1
|
Chen T, Wu X, Li X, Shi J, Zhu Y, Zhou H, Zhuang Y, Sun H, Jiang W, Liu Y. A Randomized Controlled Trial Evaluating Efficacy and Complications of Low-Dose rhBMP-2 for Anterior Cervical Diskectomy and Fusion. Neurosurgery 2025:00006123-990000000-01589. [PMID: 40265894 DOI: 10.1227/neu.0000000000003461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/07/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to assess the effectiveness and safety of rhBMP-2 compared with iliac bone graft in anterior cervical diskectomy and fusion (ACDF) for cervical degeneration disease. METHODS In our study, a total of 1100 patients who underwent 1- or 2-level ACDF procedures between 2013 and 2018 at 6 participating centers in China were included. The patients were divided into 2 groups: the rhBMP-2 group and the iliac crest bone graft group. A dosage of 0.5 mg of rhBMP-2 per level was used in the ACDF procedure. Perioperative parameters such as blood loss, operation time, and complications were recorded. Clinical indices were also investigated. Postoperative plain radiographs were taken at 3 days, 1, 3, 6, and 12 months, and the patients were followed up for a minimum of 5 years. RESULTS Both the BMP group and the iliac crest bone graft group had similar preoperative baseline data. There was a statistically significant difference (P < .05) in estimated blood loss between the 2 groups. The fusion rate showed a significant difference at the 3-month follow-up but no difference at 6 months after surgery. There were no significant differences in Visual Analog Scale or Japanese Orthopedic Association scores between the 2 groups (P > .05). The incidence and severity of dysphagia in the 2 groups were also not significantly different (P > .05). Prevertebral soft tissue thickness measurements at each cervical level showed a significant difference between the 2 groups at 3 days and 1 month. The symptoms of dysphagia and prevertebral soft tissue swelling gradually disappeared during the subsequent follow-up periods. CONCLUSION Low-dose rhBMP-2 can be used as a substitute for autologous bone transplantation to promote cervical spine fusion and meet the fusion requirements.
Collapse
Affiliation(s)
- Tangyiheng Chen
- Department of Orthopaedic Surgery, Fourth Affiliated Hospital of Soochow University (Dushu Lake Hospital Affiliated to Soochow University), Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuefeng Li
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jinhui Shi
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hong Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhuang
- Department of Orthopaedic Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Han Sun
- Department of Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, Fourth Affiliated Hospital of Soochow University (Dushu Lake Hospital Affiliated to Soochow University), Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, Fourth Affiliated Hospital of Soochow University (Dushu Lake Hospital Affiliated to Soochow University), Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Das S, Thakur A, Datta A, Sahoo A, Bandyopadhyay S, Sah AK. Advances in Regenerative Medicine for Orthopedic Injuries: A Comprehensive Review. Cureus 2025; 17:e79860. [PMID: 40166527 PMCID: PMC11956119 DOI: 10.7759/cureus.79860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Orthopedics is one field that greatly benefits from the new ideas provided by regenerative medicine. This review pulls together the most recent publications involving stem cell therapy, platelet-rich plasma, growth factor, gene therapy, tissue engineering, stem cell-derived extracellular vesicles, and other regenerative technologies in the context of bone, cartilage, tendon, and ligament healing. Recent studies show that these new therapies can alter cell development, division, and production of fiber and ground substance to remodel tissues. Nevertheless, the clinical application has several issues such as the standardization of cell procurement and preparation, the control of cytokine/gene delivery, the revascularization of tissues, and the requirements of large samples, positively controlled clinical trials. More research must be conducted to overcome such barriers and make practicing more applicable in real life.
Collapse
Affiliation(s)
- Samyabrata Das
- Orthopaedic Surgery, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Amit Thakur
- Department of Orthopaedics and Traumatology, All India Institute of Medical Science Jammu, Jammu, IND
| | - Anupam Datta
- Forensic Medicine, Agartala Government Medical College & Govind Ballabh Pant (GBP) Hospital, Agartala, IND
| | - Ayaskant Sahoo
- Anaesthesia, NRI Institute of Medical Sciences, Visakhapatnam, IND
| | | | - Ashok K Sah
- Department of Medical Laboratory Sciences, College of Applied and Health Sciences, A Sharqiyah University, Ibra, OMN
| |
Collapse
|
3
|
Margulies BS, Loy JC, Thakur N, Sanz-Altamira P. Treating Multilevel Cervical Degenerative Disk Disease in a Patient With Stage IV Lung Cancer With Notable Comorbidities Using a Drug Eluting Biomaterial: A Case Report. J Am Acad Orthop Surg Glob Res Rev 2024; 8:01979360-202409000-00012. [PMID: 39312687 PMCID: PMC11421713 DOI: 10.5435/jaaosglobal-d-24-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/25/2024]
Abstract
A 64-year-old patient with stage IV non-small-cell lung carcinoma and several comorbidities, which include obesity and long-term smoking, was treated with N-allyl noroxymorphone eluting osteoinductive bone graft biomaterial. The patient had multilevel degenerative disk disease (DDD), which has a high rate of failure when osteoinductive bone grafts are not used. Infuse, the most widely administered osteoinductive bone graft, is contraindicated in the spine for patients with active tumor. As such, a novel drug eluting osteoinductive biomaterial was administered to this patient, for whom no other therapeutic options were available, to promote bone fusion in a three-level anterior cervical diskectomy and fusion as part of the Food and Drug Administration Expanded Access program. Despite patient comorbidities that are associated with poor bone physiology, confirmed radiographic fusion was achieved in all three cervical levels at 8 months.
Collapse
Affiliation(s)
- Bryan S Margulies
- From Zetagen Therapeutics, Syracuse, NY (Dr. Margulies, Mr. Loy, and Dr. Thakur); the Department of Pathology, College of Medicine, Upstate Medical University, Syracuse, NY (Dr. Margulies); the Department Biological Sciences, University of Notre Dame, Notre Dame, IN (Dr. Margulies); the Mobility Bone and Joint Institute, Andover, MA (Dr. Thakur); and the Dana-Farber Cancer Institute, Boston, MA (Dr. Sanz-Altamira)
| | | | | | | |
Collapse
|
4
|
Mahmoudi N, Roque M, Paiva Dos Santos B, Oliveira H, Siadous R, Rey S, Garanger E, Lecommandoux S, Catros S, Garbay B, Amédée Vilamitjana J. An Elastin-Derived Composite Matrix for Enhanced Vascularized and Innervated Bone Tissue Reconstruction: From Material Development to Preclinical Evaluation. Adv Healthc Mater 2024; 13:e2303765. [PMID: 38651610 DOI: 10.1002/adhm.202303765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Despite progress in bone tissue engineering, reconstruction of large bone defects remains an important clinical challenge. Here, a biomaterial designed to recruit bone cells, endothelial cells, and neuronal fibers within the same matrix is developed, enabling bone tissue regeneration. The bioactive matrix is based on modified elastin-like polypeptides (ELPs) grafted with laminin-derived adhesion peptides IKVAV and YIGSR, and the SNA15 peptide for retention of hydroxyapatite (HA) particles. The composite matrix shows suitable porosity, interconnectivity, biocompatibility for endothelial cells, and the ability to support neurites outgrowth by sensory neurons. Subcutaneous implantation leads to the formation of osteoid tissue, characterized by the presence of bone cells, vascular networks, and neuronal structures, while minimizing inflammation. Using a rat femoral condyle defect model, longitudinal micro-CT analysis is performed, which demonstrates a significant increase in the volume of mineralized tissue when using the ELP-based matrix compared to empty defects and a commercially available control (Collapat). Furthermore, visible blood vessel networks and nerve fibers are observed within the lesions after a period of two weeks. By incorporating multiple key components that support cell growth, mineralization, and tissue integration, this ELP-based composite matrix provides a holistic and versatile solution to enhance bone tissue regeneration.
Collapse
Affiliation(s)
- Nadia Mahmoudi
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Micaela Roque
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Bruno Paiva Dos Santos
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Hugo Oliveira
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Robin Siadous
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | - Sylvie Rey
- Tissue Bioengineering Laboratory (BioTis), Inserm U1026, University of Bordeaux, Bordeaux, France
| | | | | | - Sylvain Catros
- CHU Bordeaux, Dentistry and Oral Health Department, Bordeaux, 33076, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR, Pessac, 5629, France
| | | |
Collapse
|
5
|
Zhang P, Qi J, Zhang R, Zhao Y, Yan J, Gong Y, Liu X, Zhang B, Wu X, Wu X, Zhang C, Zhao B, Li B. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomater Sci 2024; 12:308-329. [PMID: 38108454 DOI: 10.1039/d3bm01795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bone defects are often difficult to treat due to their complexity and specificity, and therefore pose a serious threat to human life and health. Currently, the clinical treatment of bone defects is mainly surgical. However, this treatment is often more harmful to patients and there is a potential risk of rejection and infection. Hydrogels have a unique three-dimensional structure that can accommodate a variety of materials, including particles, polymers and small molecules, making them ideal for treating bone defects. Therefore, emerging composite hydrogels are considered one of the most promising candidates for the treatment of bone defects. This review describes the use of different types of composite hydrogel in the treatment of bone defects. We present the basic concepts of hydrogels, different preparation techniques (including chemical and physical crosslinking), and the clinical requirements for hydrogels used to treat bone defects. In addition, a review of numerous promising designs of different types of hydrogel doped with different materials (e.g., nanoparticles, polymers, carbon materials, drugs, and active factors) is also highlighted. Finally, the current challenges and prospects of composite hydrogels for the treatment of bone defects are presented. This review will stimulate research efforts in this field and promote the application of new methods and innovative ideas in the clinical field of composite hydrogels.
