1
|
Propistsova EA, Gainett G, Chipman AD, Sharma PP, Gavish-Regev E. Shedding light on the embryogenesis and eye development of the troglophile cave spider Tegenaria pagana C. L. Koch, 1840 (Araneae: Agelenidae). EvoDevo 2025; 16:2. [PMID: 40057742 PMCID: PMC11889846 DOI: 10.1186/s13227-025-00238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/20/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Relatively little is known about the diversity of embryonic development across lineages of spiders, even though the study of embryonic development is a primary step in evo-devo studies and essential for understanding phenotypic evolution. Practically nothing is known about embryogenesis in cave-dwelling spiders, animals which play an important role in cave ecosystems and may have remarkable adaptations to aphotic habitats such as loss of eyes. RESULTS Here, we describe embryogenesis and study the expression patterns of several genes of the Retinal Determination Network (RDN) in the troglophile (species that have pre-adaptations to life in caves, and can complete their life cycle in caves, as well as in epigean habitats) eye-bearing funnel-web spider species Tegenaria pagana C. L. Koch, 1840, using fluorescent staining and confocal microscopy. We discuss the characteristic features of T. pagana embryogenesis and key RDN genes. Although in many respects the embryonic development of different species of entelegyne spiders is similar, we found differences in the rate of development, and the details of the opisthosoma, respiratory system, and brain morphogenesis in comparison with established spider model species. Our data supports the hypothesis of a conserved role of sine oculis gene in the eye formation of arachnids. CONCLUSIONS Given the recent discovery of congeneric cave species with different degrees of eye reduction throughout Israel, these data sets provide a foundational point of comparison for studying eye reduction and eye loss events in the spider genus Tegenaria.
Collapse
Affiliation(s)
- Evgenia A Propistsova
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Guilherme Gainett
- Department of Systems Biology, Harvard Medical School, Boston, USA
- Department of Pathology, Boston Children's Hospital, Boston, USA
| | - Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, USA
- Zoological Museum, University of Wisconsin-Madison, Madison, WI, USA
| | - Efrat Gavish-Regev
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Bar-Lev Viterbo A, Wexler JR, Mayost Lev-Ari O, Chipman AD. Early embryonic development of the German cockroach Blattella germanica. EvoDevo 2024; 15:14. [PMID: 39462430 PMCID: PMC11520056 DOI: 10.1186/s13227-024-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Early embryogenesis is characterized by dramatic cell proliferation and movement. In most insects, early embryogenesis includes a phase called the uniform blastoderm, during which cells evenly cover the entirety of the egg. However, the embryo of the German cockroach, Blattella germanica, like those of many insects within the super order Polyneoptera, does not have a uniform blastoderm; instead, its first cells condense rapidly at the site of a future germband. We investigated early development in this species in order to understand how early gene expression is or is not conserved in these insect embryos with distinct early cell behaviors. RESULTS We present a detailed time series of nuclear division and distribution from fertilization through germband formation and report patterns of expression for the early patterning genes hunchback, caudal, and twist in order to understand early polarization and mesoderm formation. We show a detailed time course of the spatial expression of two genes involved in the segmentation cascade, hedgehog and even-skipped, and demonstrate two distinct dynamics of the segmentation process. CONCLUSIONS Despite dramatic differences in cell distribution between the blastoderms of many Polyneopteran insects and those of more well-studied developmental models, expression patterns of early patterning genes are mostly similar. Genes associated with axis determination in other insects are activated relatively late and are probably not maternally deposited. The two phases of segmentation-simultaneous and sequential-might indicate a broadly conserved mode of morphological differentiation. The developmental time course we present here should be of value for further investigation into the causes of this distinct blastoderm type.
Collapse
Affiliation(s)
- Ariel Bar-Lev Viterbo
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Judith R Wexler
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Orel Mayost Lev-Ari
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| |
Collapse
|
3
|
Leite DJ, Schönauer A, Blakeley G, Harper A, Garcia-Castro H, Baudouin-Gonzalez L, Wang R, Sarkis N, Nikola AG, Koka VSP, Kenny NJ, Turetzek N, Pechmann M, Solana J, McGregor AP. An atlas of spider development at single-cell resolution provides new insights into arthropod embryogenesis. EvoDevo 2024; 15:5. [PMID: 38730509 PMCID: PMC11083766 DOI: 10.1186/s13227-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.
