structure/property relationships. The aim of the review submitted is to comprehensively describe and evaluate the development and use of nano-based material technologies for applications to rotator cuff tendon healing and regeneration.
Collapse
|
28
|
Ingrassia T, Lombardo B, Nigrelli V, Ricotta V, Nalbone L, D'Arienzo A, D'Arienzo M, Porcellini G. Influence of sutures configuration on the strength of tendon-patch joints for rotator cuff tears treatment. Injury 2019; 50 Suppl 2:S18-S23. [PMID: 30739762 DOI: 10.1016/j.injury.2019.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Massive rotator cuff tears are common in the aging population. The incidence of failed rotator cuff repairs is still quite high, especially in the treatment of full-thickness tears or revision repairs. In this context, natural and synthetic meshes can be used as augmentation scaffolds or as devices to close the gap between a retracted tendon and the bone. The purpose of this work is to evaluate the ultimate tensile strength of different tendon-patch joints in order to consider their use in the treatment of massive cuff tears. MATERIALS AND METHODS Porcine tendons and a synthetic low-density polypropylene mesh have been used. A preliminary study on the tensile strength of tendons and patches has been performed. Different patch-tendon joints have been studied by modifying the number and the layout of the sutures. For every joint, the tensile test, performed through an electromechanical machine, has been repeated at least twice to obtain reliable data. RESULTS Experimental tensile tests on tendons and patches have given good results with very low dispersion data. Mean values of the calculated ultimate tensile stresses are, respectively, about 34 MPa and 16 MPa for tendons and patches. As regards the sutures arrangement, the staggered layout gave, for all joints, a higher tensile strength than the regular (aligned) one. Different ultimate tensile stress values, depending on the sutures number and layout, have been calculated for the joints. CONCLUSION Synthetic patches could be an interesting option to repair massive cuff tears and to improve, in a significant way, pain, range of motion and strength at time 0, so reducing the rehabilitation time. Obtained results demonstrated that joints with a suitable number and layout of sutures could ensure very good mechanical performances. The failure load of the tendon-patch joint, in fact, is higher than the working load on a healthy tendon.
Collapse
Affiliation(s)
- Tommaso Ingrassia
- Dipartimento di Ingegneria - Università degli Studi di Palermo, Palermo, Italy.
| | - Benedetto Lombardo
- Dipartimento di Ingegneria - Università degli Studi di Palermo, Palermo, Italy
| | - Vincenzo Nigrelli
- Dipartimento di Ingegneria - Università degli Studi di Palermo, Palermo, Italy
| | - Vito Ricotta
- Dipartimento di Ingegneria - Università degli Studi di Palermo, Palermo, Italy
| | - Lorenzo Nalbone
- Clinica Ortopedica e Traumatologica del Policlinico 'Paolo Giaccone' - Università degli Studi di Palermo, Palermo, Italy
| | | | - Michele D'Arienzo
- Clinica Ortopedica e Traumatologica del Policlinico 'Paolo Giaccone' - Università degli Studi di Palermo, Palermo, Italy
| | | |
Collapse
|
29
|
Liu Q, Yu Y, Reisdorf RL, Qi J, Lu CK, Berglund LJ, Amadio PC, Moran SL, Steinmann SP, An KN, Gingery A, Zhao C. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model. Biomaterials 2019; 192:189-198. [PMID: 30453215 DOI: 10.1016/j.biomaterials.2018.10.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Reducing rotator cuff failure after repair remains a challenge due to suboptimal tendon-to-bone healing. In this study we report a novel biomaterial with engineered tendon-fibrocartilage-bone composite (TFBC) and bone marrow-derived mesenchymal stem cell sheet (BMSCS); this construct was tested for augmentation of rotator cuff repair using a canine non-weight-bearing (NWB) model. A total of 42 mixed-breed dogs were randomly allocated to 3 groups (n = 14 each). Unilateral infraspinatus tendon underwent suture repair only (control); augmentation with engineered TFBC alone (TFBC), or augmentation with engineered TFBC and BMSCS (TFBC + BMSCS). Histomorphometric analysis and biomechanical