Collapse
Affiliation(s)
- Pengfei Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jin Qi
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Ran Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yifan Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Jingyu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yajuan Gong
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiaoming Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Binbin Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiao Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Chemistry and Chemical Engineering Institute, Qiqihar University, Qiqihar 161006, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
6
|
Qi J, Wu H, Liu G. Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering. Cell Transplant 2024; 33:9636897241276733. [PMID: 39305020 PMCID: PMC11418245 DOI: 10.1177/09636897241276733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/25/2024] Open
Abstract
Bone morphogenetic protein-2 (BMP-2) has been commercially approved by the Food and Drug Administration for use in bone defects and diseases. BMP-2 promotes osteogenic differentiation of mesenchymal stem cells. In bone tissue engineering, BMP-2 incorporated into scaffolds can be used for stimulating bone regeneration in organoid construction, drug testing platforms, and bone transplants. However, the high dosage and uncontrollable release rate of BMP-2 challenge its clinical application, mainly due to the short circulation half-life of BMP-2, microbial contamination in bone extracellular matrix hydrogel, and the delivery method. Moreover, in clinical translation, the requirement of high doses of BMP-2 for efficacy poses challenges in cost and safety. Based on these, novel strategies should ensure that BMP-2 is delivered precisely to the desired location within the body, regulating the timing of BMP-2 release to coincide with the bone healing process, as well as release BMP-2 in a controlled manner to optimize its therapeutic effect and minimize side effects. This review highlights improvements in bone tissue engineering applying spatiotemporal and controlled BMP-2 delivery, including molecular engineering, biomaterial modification, and synergistic therapy, aiming to provide references for future research and clinical trials.
Collapse
Affiliation(s)
- Jingqi Qi
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Gengyan Liu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Andresen AK, Carreon LY, Overgaard S, Jacobsen MK, Andersen MØ. Safety and Reoperation Rates in Non-instrumented Lumbar Fusion Surgery: Secondary Report From a Randomized Controlled Trial of ABM/P-15 vs Allograft With Minimum 5 years Follow-Up. Global Spine J 2024; 14:33-40. [PMID: 35481422 PMCID: PMC10676187 DOI: 10.1177/21925682221090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
STUDY DESIGN Randomized controlled trial with minimum of 5-years follow-up. OBJECTIVE The purpose of this study is to evaluate the peri- and postoperative complications rates, ectopic bone migration, and reoperation rates, and secondly evaluate the 5-year patient reported outcomes (PROs), in patients treated with decompression and non-instrumented posterolateral fusion with ABM/P-15 or allograft. METHODS Patients with degenerative spondylolisthesis were enrolled in a Randomized Clinical Trial and randomized 1:1 to either ABM/P-15 or allograft bone. Patient Reported Outcomes were collected at 5-year follow-up, and patients were invited to a clinical follow-up including a computed tomography scan (CT) to evaluate signs of osteolysis, ectopic bone formation, and bone migration. RESULTS Of 101 subjects enrolled in the primary study, 83 patients were available for the 5-year follow-up. We found a statistically significant difference in back pain and Oswestry Disability Index between groups. Fifty-eight patients agreed to participate in the CT study. Sixty percentage in the ABM/P-15 group vs 30% in the allograft group was classified as fused (P = .037). There were no differences in complications, reoperation-, or infection rates between the 2 groups. We found 2 patients with migration of graft material. Both patients were asymptomatic at minimum 5-year follow-up. CONCLUSION Our study indicated that complication rates are no higher in patients treated with ABM/P-15 than allograft. We found significantly higher fusion rates in the AMB/P-15 group than in the allograft group, and patients in the ABM/P-15 group reported less back pain and lower disability score at 5-year follow-up.
Collapse
Affiliation(s)
- Andreas K. Andresen
- Center for Spine Surgery and Research, Lillebaelt Hospital, Middelfart, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| | - Leah Y. Carreon
- Center for Spine Surgery and Research, Lillebaelt Hospital, Middelfart, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| | - Søren Overgaard
- Bispebjerg, Department of Orthopaedic Surgery and Traumatology, Copenhagen University Hospital, Kobenhavn, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Kobenhavn, Denmark
| | - Michael K. Jacobsen
- Center for Spine Surgery and Research, Lillebaelt Hospital, Middelfart, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| | - Mikkel Ø. Andersen
- Center for Spine Surgery and Research, Lillebaelt Hospital, Middelfart, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
8
|
Ivanjko N, Stokovic N, Milesevic M, Rumenovic V, Windhager R, Sampath KT, Kovacic N, Grcevic D, Vukicevic S. rhBMP6 in autologous blood coagulum is a preferred osteoinductive device to rhBMP2 on bovine collagen sponge in the rat ectopic bone formation assay. Biomed Pharmacother 2023; 169:115844. [PMID: 37948990 DOI: 10.1016/j.biopha.2023.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoinductive BMPs require a suitable delivery system for treating various pathological conditions of the spine and segmental bone defects. INFUSE, the only commercially available BMP-based osteoinductive device, consisting of rhBMP2 on bovine absorbable collagen sponge (ACS) showed major disadvantages due to serious side effects. A novel osteoinductive device, OSTEOGROW, comprised of rhBMP6 dispersed within autologous blood coagulum (ABC) is a promising therapy for bone regeneration, subjected to several clinical trials for diaphysial bone repair and spinal fusion. In the present study, we have examined the release dynamics showing that the ABC carrier provided a slower, more steady BMP release in comparison to the ACS. Rat subcutaneous assay was employed to evaluate cellular events and the time course of ectopic osteogenesis. The host cellular response to osteoinductive implants was evaluated by flow cytometry, while dynamics of bone formation and maintenance in time were evaluated by histology, immunohistochemistry and micro CT analyses. Flow cytometry revealed that the recruitment of lymphoid cell populations was significantly higher in rhBMP6/ABC implants, while rhBMP2/ACS implants recruited more myeloid populations. Furthermore, rhBMP6/ABC implants more efficiently attracted early and committed progenitor cells. Dynamics of bone formation induced by rhBMP2/ACS was characterized by a delayed endochondral ossification process in comparison to rhBMP6/ABC implants. Besides, rhBMP6/ABC implants induced more ectopic bone volume in all observed time points in comparison to rhBMP2/ACS implants. These results indicate that OSTEOGROW was superior to INFUSE due to ABC's advantages as a carrier and rhBMP6 superior efficacy in inducing bone.
Collapse
Affiliation(s)
- Natalia Ivanjko
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Marina Milesevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia
| | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Natasa Kovacic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grcevic
- Croatian Institute for Brain Research, Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, School of Medicine, University of Zagreb, Zagreb, Croatia; Scientific Center of Excellence for Reproductive and Regenerative Medicine, Zagreb, Croatia.
| |
Collapse
|
9
|
Mousavi SJ, Ejeian F, Razmjou A, Nasr-Esfahani MH. In vivo evaluation of bone regeneration using ZIF8-modified polypropylene membrane in rat calvarium defects. J Clin Periodontol 2023; 50:1390-1405. [PMID: 37485621 DOI: 10.1111/jcpe.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
AIM The profound potential of zeolitic imidazolate framework 8 (ZIF8) thin film for inducing osteogenesis has been previously established under in vitro conditions. As the next step towards the clinical application of ZIF8-modified substrates in periodontology, this in vivo study aimed to evaluate the ability of the ZIF8 crystalline layer to induce bone regeneration in an animal model defect. MATERIALS AND METHODS Following the mechanical characterization of the membranes and analysing the in vitro degradation of the ZIF8 layer, in vivo bone regeneration was evaluated in a critical-sized (5-mm) rat calvarial bone defect model. For each animal, one defect was randomly covered with either a polypropylene (PP) or a ZIF8-modified membrane (n = 7 per group), while the other defect was left untreated as a control. Eight weeks post surgery, bone formation was assessed by microcomputed tomography scanning, haematoxylin and eosin staining and immunohistochemical analysis. RESULTS The ZIF8-modified membrane outperformed the PP membrane in terms of mechanical properties and revealed a trace Zn+2 release. Results of in vivo evaluation verified the superior barrier function of the ZIF8-coated membrane compared with pristine PP membrane. Compared with the limited marginal bone formation in the control and PP groups, the defect area was almost filled with mature bone in the ZIF8-coated membrane group. CONCLUSIONS Our results support the effectiveness of the ZIF8-coated membrane as a promising material for improving clinical outcomes of guided bone regeneration procedures, without using biological components.
Collapse
Affiliation(s)
- Seyed Javad Mousavi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Perth, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
10
|
On SW, Park SY, Yi SM, Park IY, Byun SH, Yang BE. Current Status of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Maxillofacial Surgery: Should It Be Continued? Bioengineering (Basel) 2023; 10:1005. [PMID: 37760107 PMCID: PMC10525581 DOI: 10.3390/bioengineering10091005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) has shown potential in maxillofacial surgery owing to its osteoinductive properties. However, concerns about its safety and high cost have limited its widespread use. This review presents the status of rhBMP-2 use in maxillofacial surgery, focusing on its clinical application, efficacy, safety, and limitations. Studies have demonstrated rhBMP-2's potential to reduce donor site morbidity and increase bone height in sinus and ridge augmentation; however, it may not outperform autogenous bone grafts. In medication-related osteonecrosis of the jaw treatment, rhBMP-2 has been applied adjunctively with promising results, although its long-term safety requires further investigation. However, in maxillofacial trauma, its application is limited to the restoration of large defects. Safety concerns include postoperative edema and the theoretical risk of carcinogenesis. Although postoperative edema is manageable, the link between rhBMP-2 and cancer remains unclear. The limitations include the lack of an ideal carrier, the high cost of rhBMP-2, and the absence of an optimal dosing regimen. In conclusion, rhBMP-2 is a promising graft material for maxillofacial surgery. However, it has not yet become the gold standard owing to safety and cost concerns. Further research is required to establish long-term safety, optimize dosing, and develop better carriers.
Collapse
Affiliation(s)
- Sung-Woon On
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Republic of Korea;
- Department of Artificial Intelligence and Robotics in Dentistry, Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; (S.-Y.P.); (S.-M.Y.); (I.-Y.P.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang-Yoon Park
- Department of Artificial Intelligence and Robotics in Dentistry, Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; (S.-Y.P.); (S.-M.Y.); (I.-Y.P.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
- Dental Artificial Intelligence and Robotics R&D Center, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Sang-Min Yi
- Department of Artificial Intelligence and Robotics in Dentistry, Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; (S.-Y.P.); (S.-M.Y.); (I.-Y.P.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
- Dental Artificial Intelligence and Robotics R&D Center, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - In-Young Park
- Department of Artificial Intelligence and Robotics in Dentistry, Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; (S.-Y.P.); (S.-M.Y.); (I.-Y.P.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
- Dental Artificial Intelligence and Robotics R&D Center, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
- Department of Orthodontics, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Soo-Hwan Byun
- Department of Artificial Intelligence and Robotics in Dentistry, Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; (S.-Y.P.); (S.-M.Y.); (I.-Y.P.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
- Dental Artificial Intelligence and Robotics R&D Center, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Byoung-Eun Yang
- Department of Artificial Intelligence and Robotics in Dentistry, Graduated School of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea; (S.-Y.P.); (S.-M.Y.); (I.-Y.P.); (S.-H.B.)