Collapse
Affiliation(s)
- Daniel J Leite
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| | - Anna Schönauer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Grace Blakeley
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Amber Harper
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Helena Garcia-Castro
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | - Ruixun Wang
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Naïra Sarkis
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Alexander Günther Nikola
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Venkata Sai Poojitha Koka
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nathan J Kenny
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, New Zealand
| | - Natascha Turetzek
- Evolutionary Ecology, Faculty of Biology, Biocenter, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47B, 50674, Cologne, Germany
| | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
4
|
Medina-Jiménez BI, Budd GE, Janssen R. Single-cell RNA sequencing of mid-to-late stage spider embryos: new insights into spider development. BMC Genomics 2024; 25:150. [PMID: 38326752 PMCID: PMC10848406 DOI: 10.1186/s12864-023-09898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.
Collapse
Affiliation(s)
- Brenda I Medina-Jiménez
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| |
Collapse
|
5
|
Janssen R, Budd GE. New insights into mesoderm and endoderm development, and the nature of the onychophoran blastopore. Front Zool 2024; 21:2. [PMID: 38267986 PMCID: PMC10809584 DOI: 10.1186/s12983-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Early during onychophoran development and prior to the formation of the germ band, a posterior tissue thickening forms the posterior pit. Anterior to this thickening forms a groove, the embryonic slit, that marks the anterior-posterior orientation of the developing embryo. This slit is by some authors considered the blastopore, and thus the origin of the endoderm, while others argue that the posterior pit represents the blastopore. This controversy is of evolutionary significance because if the slit represents the blastopore, then this would support the amphistomy hypothesis that suggests that a slit-like blastopore in the bilaterian ancestor evolved into protostomy and deuterostomy. RESULTS In this paper, we summarize our current knowledge about endoderm and mesoderm development in onychophorans and provide additional data on early endoderm- and mesoderm-determining marker genes such as Blimp, Mox, and the T-box genes. CONCLUSION We come to the conclusion that the endoderm of onychophorans forms prior to the development of the embryonic slit, and thus that the slit is not the primary origin of the endoderm. It is thus unlikely that the embryonic slit represents the blastopore. We suggest instead that the posterior pit indeed represents the lips of the blastopore, and that the embryonic slit (and surrounding tissue) represents a morphologically superficial archenteron-like structure. We conclude further that both endoderm and mesoderm development are under control of conserved gene regulatory networks, and that many of the features found in arthropods including the model Drosophila melanogaster are likely derived.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
6
|
Prpic NM, Pechmann M. Extraembryonic tissue in chelicerates: a review and outlook. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210269. [PMID: 36252223 PMCID: PMC9574639 DOI: 10.1098/rstb.2021.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 01/03/2023] Open
Abstract
The formation of extraembryonic membranes (EEMs) contributes to the proper development of many animals. In arthropods, the formation and function of EEMs have been studied best in insects. Regarding the development of extraembryonic tissue in chelicerates (spiders and relatives), most information is available for spiders (Araneae). Especially two populations of cells have been considered to represent EEMs in spiders. The first of these potential EEMs develops shortly after egg deposition, opposite to a radially symmetrical germ disc that forms in one hemisphere of the egg and encloses the yolk. The second tissue, which has been described as being extraembryonic is the so-called dorsal field, which is required to cover the dorsal part of the developing spider germ rudiment before proper dorsal closure. In this review, we summarize the current knowledge regarding the formation of potential extraembryonic structures in the Chelicerata. We describe the early embryogenesis of spiders and other chelicerates, with a special focus on the formation of the potential extraembryonic tissues. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Justus-Liebig-Universitaet Giessen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392 Giessen, Germany
| | - Matthias Pechmann
- Institute for Zoology, University of Cologne, Biocenter, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
7
|
Iwasaki-Yokozawa S, Nanjo R, Akiyama-Oda Y, Oda H. Lineage-specific, fast-evolving GATA-like gene regulates zygotic gene activation to promote endoderm specification and pattern formation in the Theridiidae spider. BMC Biol 2022; 20:223. [PMID: 36203191 PMCID: PMC9535882 DOI: 10.1186/s12915-022-01421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background