testing were performed at 6 weeks after surgery. The TFBC + BMSCS augmented repairs demonstrated superior histological scores, greater new fibrocartilage formation and collagen fiber organization at the tendon-bone interface compared with the controls. The ultimate failure load and ultimate stress were 286.80 ± 45.02 N and 4.50 ± 1.11 MPa for TFBC + BMSCS group, 163.20 ± 61.21 N and 2.60 ± 0.97 MPa for control group (TFBC + BMSCS vs control, P = 1.12E-04 and 0.003, respectively), 206.10 ± 60.99 N and 3.20 ± 1.31 MPa for TFBC group (TFBC + BMSCS vs TFBC, P = 0.009 and 0.045, respectively). In conclusion, application of an engineered TFBC and BMSCS can enhance rotator cuff healing in terms of anatomic structure, collagen organization and biomechanical strength in a canine NWB model. Combined TFBC and BMSCS augmentation is a promising strategy for rotator cuff tears and has a high potential impact on clinical practice.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yinxian Yu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jun Qi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chun-Kuan Lu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kai-Nan An
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
30
|
Graham JG, Wang ML, Rivlin M, Beredjiklian PK. Biologic and mechanical aspects of tendon fibrosis after injury and repair. Connect Tissue Res 2019; 60:10-20. [PMID: 30126313 DOI: 10.1080/03008207.2018.1512979] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendon injuries of the hand that require surgical repair often heal with excess scarring and adhesions to adjacent tissues. This can compromise the natural gliding mechanics of the flexor tendons in particular, which operate within a fibro-osseous tunnel system similar to a set of pulleys. Even combining the finest suture repair techniques with optimal hand therapy protocols cannot ensure predictable restoration of hand function in these cases. To date, the majority of research regarding tendon injuries has revolved around the mechanical aspects of the surgical repair (i.e. suture techniques) and postoperative rehabilitation. The central principles of treatment gleaned from this literature include using a combination of core and epitendinous sutures during repair and initiating motion early on in hand therapy to improve tensile strength and limit adhesion formation. However, it is likely that the best clinical solution will utilize optimal biological modulation of the healing response in addition to these core strategies and, recently, the research in this area has expanded considerably. While there are no proven additive biological agents that can be used in clinical practice currently, in this review, we analyze the recent literature surrounding cytokine modulation, gene and cell-based therapies, and tissue engineering, which may ultimately lead to improved clinical outcomes following tendon injury in the future.
Collapse
Affiliation(s)
- Jack G Graham
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA
| | - Mark L Wang
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| | - Michael Rivlin
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| | - Pedro K Beredjiklian
- a Department of Orthopaedic Surgery, Sidney Kimmel Medical School , Thomas Jefferson University , Philadelphia , PA , USA.,b Hand Surgery Division , The Rothman Institute at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|
31
|
Abstract
Healing rates after rotator cuff repair vary widely. New technologies seek to improve tendon to bone healing with the addition of platelet-rich plasma, stem cells, and biological and synthetic grafts. Platelet-rich plasma and mesenchymal stem cells are used to help create a favorable environment for tendon to bone healing, and grafts and scaffolds provide structural support for repair. The efficacy of platelet-rich plasma and stem cell products seems to be variable, with different products offering different levels of cytokine and growth factors. Scaffold material is also variable with a wide range of synthetic and biological grafts.
Collapse
Affiliation(s)
- Anand M Murthi
- Department of Orthopaedics, MedStar Union Memorial Hospital, 3333 North Calvert Street, Suite 400, Baltimore, MD 21218, USA.