- Institute of Clinical Dentistry, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
- Dental Artificial Intelligence and Robotics R&D Center, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| |
Collapse
|
11
|
Desnantyo AT, Mahyuddin MH, Saputra PBT, Atsira OP. Fibular strut graft for primary ankle arthrodesis in diabetic charcot neuroarthropathy patients. Int J Surg Case Rep 2023; 108:108430. [PMID: 37399591 PMCID: PMC10382763 DOI: 10.1016/j.ijscr.2023.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION Arthrodesis is an expensive procedure that is less applicable in developing countries. In this case report we reported a case of diabetic charcot neuroartropathy (CN) with primary ankle arthrodesis technique with a fibular strut graft which is considered cheaper and has a higher union rate. CASE DESCRIPTION A 47 years old female with complaints of pain in her right ankle after falling down the stairs with foot inverted one month before admission. The patient has uncontrolled diabetes mellitus with HbA1C 7.6 % and random blood sugar check >200 mg/dl. The patient's pain score using the visual analog score (VAS) showed a value of 8. While plain film X-ray revealed bony fragmentation in the Ankle joint. Arthrodesis surgery using fibular strut graft was performed. The postoperative X-ray examination revealed two plates attached to the anterior and medial distal tibia. A total of nine wires were attached to the patient. The patient used Ankle Foot Orthosis (AFO) and was able to walk normally 3-weeks post-surgery without pain and ulcer formation. DISCUSSION Fibular strut graft has good cost-effectiveness, that is more suitable for use in developing countries. It also requires a simple implant that is easily applied by all orthopedists. Fibular strut graft has the advantage of having osteogenic, osteoinductive, and osteoconductive properties that can potentially improve union. CONCLUSION The fibular strut graft technique can be an alternative in obtaining durable ankle fusion and functional salvaged limb with low complications.
Collapse
Affiliation(s)
- Andre Triadi Desnantyo
- Medical Faculty Universitas Airlangga, Surabaya, East Java 60132, Indonesia; Department of Orthopedics & Traumatology Dr. Soetomo General Hospital/Universitas Airlangga, Surabaya, Indonesia.
| | | | | | - Olga Putri Atsira
- Medical Faculty Universitas Airlangga, Surabaya, East Java 60132, Indonesia
| |
Collapse
|
12
|
Wijaya JH, Tjahyanto T, Alexi R, Purnomo AE, Rianto L, Arjuna YYE, Tobing JFL, Yunus Y, Faried A. Application of rhBMP in spinal fusion surgery: any correlation of cancer incidence? A systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:2020-2028. [PMID: 37133762 DOI: 10.1007/s00586-023-07730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Safety concerns regarding the application of bone morphogenetic proteins (BMPs) have been highlighted in recent years. It is noted that both BMP and their receptors being identified as a trigger for cancer growth. Here, we aimed to determine the safety and efficacy of BMP for spinal fusion surgery. METHODS We conducted this systematic review on topics of spinal fusion surgery with rhBMP application from three database (PubMed, EuropePMC, and Clinicaltrials.gov) with MeSH phrases such as "rh-BMP," "rhBMP," "spine surgery," "spinal arthrodesis," and "spinal fusion" were searched (using the Boolean operators "and" and "or"). Our research includes all articles, as long as published in English language. In the face of disagreement between the two reviewers, we discussed it together until all authors reached a consensus. The primary key outcome of our study is the incidence of cancer following rhBMP implantation. RESULTS Our study included a total of 8 unique studies (n = 37,682). The mean follow-up varies among all studies, with the longest follow-up is 66 months. Our meta-analysis showed that exposure to rhBMP in spinal surgery did increase the risk of cancers (RR 1.85, 95%CI [1.05, 3.24], p = 0.03). CONCLUSIONS Our study found that rhBMP was not associated with the increased risk of cancer incidence within the rhBMP cohort. Still, we did face several limitations, in which further studies are needed to confirm the result of our meta-analysis.
Collapse
Affiliation(s)
- Jeremiah Hilkiah Wijaya
- Department of Neurosurgery, Universitas Pelita Harapan, MH Thamrin Boulevard 1100, Karawaci, Tangerang, 15811, Banten, Indonesia.
| | - Teddy Tjahyanto
- Department of Medicine, Tarumanagara University, Jakarta, Indonesia
| | - Roberto Alexi
- Department of Medicine, Santo Vincentius Hospital, Singkawang, West Kalimantan, Indonesia
| | - Alexander Erick Purnomo
- Department of Neurosurgery, Universitas Pelita Harapan, MH Thamrin Boulevard 1100, Karawaci, Tangerang, 15811, Banten, Indonesia
| | - Louis Rianto
- Department of Orthopedics, Universitas Pelita Harapan, Karawaci, Tangerang, Banten, Indonesia
| | - Yang Yang Endro Arjuna
- Department of Neurosurgery, Universitas Pelita Harapan, MH Thamrin Boulevard 1100, Karawaci, Tangerang, 15811, Banten, Indonesia
| | | | - Yesaya Yunus
- Department of Neurosurgery, Universitas Pelita Harapan, MH Thamrin Boulevard 1100, Karawaci, Tangerang, 15811, Banten, Indonesia
| | - Ahmad Faried
- Department of Neurosurgery, Universitas Padjajaran, Bandung, West Java, Indonesia
| |
Collapse
|
13
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
14
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
15
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
16
|
Schulze F, Lang A, Schoon J, Wassilew GI, Reichert J. Scaffold Guided Bone Regeneration for the Treatment of Large Segmental Defects in Long Bones. Biomedicines 2023; 11:biomedicines11020325. [PMID: 36830862 PMCID: PMC9953456 DOI: 10.3390/biomedicines11020325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge. The regeneration of large bone defects often proves difficult, since it relies on the formation of large amounts of bone within an environment impedimental to osteogenesis, characterized by soft tissue damage and hampered vascularization. Consequently, research efforts have concentrated on tissue engineering and regenerative medical strategies to resolve this multifaceted challenge. In this review, we summarize, critically evaluate, and discuss present approaches in light of their clinical relevance; we also present future advanced techniques for bone tissue engineering, outlining the steps to realize for their translation from bench to bedside. The discussion includes the physiology of bone healing, requirements and properties of natural and synthetic biomaterials for bone reconstruction, their use in conjunction with cellular components and suitable growth factors, and strategies to improve vascularization and the translation of these regenerative concepts to in vivo applications. We conclude that the ideal all-purpose material for scaffold-guided bone regeneration is currently not available. It seems that a variety of different solutions will be employed, according to the clinical treatment necessary.
Collapse
Affiliation(s)
- Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Annemarie Lang
- Departments of Orthopaedic Surgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georgi I. Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johannes Reichert
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-22530
| |
Collapse
|
17
|
Saito H, Shoji S, Kuroda A, Inoue G, Tazawa R, Sekiguchi H, Fukushima K, Miyagi M, Takaso M, Uchida K. In situ-formed hyaluronan gel/BMP-2/hydroxyapatite composite promotes bone union in refractory fracture model mice. Biomed Mater Eng 2023; 34:537-544. [PMID: 37334576 DOI: 10.3233/bme-230021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND A combination of synthetic porous materials and BMP-2 has been used to promote fracture healing. For bone healing to be successful, it is important to use growth factor delivery systems that enable continuous release of BMP-2 at the fracture site. We previously reported that in situ-formed gels (IFGs) consisting of hyaluronan (HyA)-tyramine (TA), horseradish peroxidase and hydrogen peroxide enhance the bone formation ability of hydroxyapatite (Hap)/BMP-2 composites in a posterior lumbar fusion model. OBJECTIVE We examined the effectiveness of IFGs-HyA/Hap/BMP-2 composites for facilitating osteogenesis in refractory fracture model mice. METHODS After establishing the refractory fracture model, animals were either treated at the site of fracture with Hap harboring BMP-2 (Hap/BMP-2) or IFGs-HyA with Hap harboring BMP-2 (IFGs-HyA/Hap/BMP-2) (n = 10 each). Animals that underwent the fracture surgery but did not receive any treatment were considered the control group (n = 10). We determined the extent of bone formation at the fracture site according to findings on micro-computed tomography and histological studies four weeks following treatment. RESULTS Animals treated with IFGs-HyA/Hap/BMP-2 demonstrated significantly greater bone volume, bone mineral content and bone union than those treated with vehicle or IFG-HyA/Hap alone. CONCLUSIONS IFGs-HyA/Hap/BMP-2 could be an effective treatment option for refractory fractures.