The process of early development varies across the species-rich phylum Arthropoda. Owing to the limited research strategies for dissecting lineage-specific processes of development in arthropods, little is known about the variations in early arthropod development at molecular resolution. The Theridiidae spider, Parasteatoda tepidariorum, has its genome sequenced and could potentially contribute to dissecting early embryonic processes. Results We present genome-wide identification of candidate genes that exhibit locally restricted expression in germ disc forming stage embryos of P. tepidariorum, based on comparative transcriptomes of isolated cells from different regions of the embryo. A subsequent pilot screen by parental RNA interference identifies three genes required for body axis formation. One of them is a GATA-like gene that has been fast evolving after duplication and divergence from a canonical GATA family gene. This gene is designated fuchi nashi (fuchi) after its knockdown phenotypes, where the cell movement toward the formation of a germ disc was reversed. fuchi expression occurs in cells outside a forming germ disc and persists in the endoderm. Transcriptome and chromatin accessibility analyses of fuchi pRNAi embryos suggest that early fuchi activity regulates chromatin state and zygotic gene activation to promote endoderm specification and pattern formation. We also show that there are many uncharacterized genes regulated by fuchi. Conclusions Our genome-based research using an arthropod phylogenetically distant from Drosophila identifies a lineage-specific, fast-evolving gene with key developmental roles in one of the earliest, genome-wide regulatory events, and allows for molecular exploration of the developmental variations in early arthropod embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01421-0.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan
| | - Ryota Nanjo
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.,Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, 569-1125, Japan. .,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
8
|
Akiyama-Oda Y, Akaiwa T, Oda H. Reconstruction of the Global Polarity of an Early Spider Embryo by Single-Cell and Single-Nucleus Transcriptome Analysis. Front Cell Dev Biol 2022; 10:933220. [PMID: 35938158 PMCID: PMC9353575 DOI: 10.3389/fcell.2022.933220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Patterning along an axis of polarity is a fundamental step in the development of a multicellular animal embryo. In the cellular field of an early spider embryo, Hedgehog signaling operates to specify a "fuzzy" French-flag-like pattern along the primary axis, which is related to the future anterior-posterior (A-P) axis. However, details regarding the generation and development of a diversity of cell states based on the embryo polarity are not known. To address this issue, we applied single-cell RNA sequencing to the early spider embryo consisting of approximately 2,000 cells. Our results confirmed that this technique successfully detected 3 cell populations corresponding to the germ layers and some transient cell states. We showed that the data from dissociated cells had sufficient information for reconstruction of a correct global A-P polarity of the presumptive ectoderm, without clear segregation of specific cell states. This outcome is explained by the varied but differentially overlapping expression of Hedgehog-signal target genes and newly identified marker genes. We also showed that the data resources generated by the transcriptome analysis are applicable to a genome-wide search for genes whose expression is spatially regulated, based on the detection of pattern similarity. Furthermore, we performed single-nucleus RNA sequencing, which was more powerful in detecting emerging cell states. The single-cell and single-nucleus transcriptome techniques will help investigate the pattern-forming processes in the spider model system in an unbiased, comprehensive manner. We provided web-based resources of these transcriptome datasets for future studies of pattern formation and cell differentiation.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takanori Akaiwa
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
9
|
Akiyama-Oda Y, Oda H. Hedgehog signaling controls segmentation dynamics and diversity via msx1 in a spider embryo. SCIENCE ADVANCES 2020; 6:eaba7261. [PMID: 32917677 PMCID: PMC11206446 DOI: 10.1126/sciadv.aba7261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Hedgehog (Hh) signaling plays fundamental roles in animal body patterning. Understanding its mechanistic complexity requires simple tractable systems that can be used for these studies. In the early spider embryo, Hh signaling mediates the formation of overall anterior-posterior polarity, yet it remains unclear what mechanisms link the initial Hh signaling activity with body axis segmentation, in which distinct periodic stripe-forming dynamics occur depending on the body region. We performed genome-wide searches for genes that transcriptionally respond to altered states of Hh signaling. Characterization of genes negatively regulated by Hh signaling suggested that msx1, encoding a conserved transcription factor, functions as a key segmentation gene. Knockdown of msx1 prevented all dynamic processes causing spatial repetition of stripes, including temporally repetitive oscillations and bi-splitting, and temporally nonrepetitive tri-splitting. Thus, Hh signaling controls segmentation dynamics and diversity via msx1 These genome-wide data from an invertebrate illuminate novel mechanistic features of Hh-based patterning.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, Japan.