| | - Manesha Lankachandra
- Department of Orthopaedics, MedStar Union Memorial Hospital, 3333 North Calvert Street, Suite 400, Baltimore, MD 21218, USA
| |
Collapse
|
32
|
Shah SS, Liang H, Pandit S, Parikh Z, Schwartz JA, Goldstein T, Lavelle LP, Datta A, Grande DA. Optimization of Degradation Profile for New Scaffold in Cartilage Repair. Cartilage 2018; 9:438-449. [PMID: 28399641 PMCID: PMC6139589 DOI: 10.1177/1947603517700954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective To establish whether a novel biomaterial scaffold with tunable degradation profile will aid in cartilage repair of chondral defects versus microfracture alone in vitro and in a rat model in vivo. Design In vitro-Short- and long-term degradation scaffolds were seeded with culture expanded articular chondrocytes or bone marrow mesenchymal stem cells. Cell growth and differentiation were evaluated with cell morphological studies and gene expression studies. In vivo-A microfracture rat model was used in this study to evaluate the repair of cartilage and subchondral bone with the contralateral knee serving as the empty control. The treatment groups include (1) empty osteochondral defect, (2) polycaprolactone copolymer-based polyester polyurethane-urea (PSPU-U) caffold short-term degradative profile, and (3) PSPU-U scaffold long-term degradative profile. After placement of the scaffold, the rats were then allowed unrestricted activity as tolerated, and histological analyses were performed at 4, 8, and 16 weeks. The cartilage defect was measured and compared with the contralateral control side. Results In vitro-Long-term scaffolds showed statistically significant higher levels of aggrecan and type II collagen expression compared with short-term scaffolds. In vivo-Within 16 weeks postimplantation, there was new subchondral bone formation in both scaffolds. Short-term scaffolds had a statistically significant increase in defect filling and better qualitative histologic fill compared to control. Conclusions The PSPU short-term degradation scaffold may aid in cartilage repair by ultimately incorporating the scaffold into the microfracture procedure.
Collapse
Affiliation(s)
- Sarav S. Shah
- Department of Orthopaedic Surgery, Hofstra-Northwell School of Medicine, New Hyde Park, NY, USA
| | - Haixiang Liang
- Orthopaedic Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Sandeep Pandit
- Department of Orthopaedic Surgery, Hofstra-Northwell School of Medicine, New Hyde Park, NY, USA
| | - Zalak Parikh
- Orthopaedic Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - John A. Schwartz
- Orthopaedic Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Todd Goldstein
- Orthopaedic Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | - Daniel A. Grande
- Department of Orthopaedic Surgery, Hofstra-Northwell School of Medicine, New Hyde Park, NY, USA,Orthopaedic Research Laboratory, Feinstein Institute for Medical Research, Manhasset, NY, USA,Daniel A. Grande, The Feinstein Institute for Medical Research, Northwell Health System, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
33
|
Lemmon EA, Locke RC, Szostek AK, Ganji E, Killian ML. Partial-width injuries of the rat rotator cuff heal with fibrosis. Connect Tissue Res 2018; 59:437-446. [PMID: 29874950 PMCID: PMC6324170 DOI: 10.1080/03008207.2018.1485666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023]
Abstract
PURPOSE Identify the healing outcomes following a partial-width, full-thickness injury to the rotator cuff tendon-bone attachment and establish if the adult attachment can regenerate the morphology of the healthy attachment. HYPOTHESIS We hypothesized that a partial-width injury to the attachment would heal via fibrosis and bone remodeling, resulting in increased cellularity and extra-cellular matrix deposition, reduced bone volume (BV), osteoclast presence, and decreased collagen organization compared to shams. MATERIALS AND METHODS A partial-width injury was made using a biopsy punch at the center one-third of the rat infraspinatus attachment. Contralateral limbs underwent a sham operation. Rats were sacrificed at 3 and 8 weeks after injury for analyses. Analyses performed at each time point included cellularity (Hematoxylin & Eosin), ECM deposition (Masson's Trichrome), BV (micro-computed tomography; microCT), osteoclast activity (Tartrate Resistant Acid Phosphatase; TRAP), and collagen fibril organization (Picrosirius Red). Injured and sham shoulders were compared at both 3 and 8 weeks using paired, two-way ANOVAs with repeated measures (Sidak's correction for multiple comparisons). RESULTS Cellularity and ECM deposition increased at both 3 and 8 weeks compared to sham contralateral attachments. BV decreased and osteoclast presence increased at both 3 and 8 weeks compared to sham contralateral limbs. Collagen fibril organization was reduced at 3 weeks after injury compared to 3-week sham attachments. CONCLUSIONS These findings suggest that a partial-width injury to the rotator cuff attachment does not fully regenerate the native structure of the healthy attachment. The injury model healed via scar-like fibrosis and did not propagate into a full-width tear after 8 weeks of healing.