Collapse
Affiliation(s)
- Hiroki Saito
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Shintaro Shoji
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Akiyoshi Kuroda
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Ryo Tazawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Chigasaki City, Japan
| | - Kensuke Fukushima
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Japan
- Shonan University of Medical Sciences Research Institute, Chigasaki City, Japan
| |
Collapse
|
18
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
19
|
Chen Z, Yuan L, Li X, Yu J, Xu Z. BMP2 inhibits cell proliferation by downregulating EZH2 in gastric cancer. Cell Cycle 2022; 21:2298-2308. [PMID: 35856444 DOI: 10.1080/15384101.2022.2092819] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastric cancer is among the most common gastrointestinal malignancies. Recent studies have suggested that bone morphogenetic protein-2 (BMP2) is related to the development and progression of various cancers. Meanwhile, evidence suggests that BMP2 might lead to epigenetic changes in gastric cancer. Thus, we investigated whether BMP2 plays a role in the development of gastric cancer via epigenetic regulation. Cell viability, colony formation, and cell cycle assays were performed to assess the effect of recombinant human BMP2 (rhBMP2) in gastric cancer cells. LDN-193189 and Noggins were used as antagonists of the canonical BMP-SMAD signaling pathway. The protein levels were determined using a western blot analysis. Lentiviral vectors with EZH2 shRNA or EZH2 overexpression were used to mediate the role of EZH2 and the relationship between BMP2 and EZH2 in gastric cancer. We found that rhBMP2 inhibits cell proliferation by arresting the cell cycle in HGC-27 and SNU-216 gastric cancer cells. Neither LDN-193189 nor Noggins, antagonists of the canonical BMP-SMAD signaling pathway, can reverse the effect of rhBMP2 on gastric cancer. Molecularly, rhBMP2 downregulates the expression of EZH2 and H3K27me3, leading to increases in P16 and P21 and decreases in CDK2, CDK4, and CDK6. Altogether, in this study, we demonstrate that BMP2 serves as a tumor suppressor in gastric cancer cells by downregulating EZH2 and H3K27me3 through the non-SMAD BMP pathway, suggesting that BMP2 might be a new therapeutic target for gastric cancer treatment. Abbreviations: BMP: bone morphogenetic protein; TGF-β: transforming growth factor-beta; EZH2: enhancer of zeste homolog 2; H3K27me3: trimethylation histone H3 lysine 27; HRECs: human retinal endothelial cells; PcG: polycomb group; PRC: polycomb repressive complexes.
Collapse
Affiliation(s)
- Zilu Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyue Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaopeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Santra M, Liu YC, Jhanji V, Yam GHF. Human SMILE-Derived Stromal Lenticule Scaffold for Regenerative Therapy: Review and Perspectives. Int J Mol Sci 2022; 23:ijms23147967. [PMID: 35887309 PMCID: PMC9315730 DOI: 10.3390/ijms23147967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
A transparent cornea is paramount for vision. Corneal opacity is one of the leading causes of blindness. Although conventional corneal transplantation has been successful in recovering patients’ vision, the outcomes are challenged by a global lack of donor tissue availability. Bioengineered corneal tissues are gaining momentum as a new source for corneal wound healing and scar management. Extracellular matrix (ECM)-scaffold-based engineering offers a new perspective on corneal regenerative medicine. Ultrathin stromal laminar tissues obtained from lenticule-based refractive correction procedures, such as SMall Incision Lenticule Extraction (SMILE), are an accessible and novel source of collagen-rich ECM scaffolds with high mechanical strength, biocompatibility, and transparency. After customization (including decellularization), these lenticules can serve as an acellular scaffold niche to repopulate cells, including stromal keratocytes and stem cells, with functional phenotypes. The intrastromal transplantation of these cell/tissue composites can regenerate native-like corneal stromal tissue and restore corneal transparency. This review highlights the current status of ECM-scaffold-based engineering with cells, along with the development of drug and growth factor delivery systems, and elucidates the potential uses of stromal lenticule scaffolds in regenerative therapeutics.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.S.); (V.J.)
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
21
|
Granel H, Bossard C, Collignon AM, Wauquier F, Lesieur J, Rochefort GY, Jallot E, Lao J, Wittrant Y. Osteogenic Effect of Fisetin Doping in Bioactive Glass/Poly(caprolactone) Hybrid Scaffolds. ACS OMEGA 2022; 7:22279-22290. [PMID: 35811886 PMCID: PMC9260777 DOI: 10.1021/acsomega.2c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Treating large bone defects or fragile patients may require enhancing the bone regeneration rate to overcome a weak contribution from the body. This work investigates the osteogenic potential of nutrient fisetin, a flavonoid found in fruits and vegetables, as a doping agent inside the structure of a SiO2-CaO bioactive glass-poly(caprolactone) (BG-PCL) hybrid scaffold. Embedded in the full mass of the BG-PCL hybrid during one-pot synthesis, we demonstrate fisetin to be delivered sustainably; the release follows a first-order kinetics with active fisetin concentration being delivered for more than 1 month (36 days). The biological effect of BG-PCL-fisetin-doped scaffolds (BG-PCL-Fis) has been highlighted by in vitro and in vivo studies. A positive impact is demonstrated on the adhesion and the differentiation of rat primary osteoblasts, without an adverse cytotoxic effect. Implantation in critical-size mouse calvaria defects shows bone remodeling characteristics and remarkable enhancement of bone regeneration for fisetin-doped scaffolds, with the regenerated bone volume being twofold that of nondoped scaffolds and fourfold that of a commercial trabecular bovine bone substitute. Such highly bioactive materials could stand as competitive alternative strategies involving biomaterials loaded with growth factors, the use of the latter being the subject of growing concerns.
Collapse
Affiliation(s)
- Henri Granel
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Cédric Bossard
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Anne-Margaux Collignon
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Fabien Wauquier
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Julie Lesieur
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Gael Y. Rochefort
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Edouard Jallot
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Jonathan Lao
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Yohann Wittrant
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| |
Collapse
|
22
|
Hatt LP, Thompson K, Helms JA, Stoddart MJ, Armiento AR. Clinically relevant preclinical animal models for testing novel cranio-maxillofacial bone 3D-printed biomaterials. Clin Transl Med 2022; 12:e690. [PMID: 35170248 PMCID: PMC8847734 DOI: 10.1002/ctm2.690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Bone tissue engineering is a rapidly developing field with potential for the regeneration of craniomaxillofacial (CMF) bones, with 3D printing being a suitable fabrication tool for patient-specific implants. The CMF region includes a variety of different bones with distinct functions. The clinical implementation of tissue engineering concepts is currently poor, likely due to multiple reasons including the complexity of the CMF anatomy and biology, and the limited relevance of the currently used preclinical models. The 'recapitulation of a human disease' is a core requisite of preclinical animal models, but this aspect is often neglected, with a vast majority of studies failing to identify the specific clinical indication they are targeting and/or the rationale for choosing one animal model over another. Currently, there are no suitable guidelines that propose the most appropriate animal model to address a specific CMF pathology and no standards are established to test the efficacy of biomaterials or tissue engineered constructs in the CMF field. This review reports the current clinical scenario of CMF reconstruction, then discusses the numerous limitations of currently used preclinical animal models employed for validating 3D-printed tissue engineered constructs and the need to reduce animal work that does not address a specific clinical question. We will highlight critical research aspects to consider, to pave a clinically driven path for the development of new tissue engineered materials for CMF reconstruction.
Collapse
Affiliation(s)
- Luan P. Hatt
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
- Department of Health Sciences and TechonologyInstitute for BiomechanicsETH ZürichZürichSwitzerland
| | - Keith Thompson
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Jill A. Helms
- Division of Plastic and Reconstructive SurgeryDepartment of Surgery, Stanford School of MedicineStanford UniversityPalo AltoCalifornia
| | - Martin J. Stoddart
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Angela R. Armiento
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| |
Collapse
|
23
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
24
|
Moraes de Lima Perini M, Valuch CR, Dadwal UC, Awosanya OD, Mostardo SL, Blosser RJ, Knox AM, McGuire AC, Battina HL, Nazzal M, Kacena MA, Li J. Characterization and assessment of lung and bone marrow derived endothelial cells and their bone regenerative potential. Front Endocrinol (Lausanne) 2022; 13:935391. [PMID: 36120459 PMCID: PMC9470942 DOI: 10.3389/fendo.2022.935391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is important for successful fracture repair. Aging negatively affects the number and activity of endothelial cells (ECs) and subsequently leads to impaired bone healing. We previously showed that implantation of lung-derived endothelial cells (LECs) improved fracture healing in rats. In this study, we characterized and compared neonatal lung and bone marrow-derived endothelial cells (neonatal LECs and neonatal BMECs) and further asses3sed if implantation of neonatal BMECs could enhance bone healing in both young and aged mice. We assessed neonatal EC tube formation, proliferation, and wound migration ability in vitro in ECs isolated from the bone marrow and lungs of neonatal mice. The in vitro studies demonstrated that both neonatal LECs and neonatal BMECs exhibited EC traits. To test the function of neonatal ECs in vivo, we created a femoral fracture in young and aged mice and implanted a collagen sponge to deliver neonatal BMECs at the fracture site. In the mouse fracture model, endochondral ossification was delayed in aged control mice compared to young controls. Neonatal BMECs significantly improved endochondral bone formation only in aged mice. These data suggest BMECs have potential to enhance aged bone healing. Compared to LECs, BMECs are more feasible for translational cell therapy and clinical applications in bone repair. Future studies are needed to examine the fate and function of BMECs implanted into the fracture sites.
Collapse
Affiliation(s)
| | - Conner R. Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Murad Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs (VA) Medical Center, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
- *Correspondence: Jiliang Li,
| |
Collapse
|
25
|
Donoho DA, Singer TG, Lazaro T, Bauer DF. Management of Cervical Kyphotic Deformity Associated With Loeys-Dietz Vasculopathy and Cardiac Transplantation: Case Report, Literature Review, and Strategies for Complex Skeletal Dysplasias. Cureus 2021; 13:e20503. [PMID: 35070541 PMCID: PMC8763335 DOI: 10.7759/cureus.20503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Seventy-six percent of pediatric patients with Loeys-Dietz syndrome (LDS), a connective tissue disorder driven by a transforming growth factor-beta (TGF-B) pathway mutation, manifest cervical spine malformations. A prior series showed that 16% required surgical stabilization. Spine surgery in LDS is associated with an 88% complication rate due to poor bone quality and cerebrovascular ectasia. Of 77 patients with LDS, one patient who required spine surgery was identified in an institutional database from 2010 to 2020. A 15-year-old with LDS presented with symptomatic cervical myelopathy from a rapidly progressive and unstable cervical deformity. We performed a C5-6 corpectomy and an O-T2 posterior spinal fusion with recombinant human bone morphogenetic protein-2 (rhBMP-2). We achieved correction of her kyphosis and normalization of her neurologic status. She is neurologically well one year postoperatively with bony fusion. The management of a pediatric patient with LDS, orthotopic heart transplantation (OHT), and craniocervical deformity with instability is a novel challenge. Long-segment constructs are beneficial, rather than sparing the occiput or cervicothoracic junction. Off-label BMP may aid an LDS patient with TGF-B mutation and sternotomy. Surgeons should continue immunomodulatory and antiplatelet medications when required for OHT.