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
10
|
Oda H, Akiyama-Oda Y. The common house spider Parasteatoda tepidariorum. EvoDevo 2020; 11:6. [PMID: 32206294 PMCID: PMC7082966 DOI: 10.1186/s13227-020-00152-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 11/20/2022] Open
Abstract
The common house spider Parasteatoda tepidariorum, belonging to the Chelicerata in the phylum Arthropoda, has emerged as an experimental system for studying mechanisms of development from an evolutionary standpoint. In this article, we review the distinct characteristics of P. tepidariorum, the major research questions relevant to this organism, and the available key methods and resources. P. tepidariorum has a relatively short lifecycle and, once mated, periodically lays eggs. The morphogenetic field of the P. tepidariorum embryo is cellular from an early stage and exhibits stepwise symmetry-breaking events and stripe-forming processes that are associated with body axes formation and segmentation, respectively, before reaching the arthropod phylotypic stage. Self-regulatory capabilities of the embryonic field are a prominent feature in P. tepidariorum. The mechanisms and logic underlying the evolvability of heritable patterning systems at the phylum level could be one of the major avenues of research investigated using this animal. The sequenced genome reveals whole genome duplication (WGD) within chelicerates, which offers an invertebrate platform for investigating the potential roles of WGD in animal diversification and evolution. The development and evolution of lineage-specific organs, including the book lungs and the union of spinnerets and silk glands, are attractive subjects of study. Studies using P. tepidariorum can benefit from the use of parental RNA interference, microinjection applications (including cell labeling and embryonic RNA interference), multicolor fluorescence in situ hybridization, and laser ablation as well as rich genomic and transcriptomic resources. These techniques enable functional gene discoveries and the uncovering of cellular and molecular insights.![]()
Collapse
Affiliation(s)
- Hiroki Oda
- 1Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 Japan.,2Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka Japan
| | - Yasuko Akiyama-Oda
- 1Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125 Japan.,3Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka Japan
| |
Collapse
|
11
|
Pechmann M. Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae). Dev Genes Evol 2020; 230:75-94. [PMID: 32076811 PMCID: PMC7128004 DOI: 10.1007/s00427-020-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.
Collapse
Affiliation(s)
- Matthias Pechmann
- Institute for Zoology, Department for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
12
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
13
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
14
|
Paese CLB, Schoenauer A, Leite DJ, Russell S, McGregor AP. A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. eLife 2018; 7:e37567. [PMID: 30126532 PMCID: PMC6167052 DOI: 10.7554/elife.37567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023] Open
Abstract
Sox genes encode a set of highly conserved transcription factors that regulate many developmental processes. In insects, the SoxB gene Dichaete is the only Sox gene known to be involved in segmentation. To determine if similar mechanisms are used in other arthropods, we investigated the role of Sox genes during segmentation in the spider Parasteatoda tepidariorum. While Dichaete does not appear to be involved in spider segmentation, we found that the closely related Sox21b-1 gene acts as a gap gene during formation of anterior segments and is also part of the segmentation clock for development of the segment addition zone and sequential addition of opisthosomal segments. Thus, we have found that two different mechanisms of segmentation in a non-mandibulate arthropod are regulated by a SoxB gene. Our work provides new insights into the function of an important and conserved gene family, and the evolution of the regulation of segmentation in arthropods.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Anna Schoenauer
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Daniel J Leite
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| | - Steven Russell
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Alistair P McGregor
- Laboratory of Evolutionary Developmental BiologyDepartment of Biological and Medical Sciences, Oxford Brookes UniversityOxfordUnited Kingdom
| |
Collapse
|
15
|
Iwasaki-Yokozawa S, Akiyama-Oda Y, Oda H. Genome-scale embryonic developmental profile of gene expression in the common house spider Parasteatoda tepidariorum. Data Brief 2018; 19:865-867. [PMID: 29900384 PMCID: PMC5997937 DOI: 10.1016/j.dib.2018.05.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 01/03/2023] Open
Abstract
We performed RNA sequencing (RNA-Seq) at ten successive developmental stages in embryos of the common house spider Parasteatoda tepidariorum. Two independent datasets from two pairs of parents represent the normalized coverage of mapped RNA-Seq reads along scaffolds of the P. tepidariorum genome assembly. Transcript abundance was calculated against existing AUGUSTUS gene models. The datasets have been deposited in the Gene Expression Omnibus (GEO) Database at the National Center for Biotechnology Information (NCBI) under the accession number GSE112712.