Collapse
Affiliation(s)
- Elisabeth A Lemmon
- a Department of Animal and Food Sciences and Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Ryan C Locke
- b Department of Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Adrianna K Szostek
- a Department of Animal and Food Sciences and Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Elahe Ganji
- c Department of Mechanical Engineering and Biomedical Engineering , University of Delaware , Newark , DE , USA
| | - Megan L Killian
- b Department of Biomedical Engineering , University of Delaware , Newark , DE , USA
| |
Collapse
|
34
|
Derwin KA, Galatz LM, Ratcliffe A, Thomopoulos S. Enthesis Repair: Challenges and Opportunities for Effective Tendon-to-Bone Healing. J Bone Joint Surg Am 2018; 100:e109. [PMID: 30106830 PMCID: PMC6133216 DOI: 10.2106/jbjs.18.00200] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
On May 22, 2017, the National Institutes of Health (NIH)/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) hosted a roundtable on "Innovative Treatments for Enthesis Repair." A summary of the roundtable discussion, as well as a list of the extramural participants, can be found at https://www.niams.nih.gov/about/meetings-events/roundtables/roundtable-innovative-treatments-enthesis-repair. This paper reviews the challenges and opportunities for developing effective treatment strategies for enthesis repair that were identified at the roundtable discussion.
Collapse
Affiliation(s)
- Kathleen A. Derwin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio,E-mail address for K.A. Derwin:
| | - Leesa M. Galatz
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, NY
| |
Collapse
|
35
|
Guo J, Ning C, Liu X. Bioactive calcium phosphate silicate ceramic surface-modified PLGA for tendon-to-bone healing. Colloids Surf B Biointerfaces 2018; 164:388-395. [DOI: 10.1016/j.colsurfb.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
|
36
|
Charles MD, Christian DR, Cole BJ. The Role of Biologic Therapy in Rotator Cuff Tears and Repairs. Curr Rev Musculoskelet Med 2018; 11:150-161. [PMID: 29411322 DOI: 10.1007/s12178-018-9469-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to establish the foundation of the major biologic adjuvants to rotator cuff repairs and review recent scientific findings. RECENT FINDINGS Platelet-rich plasma (PRP) overall has no significant impact on functional outcomes and repair integrity, but may be more advantageous in small to medium tears. Further studies should focus on leukocyte-rich versus poor preparations and the use of PRP in patients that are high risk for repair failure. Biologic and synthetic patches or augments provide mechanical stability for large and massive rotator cuff tears and decrease re-tear rates. Mesenchymal stem cells have demonstrated improved healing rates without an impact on outcomes. Cytokines and growth factors show promise in animal models, but require human trials to further evaluate. In massive or revision repairs, allograft or synthetic patch augmentation should be considered. Platelet-rich plasma may have benefit in smaller tears. Further studies are needed to evaluate the value of mesenchymal stem cells and various cytologic chemical signals.
Collapse
Affiliation(s)
- Michael D Charles
- Department of Orthopaedics, Rush University Medical Center, Chicago, IL, USA
| | - David R Christian
- Department of Orthopaedics, Rush University Medical Center, Chicago, IL, USA
| | - Brian J Cole
- Department of Orthopaedics, Rush University Medical Center, Chicago, IL, USA. .,, Chicago, USA.