Collapse
|
26
|
Kennedy IW, Tsimbouri PM, Campsie P, Sood S, Childs PG, Reid S, Young PS, Meek DRM, Goodyear CS, Dalby MJ. Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures. Sci Rep 2021; 11:22741. [PMID: 34815449 PMCID: PMC8611084 DOI: 10.1038/s41598-021-02139-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Models of bone remodelling could be useful in drug discovery, particularly if the model is one that replicates bone regeneration with reduction in osteoclast activity. Here we use nanovibrational stimulation to achieve this in a 3D co-culture of primary human osteoprogenitor and osteoclast progenitor cells. We show that 1000 Hz frequency, 40 nm amplitude vibration reduces osteoclast formation and activity in human mononuclear CD14+ blood cells. Additionally, this nanoscale vibration both enhances osteogenesis and reduces osteoclastogenesis in a co-culture of primary human bone marrow stromal cells and bone marrow hematopoietic cells. Further, we use metabolomics to identify Akt (protein kinase C) as a potential mediator. Akt is known to be involved in bone differentiation via transforming growth factor beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and it has been implicated in reduced osteoclast activity via Guanine nucleotide-binding protein subunit α13 (Gα13). With further validation, our nanovibrational bioreactor could be used to help provide humanised 3D models for drug screening.
Collapse
Affiliation(s)
- Ian W Kennedy
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - P Monica Tsimbouri
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul Campsie
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Shatakshi Sood
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Peter G Childs
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Stuart Reid
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dominic R M Meek
- Department of Trauma and Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University Place, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
27
|
Bone Regeneration of a 3D-Printed Alloplastic and Particulate Xenogenic Graft with rhBMP-2. Int J Mol Sci 2021; 22:ijms222212518. [PMID: 34830400 PMCID: PMC8624569 DOI: 10.3390/ijms222212518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023] Open
Abstract
This study aimed to evaluate the bone regeneration capacity of a customized alloplastic material and xenograft with recombinant human bone morphogenetic protein-2 (rhBMP-2). We prepared hydroxyapatite (HA)/tricalcium phosphate (TCP) pure ceramic bone blocks made using a 3D printing system and added rhBMP-2 to both materials. In eight beagle dogs, a total of 32 defects were created on the lower jaws. The defective sites of the negative control group were left untreated (N group; 8 defects), and those in the positive control group were filled with particle-type Bio-Oss (P group; 12 defects). The defect sites in the experimental group were filled with 3D-printed synthetic bone blocks (3D group; 12 defects). Radiographic and histological evaluations were performed after healing periods of 6 and 12 weeks and showed no significant difference in new bone formation and total bone between the P and 3D groups. The 3D-printed custom HA/TCP graft with rhBMP-2 showed bone regeneration effects similar to that of particulate Bio-Oss with rhBMP-2. Through further study and development, the application of 3D-printed customized alloplastic grafts will be extended to various fields of bone regeneration.
Collapse
|
28
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
29
|
Van Eps JL, Fernandez-Moure JS, Cabrera FJ, Taraballi F, Paradiso F, Minardi S, Wang X, Aghdasi B, Tasciotti E, Weiner BK. Improved Posterolateral Lumbar Spinal Fusion Using a Biomimetic, Nanocomposite Scaffold Augmented by Autologous Platelet-Rich Plasma. Front Bioeng Biotechnol 2021; 9:622099. [PMID: 34485251 PMCID: PMC8415153 DOI: 10.3389/fbioe.2021.622099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/29/2021] [Indexed: 11/21/2022] Open
Abstract
Remodeling of the human bony skeleton is constantly occurring with up to 10% annual bone volume turnover from osteoclastic and osteoblastic activity. A shift toward resorption can result in osteoporosis and pathologic fractures, while a shift toward deposition is required after traumatic, or surgical injury. Spinal fusion represents one such state, requiring a substantial regenerative response to immobilize adjacent vertebrae through bony union. Autologous bone grafts were used extensively prior to the advent of advanced therapeutics incorporating exogenous growth factors and biomaterials. Besides cost constraints, these applications have demonstrated patient safety concerns. This study evaluated the regenerative ability of a nanostructured, magnesium-doped, hydroxyapatite/type I collagen scaffold (MHA/Coll) augmented by autologous platelet-rich plasma (PRP) in an orthotopic model of posterolateral lumbar spinal fusion. After bilateral decortication, rabbits received either the scaffold alone (Group 1) or scaffold with PRP (Group 2) to the anatomic right side. Bone regeneration and fusion success compared to internal control were assessed by DynaCT with 3-D reconstruction at 2, 4, and 6 weeks postoperatively followed by comparative osteogenic gene expression and representative histopathology. Both groups formed significantly more new bone volume than control, and Group 2 subjects produced significantly more trabecular and cortical bone than Group 1 subjects. Successful fusion was seen in one Group 1 animal (12.5%) and 6/8 Group 2 animals (75%). This enhanced effect by autologous PRP treatment appears to occur via astounding upregulation of key osteogenic genes. Both groups demonstrated significant gene upregulation compared to vertebral bone controls for all genes. Group 1 averaged 2.21-fold upregulation of RUNX2 gene, 3.20-fold upregulation of SPARC gene, and 3.67-fold upregulation of SPP1 gene. Depending on anatomical subgroup (cranial, mid, caudal scaffold portions), Group 2 had significantly higher average expression of all genes than both control and Group 1–RUNX2 (8.23–19.74 fold), SPARC (18.67–55.44 fold), and SPP1 (46.09–90.65 fold). Our data collectively demonstrate the osteoinductive nature of a nanostructured MHA/Coll scaffold, a beneficial effect of augmentation with autologous PRP, and an ability to achieve clinical fusion when applied together in an orthotopic model. This has implications both for future study and biomedical innovation of bone-forming therapeutics.
Collapse
Affiliation(s)
- Jeffrey L Van Eps
- Department of Surgery, University of Texas Health Science Center, McGovern Medical School, Houston, TX, United States
| | - Joseph S Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute and Critical Care Surgery, Duke University Medical Center, Durham, NC, United States
| | - Fernando J Cabrera
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, Houston, TX, United States
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston Methodist Research Institute, Houston, TX, United States.,Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, United Kingdom
| | - Silvia Minardi
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Xin Wang
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Bayan Aghdasi
- Sutter Gold Medical Foundation, Stockton, CA, United States
| | - Ennio Tasciotti
- IRCCS San Raffaele Hospital, Rome, Italy.,3R Biotech, Milan, Italy
| | - Bradley K Weiner
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States.,Weill Cornell Medical College, Cornell University, New York, NY, United States
| |
Collapse
|
30
|
Sakemi Y, Hayashi K, Tsuchiya A, Nakashima Y, Ishikawa K. Reconstruction of critical-size segmental defects in rat femurs using carbonate apatite honeycomb scaffolds. J Biomed Mater Res A 2021; 109:1613-1622. [PMID: 33644971 DOI: 10.1002/jbm.a.37157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Critical-size segmental defects are formidable challenges in orthopedic surgery. Various scaffolds have been developed to facilitate bone reconstruction within such defects. Many previously studied scaffolds achieved effective outcomes with a combination of high cost, high-risk growth factors or stem cells. Herein, we developed honeycomb scaffolds (HCSs) comprising carbonate apatite (CO3 Ap) containing 8% carbonate, identical to human bone composition. The CO3 Ap HCSs were white-columned blocks harboring regularly arranged macropore channels of a size and wall thickness of 156 ± 5 μm and 102 ± 10 μm, respectively. The compressive strengths of the HCSs parallel and perpendicular to the macropore channel direction were 51.0 ± 11.8 and 15.6 ± 2.2 MPa, respectively. The HCSs were grafted into critical-sized segmental defects in rat femurs. The HCSs bore high-load stresses without any observed breakage. Two-weeks post-implantation, calluses formed around the HCSs and immature bone formed in the HCS interior. The calluses and immature bone matured until 8 weeks via endochondral ossification. At 12 weeks post-implantation, large parts of the HCSs were gradually replaced by newly formed bone. The bone reconstruction efficacy of the CO3 Ap HCSs alone was comparable to that of protein and cell scaffolds, while achieving a lower cost and increased safety.
Collapse
Affiliation(s)
- Yuta Sakemi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Datta S, Rameshbabu AP, Bankoti K, Jana S, Roy S, Sen R, Dhara S. Microsphere embedded hydrogel construct - binary delivery of alendronate and BMP-2 for superior bone regeneration. J Mater Chem B 2021; 9:6856-6869. [PMID: 34396378 DOI: 10.1039/d1tb00255d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomimetic delivery of osteoinductive growth factors via an osteoconductive matrix is an interesting approach for stimulating bone regeneration. In this context, the bone extracellular matrix (ECM) has been explored as an optimal delivery system, since it releases growth factors in a spatiotemporal manner from the matrix. However, a bone ECM hydrogel alone is weak, unstable, and prone to microbial contamination and also has been reported to have significantly reduced bone morphogenic protein-2 (BMP-2) post decellularization. In the present work, a microsphere embedded osteoinductive decellularized bone ECM/oleoyl chitosan based hydrogel construct (BOC) was developed as a matrix allowing dual delivery of an anti-resorptive drug (alendronate, ALN, via the microspheres) and BMP-2 (via the hydrogel) for a focal tibial defect in a rabbit model. The synthesized gelatin microspheres (GMs) were spherical in shape with diameter ∼32 μm as assessed by SEM analysis. The BOC construct showed sustained release of ALN and BMP-2 under the studied conditions. Interestingly, amniotic membrane-derived stem cells (HAMSCs) cultivated on the hydrogel construct demonstrated excellent biocompatibility, cell viability, and active proliferation potential. Additionally, cell differentiation on the constructs showed an elevated expression of osteogenic genes in an RT-PCR study along with enhanced mineralized matrix deposition as demonstrated by alkaline phosphatase (ALP) assay and alizarin red assay. The hydrogel construct was witnessed to have improved neo-vascularization potential in a chick chorioalantoic membrane (CAM) assay. Also, histological and computed tomographic findings evidenced enhanced bone regeneration in the group treated with the BOC/ALN/BMP hydrogel construct in a rabbit tibial defect model. To conclude, the developed multifunctional hydrogel construct acts as an osteoinductive and osteoconductive platform facilitating controlled delivery of ALN and BMP-2, essential for stimulating bone tissue regeneration.