Collapse
Affiliation(s)
- Sawa Iwasaki-Yokozawa
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
- Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
- Laboratory of Biohistory, Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
- Corresponding author at: Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| |
Collapse
|
16
|
Ye X, Hong W, Hao B, Peng G, Huang L, Zhao Z, Zhou Y, Zheng M, Li C, Liang C, Yi E, Pu J, Li B, Ran P. PM2.5 promotes human bronchial smooth muscle cell migration via the sonic hedgehog signaling pathway. Respir Res 2018; 19:37. [PMID: 29499705 PMCID: PMC5833105 DOI: 10.1186/s12931-017-0702-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. METHODS HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. RESULTS PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. CONCLUSIONS These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.
Collapse
Affiliation(s)
- Xiuqin Ye
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Xiamen Humanity Hospital, Xiamen, Fujian China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Binwei Hao
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingmei Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Respiratory Department of the First Hospital of Yueyang City, Yueyang, Hunan China
| | - Zhuxiang Zhao
- The First Affiliated Municipal Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengning Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenglong Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Erkang Yi
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinding Pu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. eLife 2017; 6. [PMID: 28849761 PMCID: PMC5574703 DOI: 10.7554/elife.27590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
Collapse
Affiliation(s)
- Matthias Pechmann
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Matthew A Benton
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Nathan J Kenny
- Life Sciences Department, The Natural History Museum, London, United Kingdom
| | - Nico Posnien
- Department of Developmental Biology, University of Goettingen, Goettingen, Germany
| | - Siegfried Roth
- Developmental Biology, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Janssen R, Budd GE. Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Dev Biol 2017; 427:155-164. [DOI: 10.1016/j.ydbio.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022]
|
19
|
Janssen R. A molecular view of onychophoran segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:341-353. [PMID: 27725255 DOI: 10.1016/j.asd.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/22/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This paper summarizes our current knowledge on the expression and assumed function of Drosophila and (other) arthropod segmentation gene orthologs in Onychophora, a closely related outgroup to Arthropoda. This includes orthologs of the so-called Drosophila segmentation gene cascade including the Hox genes, as well as other genetic factors and pathways involved in non-drosophilid arthropods. Open questions about and around the topic are addressed, such as the definition of segments in onychophorans, the unclear regulation of conserved expression patterns downstream of non-conserved factors, and the potential role of mesodermal patterning in onychophoran segmentation.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| |
Collapse
|
20
|
Feitosa NM, Pechmann M, Schwager EE, Tobias-Santos V, McGregor AP, Damen WGM, Nunes da Fonseca R. Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 2017; 55. [PMID: 28432834 DOI: 10.1002/dvg.23033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Matthias Pechmann
- Institute for Developmental Biology, University of Cologne, Cologne, North-Rhine Westphalia, 50674, Germany
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, Massachusetts, 01854
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Wim G M Damen
- Department of Genetics, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), 21941-599 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Redl E, Scherholz M, Wollesen T, Todt C, Wanninger A. Cell Proliferation Pattern and Twist Expression in an Aplacophoran Mollusk Argue Against Segmented Ancestry of Mollusca. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:422-436. [PMID: 27966274 PMCID: PMC5299467 DOI: 10.1002/jez.b.22714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
The study of aplacophoran mollusks (i.e., Solenogastres or Neomeniomorpha and Caudofoveata or Chaetodermomorpha) has traditionally been regarded as crucial for reconstructing the morphology of the last common ancestor of the Mollusca. Since their proposed close relatives, the Polyplacophora, show a distinct seriality in certain organ systems, the aplacophorans are also in the focus of attention with regard to the question of a potential segmented ancestry of mollusks. To contribute to this question, we investigated cell proliferation patterns and the expression of the twist ortholog during larval development in solenogasters. In advanced to late larvae, during the outgrowth of the trunk, a pair of longitudinal bands of proliferating cells is found subepithelially in a lateral to ventrolateral position. These bands elongate during subsequent development as the trunk grows longer. Likewise, expression of twist occurs in two laterally positioned, subepithelial longitudinal stripes in advanced larvae. Both, the pattern of proliferating cells and the expression domain of twist demonstrate the existence of extensive and long-lived mesodermal bands in a worm-shaped aculiferan, a situation which is similar to annelids but in stark contrast to conchiferans, where the mesodermal bands are usually rudimentary and ephemeral. Yet, in contrast to annelids, neither the bands of proliferating cells nor the twist expression domain show a separation into distinct serial subunits, which clearly argues against a segmented ancestry of mollusks. Furthermore, the lack of twist expression during the development of the ventromedian muscle argues against homology of a ventromedian longitudinal muscle in protostomes with the notochord of chordates.