| |
Collapse
|
37
|
Narayanan G, Nair LS, Laurencin CT. Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomater Sci Eng 2018; 4:751-786. [PMID: 33418763 DOI: 10.1021/acsbiomaterials.7b00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotator cuff tears often heal poorly, leading to re-tears after repair. This is in part attributed to the low proliferative ability of the resident cells (tendon fibroblasts and tendon-stem cells) upon injury to the rotator cuff tissue and the low vascularity of the tendon insertion. In addition, surgical outcomes of current techniques used in clinical settings are often suboptimal, leading to the formation of neo-tissue with poor biomechanics and structural characteristics, which results in re-tears. This has prompted interest in a new approach, which we term as "Regenerative Engineering", for regenerating rotator cuff tendons. In the Regenerative Engineering paradigm, roles played by stem cells, scaffolds, growth factors/small molecules, the use of local physical forces, and morphogenesis interplayed with clinical surgery techniques may synchronously act, leading to synergistic effects and resulting in successful tissue regeneration. In this regard, various cell sources such as tendon fibroblasts and adult tissue-derived stem cells have been isolated, characterized, and investigated for regenerating rotator cuff tendons. Likewise, numerous scaffolds with varying architecture, geometry, and mechanical characteristics of biologic and synthetic origin have been developed. Furthermore, these scaffolds have been also fabricated with biochemical cues (growth factors and small molecules), facilitating tissue regeneration. In this Review, various strategies to regenerate rotator cuff tendons using stem cells, advanced materials, and factors in the setting of physical forces under the Regenerative Engineering paradigm are described.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
38
|
Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm 2018; 544:358-371. [PMID: 29317260 DOI: 10.1016/j.ijpharm.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
Abstract
The high incidence of degenerative tears and prevalence of retears (20-95%) after surgical repair makes rotator cuff injuries a significant health problem. This high retear rate is attributed to the failure of the repaired tissue to regenerate the native tendon-to-bone insertion (enthesis). Biological augmentation of surgical repair such as autografts, allografts, and xenografts are confounded by donor site morbidity, immunogenicity, and disease transmission, respectively. In contrast, these risks may be alleviated via growth factor therapy, which can actively influence the healing environment to promote functional repair. Several challenges have to be overcome before growth factor delivery can translate into clinical practice such as the selection of optimal growth factor(s) or combination, identification of the most efficient stage and duration of delivery, and the design considerations for the delivery device. Emerging insight into the injury-repair microenvironment and our understanding of growth factor mechanisms in healing are informing the design of advanced delivery scaffolds to effectively treat rotator cuff tears. Here, we review potential growth factor candidates, design parameters and material selection for growth factor delivery, innovative and dynamic delivery scaffolds, and novel therapeutic targets from tendon and developmental biology for the structural and functional healing of rotator cuff repair.
Collapse
|
39
|
Kim JH, Oh SH, Min HK, Lee JH. Dual growth factor-immobilized asymmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res A 2017; 106:115-125. [PMID: 28880464 DOI: 10.1002/jbm.a.36212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018.
Collapse
Affiliation(s)
- Joong-Hyun Kim
- Department of Nanobiomedical Science, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea.,Department of Periodontology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, 567 Baekjedae Ro, Deokjin Gu, Jeonju, 54896, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea.,Department of Pharmaceutical Engineering, Dankook University, 119 Dandae Ro, Dongnam Gu, Cheonan, 31116, Republic of Korea
| | - Hyun Ki Min
- Department of Advanced Materials and Chemical Engineering, Hannam University, 1646 Yuseong Daero, Yuseong Gu, Daejeon, 34054, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, 1646 Yuseong Daero, Yuseong Gu, Daejeon, 34054, Republic of Korea
| |
Collapse
|
40
|
An Update on Scaffold Devices for Rotator Cuff Repair. TECHNIQUES IN SHOULDER AND ELBOW SURGERY 2017. [DOI: 10.1097/bte.0000000000000122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Zhao S, Su W, Shah V, Hobson D, Yildirimer L, Yeung KWK, Zhao J, Cui W, Zhao X. Biomaterials based strategies for rotator cuff repair. Colloids Surf B Biointerfaces 2017. [PMID: 28633121 DOI: 10.1016/j.colsurfb.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tearing of the rotator cuff commonly occurs as among one of the most frequently experienced tendon disorders. While treatment typically involves surgical repair, failure rates to achieve or sustain healing range from 20 to 90%. The insufficient capacity to recover damaged tendon to heal to the bone, especially at the enthesis, is primarily responsible for the failure rates reported. Various types of biomaterials with special structures have been developed to improve tendon-bone healing and tendon regeneration, and have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects. In this review, we first give a brief introduction of the anatomy of the rotator cuff and then discuss various design strategies to augment rotator cuff repair. Furthermore, we highlight current biomaterials used for repair and their clinical applications as well as the limitations in the literature. We conclude this article with challenges and future directions in designing more advanced biomaterials for augmentation of rotator cuff repair.
Collapse
Affiliation(s)
- Song Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Vishva Shah
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Divia Hobson
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Lara Yildirimer
- Barnet General Hospital, Royal Free NHS Trust Hospital, Wellhouse Lane, Barnet EN5 3DJ, London, UK
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Wenguo Cui
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, 708 Renmin Rd., Suzhou, Jiangsu 215006, China.
| | - Xin Zhao
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
42
|
Rothrauff BB, Lauro BB, Yang G, Debski RE, Musahl V, Tuan RS. Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering. Tissue Eng Part A 2017; 23:378-389. [PMID: 28071988 PMCID: PMC5444507 DOI: 10.1089/ten.tea.2016.0319] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022] Open
Abstract
Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.