Collapse
Affiliation(s)
- Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur - 721302, India.
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu M, Tao J, Guo H, Tang L, Zhang G, Tang C, Zhou H, Wu Y, Ruan H, Loh XJ. Efficacy of Water-Soluble Pearl Powder Components Extracted by a CO 2 Supercritical Extraction System in Promoting Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4458. [PMID: 34442981 PMCID: PMC8399097 DOI: 10.3390/ma14164458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/04/2022]
Abstract
Pearl powder is a biologically active substance that is widely used in traditional medicine, skin repair and maintenance. The traditional industrial extraction processes of pearl powder are mainly based on water, acid or enzyme extraction methods, all of which have their own drawbacks. In this study, we propose a new extraction process for these active ingredients, specifically, water-soluble components of pearl powder extracted by a CO2 supercritical extraction system (SFE), followed by the extraction efficiency evaluation. A wound-healing activity was evaluated in vitro and in vivo. This demonstrated that the supercritical extraction technique showed high efficiency as measured by the total protein percentage. The extracts exhibited cell proliferation and migration-promoting activity, in addition to improving collagen formation and healing efficiency in vivo. In brief, this study proposes a novel extraction process for pearl powder, and the extracts were also explored for wound-healing bioactivity, demonstrating the potential in wound healing.
Collapse
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (M.L.); (H.Z.); (Y.W.)
| | - Junjun Tao
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Hongchen Guo
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Liang Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Guorui Zhang
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Changming Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Hu Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (M.L.); (H.Z.); (Y.W.)
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (M.L.); (H.Z.); (Y.W.)
| | - Huajun Ruan
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
33
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in a Large-Scale Rodent Cranial Defect Model. Plast Reconstr Surg 2021; 147:386-397. [PMID: 33235044 DOI: 10.1097/prs.0000000000007551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Current common techniques for repairing calvarial defects by autologous bone grafting and alloplastic implants have significant limitations. In this study, the authors investigated a novel alternative approach to bone repair based on peptide amphiphile nanofiber gels that are engineered to control the release of vascular endothelial growth factor (VEGF) to recruit circulating stem cells to a site of bone regeneration and facilitate bone healing by bone morphogenetic protein-2 (BMP-2). METHODS VEGF release kinetics from peptide amphiphile gels were evaluated. Chemotactic functional scaffolds were fabricated by combining collagen sponges with peptide amphiphile gels containing VEGF. The in vitro and in vivo chemotactic activities of the scaffolds were evaluated by measuring mesenchymal stem cell migration, and angiogenic capability of the scaffolds was also evaluated. Large-scale rodent cranial bone defects were created to evaluate bone regeneration after implanting the scaffolds and other control materials. RESULTS VEGF was released from peptide amphiphile in a controlled-release manner. In vitro migration of mesenchymal stem cells was significantly greater when exposed to chemotactic functional scaffolds compared to control scaffolds. In vivo chemotaxis was evidenced by migration of tracer-labeled mesenchymal stem cells to the chemotactic functional scaffolds. Chemotactic functional scaffolds showed significantly increased angiogenesis in vivo. Successful bone regeneration was noted in the defects treated with chemotactic functional scaffolds and BMP-2. CONCLUSIONS The authors' observations suggest that this bioengineered construct successfully acts as a chemoattractant for circulating mesenchymal stem cells because of controlled release of VEGF from the peptide amphiphile gels. The chemotactic functional scaffolds may play a role in the future design of clinically relevant bone graft substitutes for large-scale bone defects.
Collapse
|
35
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|
36
|
Sheehy EJ, Miller GJ, Amado I, Raftery RM, Chen G, Cortright K, Vazquez AG, O'Brien FJ. Mechanobiology-informed regenerative medicine: Dose-controlled release of placental growth factor from a functionalized collagen-based scaffold promotes angiogenesis and accelerates bone defect healing. J Control Release 2021; 334:96-105. [PMID: 33811984 DOI: 10.1016/j.jconrel.2021.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Leveraging the differential response of genes to mechanical loading may allow for the identification of novel therapeutics and we have recently established placental growth factor (PGF) as a mechanically augmented gene which promotes angiogenesis at higher doses and osteogenesis at lower doses. Herein, we sought to execute a mechanobiology-informed approach to regenerative medicine by designing a functionalized scaffold for the dose-controlled delivery of PGF which we hypothesized would be capable of promoting regeneration of critically-sized bone defects. Alginate microparticles and collagen/hydroxyapatite scaffolds were shown to be effective PGF-delivery platforms, as demonstrated by their capacity to promote angiogenesis in vitro. A PGF release profile consisting of an initial burst release to promote angiogenesis followed by a lower sustained release to promote osteogenesis was achieved by incorporating PGF-loaded microparticles into a collagen/hydroxyapatite scaffold already containing directly incorporated PGF. Although this PGF-functionalized scaffold demonstrated only a modest increase in osteogenic capacity in vitro, robust bone regeneration was observed after implantation into rat calvarial defects, indicating that the dose-dependent effect of PGF can be harnessed as an alternative to multi-drug systems for the delivery of both pro-angiogenic and pro-osteogenic cues. This mechanobiology-informed approach provides a framework for strategies aimed at identifying and evaluating novel scaffold-based systems for regenerative applications.
Collapse
Affiliation(s)
- Eamon J Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gregory J Miller
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Isabel Amado
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kai Cortright
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arlyng Gonzalez Vazquez
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
37
|
Bannwarth M, Smith JS, Bess S, Klineberg EO, Ames CP, Mundis GM, Kim HJ, Lafage R, Gupta MC, Burton DC, Shaffrey CI, Schwab FJ, Lafage V. Use of rhBMP-2 for adult spinal deformity surgery: patterns of usage and changes over the past decade. Neurosurg Focus 2021; 50:E4. [PMID: 34062501 DOI: 10.3171/2021.3.focus2164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been shown to increase fusion rates; however, cost, limited FDA approval, and possible complications impact its use. Decisions regarding rhBMP-2 use and changes over time have not been well defined. In this study, the authors aimed to assess changes in rhBMP-2 use for adult spinal deformity (ASD) surgery over the past decade. METHODS A retrospective review of the International Spine Study Group prospective multicenter database was performed to identify ASD patients treated surgically from 2008 to 2018. For assessment of rhBMP-2 use over time, 3 periods were created: 2008-2011, 2012-2015, and 2016-2018. RESULTS Of the patients identified, 1180 met inclusion criteria, with a mean age 60 years and 30% of patients requiring revision surgery; rhBMP-2 was used in 73.9% of patients overall. The mean rhBMP-2 dose per patient was 23.6 mg. Patients receiving rhBMP-2 were older (61 vs 58 years, p < 0.001) and had more comorbidities (Charlson Comorbidity Index 1.9 vs 1.4, p < 0.001), a higher rate of the Scoliosis Research Society-Schwab pelvic tilt modifier (> 0; 68% vs 62%, p = 0.026), a greater deformity correction (change in pelvic incidence minus lumbar lordosis 15° vs 12°, p = 0.01), and more levels fused (8.9 vs 7.9, p = 0.003). Over the 3 time periods, the overall rate of rhBMP-2 use increased and then stabilized (62.5% vs 79% vs 77%). Stratified analysis showed that after an overall increase in rhBMP-2 use, only patients who were younger than 50 years, those who were smokers, those who received a three-column osteotomy (3CO), and patients who underwent revision sustained an increased rate of rhBMP-2 use between the later two periods. No similar increases were noted for older patients, nonsmokers, primary surgery patients, and patients without a 3CO. The total rhBMP-2 dose decreased over time (26.6 mg vs 24.8 mg vs 20.7 mg, p < 0.001). After matching patients by preoperative alignment, 215 patients were included, and a significantly lower rate of complications leading to revision surgery was observed within the 2012-2015 period compared with the 2008-2011 (21.4% vs 13.0%, p = 0.029) period, while rhBMP-2 was increasingly used (80.5% vs 66.0%, p = 0.001). There was a trend toward a lower rate of pseudarthrosis for patients in the 2012-2015 period, but this difference did not reach statistical significance (7% vs 4.2%, p = 0.283). CONCLUSIONS The authors found that rhBMP-2 was used in the majority of ASD patients and was more commonly used in those with greater deformity correction. Additionally, over the last 10 years, rhBMP-2 was increasingly used for ASD patients, but the dose has decreased.
Collapse
Affiliation(s)
| | - Justin S Smith
- 2Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia
| | - Shay Bess
- 3Rocky Mountain Scoliosis and Spine, Denver, Colorado
| | - Eric O Klineberg
- 4Department of Orthopaedic Surgery, University of California, Davis
| | - Christopher P Ames
- 5Department of Neurological Surgery, University of California, San Francisco
| | | | - Han Jo Kim
- 7Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
| | - Renaud Lafage
- 7Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
| | | | - Douglas C Burton
- 9Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Christopher I Shaffrey
- 10Departments of Neurosurgery and Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Frank J Schwab
- 7Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
| | - Virginie Lafage
- 7Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York
| | | |
Collapse
|
38
|
Cruz A, Ropper AE, Xu DS, Bohl M, Reece EM, Winocour SJ, Buchanan E, Kaung G. Failure in Lumbar Spinal Fusion and Current Management Modalities. Semin Plast Surg 2021; 35:54-62. [PMID: 33994880 DOI: 10.1055/s-0041-1726102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lumbar spinal fusion is a commonly performed procedure to stabilize the spine, and the frequency with which this operation is performed is increasing. Multiple factors are involved in achieving successful arthrodesis. Systemic factors include patient medical comorbidities-such as rheumatoid arthritis and osteoporosis-and smoking status. Surgical site factors include choice of bone graft material, number of fusion levels, location of fusion bed, adequate preparation of fusion site, and biomechanical properties of the fusion construct. Rates of successful fusion can vary from 65 to 100%, depending on the aforementioned factors. Diagnosis of pseudoarthrosis is confirmed by imaging studies, often a combination of static and dynamic radiographs and computed tomography. Once pseudoarthrosis is identified, patient factors should be optimized whenever possible and a surgical plan implemented to provide the best chance of successful revision arthrodesis with the least amount of surgical risk.