Collapse
Affiliation(s)
- Benjamin B. Rothrauff
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian B. Lauro
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania
| | - Guang Yang
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania
| | - Richard E. Debski
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania
- Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, Pittsburgh, Pennsylvania
| | - Volker Musahl
- Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania
- Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, Pittsburgh, Pennsylvania
| | - Rocky S. Tuan
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Biologic and Synthetic Grafts in the Reconstruction of Large to Massive Rotator Cuff Tears. J Am Acad Orthop Surg 2016; 24:823-828. [PMID: 27768610 PMCID: PMC7322565 DOI: 10.5435/jaaos-d-15-00229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rotator cuff injuries are common in both young and elderly patients. Despite improvements in instrumentation and surgical techniques, the failure rates following tendon reconstruction remain unacceptably high. To improve outcomes, graft patches have been developed to provide mechanical strength and to furnish a scaffold for biologic growth across the delicate tendon-bone junction. Although no patch effectively re-creates the structured, highly organized system of prenatal tendon development, augmenting rotator cuff repair may help restore native tendon-to-bone attachment while reproducing the mechanical and biologic properties of native tendon. An understanding of biologically and synthetically derived grafts, along with knowledge of the preliminary data available regarding their combined use with growth factors and stem cells, is needed to improve management and treatment outcomes. The current literature has not been consistent in showing patch augmentation to be beneficial over traditional repair, but novel scaffolding materials may help facilitate rotator cuff tendon repair that is histologically and biomechanically comparable to native tendon.
Collapse
|
45
|
Platelet-derived growth factor-BB-immobilized asymmetrically porous membrane for enhanced rotator cuff tendon healing. Tissue Eng Regen Med 2016; 13:568-578. [PMID: 30603438 DOI: 10.1007/s13770-016-9120-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022] Open
Abstract
Rotator cuff tear is a common musculoskeletal disease that often requires surgical repair. Despite of recent advances in surgical techniques, the re-tear rate of the rotator cuff tendon is very high. In this study, a platelet-derived growth factor-BB (PDGF-BB)-immobilized asymmetrically porous membrane was fabricated to investigate the feasibility for enhancing rotator cuff tendon regeneration through the membrane. PDGF-BB is recognized to promote tendon regeneration. The asymmetrically porous membrane was fabricated by polycaprolactone and Pluronic F127 using an immersion precipitation technique, which can allow selective permeability (preventing scar tissue invasion into defect region but allowing permeation of oxygen/nutrients) and incorporation of bioactive molecules (e.g., PDGF-BB) via heparin binding. The PDGF-BB immobilized on the membrane was released in a sustained manner over 42 days. In an animal study using Sprague-Dawley rats, the PDGF-BB-immobilized membrane group showed significantly greater regeneration of rotator cuff tendon in histological and biomechanical analyses compared with the groups of control (suturing) and membrane without PDGF-BB immobilization. The enhancing regeneration of rotator cuff tendon of the PDGF-BB-immobilized membrane may be caused from the synergistic effect of the asymmetrically porous membrane with unique properties (selective permeability and hydrophilicity) as a scaffold for guided tendon regeneration and PDGF-BB sustainedly released from the membrane.
Collapse
|
46
|
Lebaschi A, Deng XH, Zong J, Cong GT, Carballo CB, Album ZM, Camp C, Rodeo SA. Animal models for rotator cuff repair. Ann N Y Acad Sci 2016; 1383:43-57. [DOI: 10.1111/nyas.13203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Amir Lebaschi
- Tissue Engineering; Repair, and Regeneration Program
| | | | - Jianchun Zong
- Tissue Engineering; Repair, and Regeneration Program
| | | | | | - Zoe M. Album
- Tissue Engineering; Repair, and Regeneration Program
| | - Christopher Camp
- Tissue Engineering; Repair, and Regeneration Program
- Sports Medicine and Shoulder Service; Hospital for Special Surgery; New York New York
| | - Scott A. Rodeo
- Tissue Engineering; Repair, and Regeneration Program
- Sports Medicine and Shoulder Service; Hospital for Special Surgery; New York New York
| |
Collapse
|
47
|
Dyrna F, Herbst E, Hoberman A, Imhoff AB, Schmitt A. Stem cell procedures in arthroscopic surgery. Eur J Med Res 2016; 21:29. [PMID: 27411303 PMCID: PMC4944463 DOI: 10.1186/s40001-016-0224-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022] Open
Abstract
The stem cell as the building block necessary for tissue reparation and homeostasis plays a major role in regenerative medicine. Their unique property of being pluripotent, able to control immune process and even secrete a whole army of anabolic mediators, draws interest. While new arthroscopic procedures and techniques involving stem cells have been established over the last decade with improved outcomes, failures and dissatisfaction still occur. Therefore, there is increasing interest in ways to improve the healing response. MSCs are particularly promising for this task given their regenerative potential. While methods of isolating those cells are no longer poses a challenge, the best way of application is not clear. Several experiments in the realm of basic science and animal models have recently been published, addressing this issue, yet the application in clinical practice has lagged. This review provides an overview addressing the current standing of MSCs in the field of arthroscopic surgery.
Collapse
Affiliation(s)
- Felix Dyrna
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Elmar Herbst
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Alexander Hoberman
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA
| | - Andreas B Imhoff
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas Schmitt
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
48
|
|
49
|
Aibibu D, Hild M, Wöltje M, Cherif C. Textile cell-free scaffolds for in situ tissue engineering applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:63. [PMID: 26800694 PMCID: PMC4723636 DOI: 10.1007/s10856-015-5656-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 05/12/2023]
Abstract
In this article, the benefits offered by micro-fibrous scaffold architectures fabricated by textile manufacturing techniques are discussed: How can established and novel fiber-processing techniques be exploited in order to generate templates matching the demands of the target cell niche? The problems related to the development of biomaterial fibers (especially from nature-derived materials) ready for textile manufacturing are addressed. Attention is also paid on how biological cues may be incorporated into micro-fibrous scaffold architectures by hybrid manufacturing approaches (e.g. nanofiber or hydrogel functionalization). After a critical review of exemplary recent research works on cell-free fiber based scaffolds for in situ TE, including clinical studies, we conclude that in order to make use of the whole range of favors which may be provided by engineered fibrous scaffold systems, there are four main issues which need to be addressed: (1) Logical combination of manufacturing techniques and materials. (2) Biomaterial fiber development. (3) Adaption of textile manufacturing techniques to the demands of scaffolds for regenerative medicine. (4) Incorporation of biological cues (e.g. stem cell homing factors).
Collapse
Affiliation(s)
- Dilbar Aibibu
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany.
| | - Martin Hild
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| | - Michael Wöltje
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| | - Chokri Cherif
- Technische Universität Dresden, Fakultät Maschinenwesen, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, 01062, Dresden, Germany
| |
Collapse
|
50
|
Decellularized and Engineered Tendons as Biological Substitutes: A Critical Review. Stem Cells Int 2016; 2016:7276150. [PMID: 26880985 PMCID: PMC4736572 DOI: 10.1155/2016/7276150] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/10/2015] [Indexed: 12/18/2022] Open
Abstract
Tendon ruptures are a great burden in clinics. Finding a proper graft material as a substitute for tendon repair is one of the main challenges in orthopaedics, for which the requirement of a biological scaffold would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon-derived matrix increasingly represents an interesting approach to treat tendon ruptures. We analyzed in vitro and in vivo studies focused on the development of efficient protocols for the decellularization and for the cell reseeding of the tendon matrix to obtain medical devices for tendon substitution. Our review considered also the proper tendon source and preclinical animal models with the aim of entering into clinical trials. The results highlight a wide panorama in terms of allogenic or xenogeneic tendon sources, specimen dimensions, physical or chemical decellularization techniques, and the cell type variety for reseeding from terminally differentiated to undifferentiated mesenchymal stem cells and their static or dynamic culture employed to generate implantable constructs tested in different animal models. We try to identify the most efficient approach to achieve an optimal biological scaffold for biomechanics and intrinsic properties, resembling the native tendon and being applicable in clinics in the near future, with particular attention to the Achilles tendon substitution.
Collapse
|