Collapse
Affiliation(s)
- Alex Cruz
- Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, Texas
| | | | - David S Xu
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Michael Bohl
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | - Edward M Reece
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Sebastian J Winocour
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Edward Buchanan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, Texas
| | - Geoffrey Kaung
- Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
39
|
Hyun SJ, Yoon SH, Kim JH, Oh JK, Lee CH, Shin JJ, Kang J, Ha Y. A Prospective, Multi-Center, Double-Blind, Randomized Study to Evaluate the Efficacy and Safety of the Synthetic Bone Graft Material DBM Gel with rhBMP-2 versus DBM Gel Used during the TLIF Procedure in Patients with Lumbar Disc Disease. J Korean Neurosurg Soc 2021; 64:562-574. [PMID: 33906347 PMCID: PMC8273782 DOI: 10.3340/jkns.2020.0331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 11/27/2022] Open
Abstract
Objective This study is to evaluate the efficacy and safety of demineralized bone matrix (DBM) gel versus DBM gel with recombinant human bone morphogenetic protein-2 (rhBMP-2) used in transforaminal lumbar interbody fusion (TLIF).
Methods This study was designed as a prospective, multi-center, double-blind method, randomized study. All randomized subjects underwent TLIF with DBM gel with rhBMP-2 group (40 patients) as an experimental group or DBM gel group (36 patients) as a control group. Post-operative observations were performed at 12, 24, and 48 weeks. The spinal fusion rate on computed tomography scans and X-rays films, Visual analog scale pain scores, Oswestry disability index and SF-36 quality of life (QOL) scores were used for the efficacy evaluation. The incidence rate of adverse device effects (ADEs) and serious adverse device effects (SADEs) were used for safety evaluation.
Results The spinal fusion rate at 12 weeks for the DBM gel with rhBMP-2 group was higher with 73.68% compared to 58.82% for the DBM gel group. The 24 and 48 weeks were 72.22% and 82.86% for the DBM gel with rhBMP-2 group and 78.79% and 78.13%, respectively, for the DBM gel group. However, there were no significant differences between two groups in the spinal fusion rate at 12, 24, and 48 weeks post-treatment (p=0.1817, p=0.5272, p=0.6247). There was no significant difference between the two groups in the incidence rate of ADEs (p=0.3836). For ADEs in the experimental group, ‘Pyrexia’ (5.00%) was the most common ADE, followed by ‘Hypesthesia’, ‘Paresthesia’, ‘Transient peripheral paralysis’, ‘Spondylitis’ and ‘Insomnia’ (2.50%, respectively). ADEs reported in control group included ‘Pyrexia’, ‘Chest discomfort’, ‘Pain’, ‘Osteoarthritis’, ‘Nephropathy toxic’, ‘Neurogenic bladder’, ‘Liver function analyses’ and ‘Urticaria’ (2.86%, respectively). There was no significant difference between the two groups in the incidence rate of SADEs (p=0.6594). For SADE in the experimental group, ‘‘Pyrexia’ and ‘Spondylitis’ were 2.50%. SADE reported in the control group included 'Chest discomfort’, ‘Osteoarthritis’ and ‘Neurogenic bladder’. All SADEs described above were resolved after medical treatment.
Conclusion This study demonstrated that the spinal fusion rates of DBM gel group and DBM gel with rhBMP-2 group were not significantly different. But, this study provides knowledge regarding the earlier postoperative effect of rhBMP-2 containing DBM gel and also supports the idea that the longer term follow-up results are essential to confirm the safety and effectiveness.
Collapse
Affiliation(s)
- Seung-Jae Hyun
- Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seung Hwan Yoon
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Korea
| | - Joo Han Kim
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Jae Keun Oh
- Department of Neurosurgery, Spine Center, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Chang-Hyun Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Jae Shin
- Department of Neurosurgery, Yongin Severance Hospital, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Yongin, Korea
| | - Jiin Kang
- Department of Neurosurgery, Yongin Severance Hospital, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Yongin, Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Zhu J, Zhang C, Jia J, Yuan W, Zhang M, Leng H, Song C. Effect of weekly teriparatide injections on osteoporotic fracture healing: protocol for a double-blind, randomised controlled trial. BMJ Open 2021; 11:e043137. [PMID: 33795297 PMCID: PMC8021745 DOI: 10.1136/bmjopen-2020-043137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/06/2021] [Accepted: 03/17/2021] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Both animal studies and clinical trials have shown that daily parathyroid hormone administration promotes bone fracture healing. We previously found that weekly injections of the recombinant human parathyroid hormone teriparatide at a dosage of 20 μg/kg promoted tibial fracture healing to the same extent as daily injections of teriparatide at a dosage of 10 μg/kg in a rodent model. However, the effect of weekly teriparatide administration on human fracture healing is unreported. This protocol describes a randomised controlled clinical trial designed to evaluate whether weekly administration of teriparatide accelerates fracture repair in humans. METHODS AND ANALYSIS This single-centre, double-blind, randomised controlled trial will be conducted in Peking University Third Hospital. Eligible patients with Colles' fracture incurred within 48 hours will be randomly divided into two groups (n=40 per group) that will receive 14 weekly subcutaneous injections of either saline or teriparatide (40 μg/week). The primary outcome will be the time taken to achieve radiographic healing, as assessed using the modified radiographic union scale for tibial fractures. The secondary outcomes will be functional assessments, including the self-administered Patient-Rated Wrist Evaluation questionnaire, grip strength and rate of fracture non-union. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Peking University Third Hospital Medical Science Research Ethics Committee (M2020207). The findings will be disseminated in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT04473989: protocol version: 1.
Collapse
Affiliation(s)
- Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Jialin Jia
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Min Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Diseases, Beijing, China
| |
Collapse
|
41
|
Shoji S, Uchida K, Tazawa R, Saito W, Kuroda A, Sekiguchi H, Ishii D, Inoue S, Inoue G, Takaso M. Acceleration of bone formation using in situ-formed hyaluronan-hydrogel containing bone morphogenetic protein-2 in a mouse critical size bone defect model. Biomed Mater Eng 2021; 32:207-215. [PMID: 33780358 DOI: 10.3233/bme-201172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND An enzymatic crosslinking strategy using hydrogen peroxide and horseradish peroxidase is receiving increasing attention for application with in situ-formed hydrogels (IFHGs). IFHGs may also be ideal carrier materials for bone repair, although their ability to carry bone morphogenetic protein-2 (BMP2) has yet to be examined. OBJECTIVE We examined the effectiveness of an IFHG made of hyaluronan (IFHG-HA) containing BMP2 for promoting bone formation in a mouse critical size bone defect model. METHODS C57/BL6J mice received a 2-mm femoral critical-sized bone defect before being randomly assigned to one of the following treatment groups (n = 6): control (no treatment), IFHG-HA only, PBS with BMP2, and IFHG-HA with BMP2. X-ray radiographs were utilized to track new bone formation, and micro-computed tomography and histological examination were performed on new bone formed at the bone defect site two weeks after surgery. RESULTS Mice treated with PBS with BMP2 and IFHG-HA with BMP2 had greater bone volume (BV) and bone mineral content (BMC) than those receiving control, and successfully achieved consolidation. Mice treated with IFHG-HA with BMP2 had significantly higher BV and BMC than those treated with PBS with BMP2. CONCLUSIONS IFHG-HA may be an effective carrier for BMP2 to enable delivery for bone defect repair.
Collapse
Affiliation(s)
- Shintaro Shoji
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Shonan University of Medical Sciences Research Institute, Chigasaki, Kanagawa, Japan
| | - Ryo Tazawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Wataru Saito
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiyoshi Kuroda
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sekiguchi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.,Shonan University of Medical Sciences Research Institute, Chigasaki, Kanagawa, Japan
| | - Daisuke Ishii
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Sho Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
42
|
Andrée L, Yang F, Brock R, Leeuwenburgh SCG. Designing biomaterials for the delivery of RNA therapeutics to stimulate bone healing. Mater Today Bio 2021; 10:100105. [PMID: 33912824 PMCID: PMC8063862 DOI: 10.1016/j.mtbio.2021.100105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Ribonucleic acids (small interfering RNA, microRNA, and messenger RNA) have been emerging as a promising new class of therapeutics for bone regeneration. So far, however, research has mostly focused on stability and complexation of these oligonucleotides for systemic delivery. By comparison, delivery of RNA nanocomplexes from biomaterial carriers can facilitate a spatiotemporally controlled local delivery of osteogenic oligonucleotides. This review provides an overview of the state-of-the-art in the design of biomaterials which allow for temporal and spatial control over RNA delivery. We correlate this concept of spatiotemporally controlled RNA delivery to the most relevant events that govern bone regeneration to evaluate to which extent tuning of release kinetics is required. In addition, inspired by the physiological principles of bone regeneration, potential new RNA targets are presented. Finally, considerations for clinical translation and upscaled production are summarized to stimulate the design of clinically relevant RNA-releasing biomaterials.
Collapse
Affiliation(s)
- L Andrée
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - F Yang
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| | - R Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Geert Grooteplein 28, Nijmegen, 6525 GA, the Netherlands
| | - S C G Leeuwenburgh
- Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands
| |
Collapse
|
43
|
Levingstone T, Ali B, Kearney C, Dunne N. Hydroxyapatite sonosensitization of ultrasound-triggered, thermally responsive hydrogels: An on-demand delivery system for bone repair applications. J Biomed Mater Res B Appl Biomater 2021; 109:1622-1633. [PMID: 33600064 DOI: 10.1002/jbm.b.34820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
While bones have the innate capability to physiologically regenerate, in certain cases regeneration is suboptimal, too slow, or does not occur. Biomaterials-based growth factor delivery systems have shown potential for the treatment of challenging bone defects, however, achieving controlled growth factor release remains a challenge. The objective of this study was to develop a thermally responsive hydrogel for bone regeneration capable of ultrasound-triggered on-demand delivery of therapeutic agents. Furthermore, it was hypothesized that incorporation of hydroxyapatite (HA) into the hydrogel could increase sonosensitization, augmenting ultrasound sensitivity to enable controlled therapeutic release to the target tissue. Alginate thermally responsive P(Alg-g-NIPAAm) hydrogels were fabricated and varying quantities of HA (1, 3, 5, and 7% wt./vol.) incorporated. All hydrogels were highly injectable (maximum injection force below 6.5 N) and rheological characterization demonstrated their ability to gel at body temperature. The study demonstrated the ultrasound-triggered release of sodium fluorescein (NaF), bovine serum albumin (BSA), and bone morphogenetic protein 2 (BMP-2) from the hydrogels. Release rates of BSA and BMP-2 were significantly enhanced in the HA containing hydrogels, confirming for the first time the role of HA as a son sensitizer. Together these results demonstrate the potential of these ultrasound-triggered thermally responsive hydrogels for on-demand delivery of therapeutic agents for bone regeneration.
Collapse
Affiliation(s)
- Tanya Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| | - Badriah Ali
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cathal Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Centre for Medical Engineering Research (MEDeng), Dublin City University, Dublin, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity Biomedical Sciences Institute, Dublin, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.,School of Pharmacy, Queen's University Belfast, Belfast, UK.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Fardjahromi MA, Ejeian F, Razmjou A, Vesey G, Mukhopadhyay SC, Derakhshan A, Warkiani ME. Enhancing osteoregenerative potential of biphasic calcium phosphates by using bioinspired ZIF8 coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111972. [PMID: 33812600 DOI: 10.1016/j.msec.2021.111972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Biphasic calcium phosphate ceramics (BCPs) have been extensively used as a bone graft in dental clinics to reconstruct lost bone in the jaw and peri-implant hard tissue due to their good bone conduction and similar chemical structure to the teeth and bone. However, BCPs are not inherently osteoinductive and need additional modification and treatment to enhance their osteoinductivity. The present study aims to develop an innovative strategy to improve the osteoinductivity of BCPs using unique features of zeolitic imidazolate framework-8 (ZIF8). In this method, commercial BCPs (Osteon II) were pre-coated with a zeolitic imidazolate framework-8/polydopamine/polyethyleneimine (ZIF8/PDA/PEI) layer to form a uniform and compact thin film of ZIF8 on the surface of BCPs. The surface morphology and chemical structure of ZIF8 modified Osteon II (ZIF8-Osteon) were confirmed using various analytical techniques such as XRD, FTIR, SEM, and EDX. We evaluated the effect of ZIF8 coating on cell attachment, growth, and osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs). The results revealed that altering the surface chemistry and topography of Osteon II using ZIF8 can effectively promote cell attachment, proliferation, and bone regeneration in both in vitro and in vivo conditions. In conclusion, the method applied in this study is simple, low-cost, and time-efficient and can be used as a versatile approach for improving osteoinductivity and osteoconductivity of other types of alloplastic bone grafts.
Collapse
Affiliation(s)
- Mahsa Asadniaye Fardjahromi
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran; Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Graham Vesey
- Regeneus Ltd, Paddington, Sydney, NSW, 2021, Australia
| | | | - Amin Derakhshan
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
45
|
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol 2021; 175:544-557. [PMID: 33571587 DOI: 10.1016/j.ijbiomac.2021.02.052] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
The growing need for treatment of the impaired bone tissue has resulted in the quest for the improvement of bone tissue regeneration strategies. Bone tissue engineering is trying to create bio-inspired systems with a coordinated combination of the cells, scaffolds, and bioactive factors to repair the damaged bone tissue. The scaffold provides a supportive matrix for cell growth, migration, and differentiation and also, acts as a delivery system for bioactive factors. Bioactive factors including a large group of cytokines, growth factors (GFs), peptides, and hormonal signals that regulate cellular behaviors. These factors stimulate osteogenic differentiation and proliferation of cells by activating the signaling cascades related to ossification and angiogenesis. GFs and bioactive peptides are significant parts of the bone tissue engineering systems. Besides, the use of the osteogenic potential of hormonal signals has been an attractive topic, particularly in osteoporosis-related bone defects. Due to the unstable nature of protein factors and non-specific effects of hormones, the engineering of scaffolds to the controlled delivery of these bioactive molecules has paramount importance. This review updates the growth factors, engineered peptides, and hormones that are used in bone tissue engineering systems. Also, discusses how these bioactive molecules may be linked to accelerating bone regeneration.
Collapse
Affiliation(s)
- Banafsheh Safari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
47
|
BMP-2 and VEGF-A modRNAs in collagen scaffold synergistically drive bone repair through osteogenic and angiogenic pathways. Commun Biol 2021; 4:82. [PMID: 33469143 PMCID: PMC7815925 DOI: 10.1038/s42003-020-01606-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bone has a remarkable potential for self-healing and repair, yet several injury types are non-healing even after surgical or non-surgical treatment. Regenerative therapies that induce bone repair or improve the rate of recovery are being intensely investigated. Here, we probed the potential of bone marrow stem cells (BMSCs) engineered with chemically modified mRNAs (modRNA) encoding the hBMP-2 and VEGF-A gene to therapeutically heal bone. Induction of osteogenesis from modRNA-treated BMSCs was confirmed by expression profiles of osteogenic related markers and the presence of mineralization deposits. To test for therapeutic efficacy, a collagen scaffold inoculated with modRNA-treated BMSCs was explored in an in vivo skull defect model. We show that hBMP-2 and VEGF-A modRNAs synergistically drive osteogenic and angiogenic programs resulting in superior healing properties. This study exploits chemically modified mRNAs, together with biomaterials, as a potential approach for the clinical treatment of bone injury and defects.
Collapse
|
48
|
Straign DM, Ihle CL, Provera MD, Owens P. Targeting the BMP Pathway in Prostate Cancer Induced Bone Disease. Front Endocrinol (Lausanne) 2021; 12:769316. [PMID: 34956082 PMCID: PMC8702552 DOI: 10.3389/fendo.2021.769316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
From the 33,000 men in the U.S. who die from prostate cancer each year, the majority of these patients exhibit metastatic disease with bone being the most common site of metastasis. Prostate cancer bone metastases are commonly blastic, exhibiting new growth of unhealthy sclerotic bone, which can cause painful skeletal related events. Patient's current care entails androgen deprivation therapy, anti-resorptive agents, radiation, and chemotherapy to help control the spread of the cancer but little intervention is available to treat blastic bone disease. The transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) pathways are known to regulate bone growth and resorption of destructive lytic bone lesions, yet the role of TGFβ/BMP signaling in prostate cancer blastic vs lytic bone lesions are not fully understood. We hypothesized that to target the BMP/TGFβ pathway, a useful biomarker of bone lytic or blastic pathology would have superior response. We show distinct BMP vs. TGFβ signaling in clinical samples of human prostate cancer bone metastases with either lytic or blastic pathologies. BMPs exhibit distinct effects on bone homeostasis, so to examine the effect of BMP inhibition on healthy bone, we treated mice with the BMP receptor small molecule antagonist DMH1 and saw a modest temporary improvement in bone health, with increased trabecular bone. We next sought to use the BMP inhibitor DMH1 to treat bone metastasis engraftment seeded by a caudal artery injection of the lytic human prostate cell line PC3 in immunodeficient mice. The colonization by PC3 cells to the bone were restricted with DMH1 treatment and bone health was importantly preserved. We next proceeded to test BMP inhibition in an injury model of established bone metastasis via intratibial injection of the MYC-CaP mouse prostate cell line into FVBN syngeneic mice. DMH1 treated mice had a modest decrease in trabecular bone and reduced lymphocytes in circulation without affecting tumor growth. Taken together we show unique responses to BMP inhibition in metastatic prostate cancer in the bone. These studies suggest that profiling bone lesions in metastatic prostate cancer can help identify therapeutic targets that not only treat the metastatic tumor but also address the need to better treat the distinct tumor induced bone disease.
Collapse
Affiliation(s)
- Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claire L. Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Philip Owens
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
- *Correspondence: Philip Owens,
| |
Collapse
|
49
|
Nedorubova IA, Bukharova TB, Vasilyev AV, Goldshtein DV, Kulakov AA. Non-viral delivery of the BMP2 gene for bone regeneration. GENES & CELLS 2020; 15:33-39. [DOI: 10.23868/202012005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Gene-activated bone grafts and substitutes are promising tools for the bone defect healing, which are capable to induce prolonged production of growth factors with a therapeutic effect at physiological concentrations. Non-viral methods of delivering plasmid constructs with target genes are the safest for clinical use, but their efficiency is lower in comparison with viral vectors. To solve the problem of plasmid delivery into cells, some systems with a high transfection capacity and ensure sufficient cell viability are being developed. Moreover, there are different approaches to improve the level of expression of target genes and targeted delivery to the bone defect in order to achieve local therapeutic concentrations. This review considers approaches which are aimed to increase the efficiency of bone tissue regeneration methods based on non-viral delivery systems for osteoinduction genes using the example of the bone morphogenetic protein-2 gene.
Collapse
|
50
|
Hatchell AC, Aoude A, Aldebeyan S, McKenzie CD, Lewkonia P, de Haas W. Use of an Omental Flow-Through Flap for Recipient Vessels in the Reconstruction of a Lumbar Spine Defect: A Case Report. JBJS Case Connect 2020; 10:e20.00156. [PMID: 33522724 DOI: 10.2106/jbjs.cc.20.00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CASE Spine reconstruction after en bloc spondylectomy is challenging and may require multidisciplinary intervention. En bloc spine tumor resection with embolization of local recipient vessels for tumor control limits reconstructive options. Herein, we describe a case where combined efforts from orthopaedic, general, and plastic surgery teams permitted the successful reconstruction of a multilevel lumbar vertebral defect. CONCLUSION A fibula-free flap within a titanium cage construct anastomosed to the left gastroepiploic vessels via a pedicled omental flow-through flap is a viable and novel method for reconstruction of a multilevel vertebral defect.
Collapse
Affiliation(s)
- Alexandra C Hatchell
- Section of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada.,Division of Plastic Surgery, Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | - Ahmed Aoude
- Section of Orthopedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Sultan Aldebeyan
- Section of Orthopedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - C David McKenzie
- Section of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Peter Lewkonia
- Section of Orthopedic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Willian de Haas
- Section of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|