Collapse
Affiliation(s)
- Emanuel Redl
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Maik Scherholz
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Tim Wollesen
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Christiane Todt
- University Museum, The Natural History CollectionsUniversity of BergenBergenNorway
| | - Andreas Wanninger
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| |
Collapse
|
22
|
Pechmann M. Formation of the germ-disc in spider embryos by a condensation-like mechanism. Front Zool 2016; 13:35. [PMID: 27525029 PMCID: PMC4982120 DOI: 10.1186/s12983-016-0166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Determination of the embryonic body axes is a crucial developmental process in all animals. The establishment of the embryonic axes of spiders has been best studied in the common-house-spider Parasteatoda tepidariorum. Here, anteroposterior (AP) polarity arises during germ disc formation; the centre of the germ-disc marks the future posterior pole, and the rim of the disc the future anterior pole of the spider embryo. The centre of the germ disc is also needed for the formation of the cumulus, a group of migratory cells needed to establish dorsoventral (DV) polarity. Thus, both body axes depend on proper germ disc formation and patterning. However, these processes have not been fully analysed at the cellular and molecular level. Results Here I present new techniques to stain the cell membranes/outlines in live and fixed spider embryos. I show that the germ-disc is formed from a regular and contiguous blastoderm and that co-ordinated cell shape changes, rather than migration of single cells, are required to drive germ-disc formation in P. tepidariorum embryos. Furthermore, I show that the rate of cell divisions within the embryonic and extra-embryonic region is not involved in the rapid establishment of the germ-disc. Finally, I show that the process of germ-disc formation is dependent on the initiation of zygotic transcription. Conclusions The presented data provide new insights in to the formation of the germ-disc in spider embryos. The establishment of the germ-disc in Parasteatoda embryos is a highly dynamic process that involves wide scale cell-shape changes. While most of the blastodermal cells become cuboidal to form the dense germ-disc, the remaining blastodermal cells stay squamous and develop into huge extra-embryonic, yolk rich cells. In addition, this study shows that the onset of zygotic transcription is needed to establish the germ-disc itself, and that the mid-blastula transition of Parasteatoda tepidariorum embryos is prior to any overt axis establishment. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0166-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Pechmann
- University of Cologne, Cologne Biocenter, Zülpicher Str. 47B, 50674 Cologne, Germany
| |
Collapse
|
23
|
Akiyama-Oda Y, Oda H. Multi-color FISH facilitates analysis of cell-type diversification and developmental gene regulation in theParasteatodaspider embryo. Dev Growth Differ 2016; 58:215-24. [DOI: 10.1111/dgd.12263] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall; 1-1 Murasaki-cho 569-1125 Takatsuki Osaka 569-1125 Japan
- Microbiology and Infection Control; Osaka Medical College; 2-7 Daigaku-machi 569-8686 Takatsuki, Osaka Japan
| | - Hiroki Oda
- JT Biohistory Research Hall; 1-1 Murasaki-cho 569-1125 Takatsuki Osaka 569-1125 Japan
| |
Collapse
|
24
|
Edgar A, Bates C, Larkin K, Black S. Gastrulation occurs in multiple phases at two distinct sites in Latrodectus and Cheiracanthium spiders. EvoDevo 2015; 6:33. [PMID: 26500757 PMCID: PMC4618530 DOI: 10.1186/s13227-015-0029-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The longstanding canonical model of spider gastrulation posits that cell internalization occurs only at a unitary central blastopore; and that the cumulus (dorsal organizer) arises from within the early deep layer by cell-cell interaction. Recent work has begun to challenge the canonical model by demonstrating cell internalization at extra-blastoporal sites in two species (Parasteatoda tepidariorum and Zygiella x-notata); and showing in Zygiella that the prospective cumulus internalizes first, before other cells are present in the deep layer. The cell behaviors making up spider gastrulation thus appear to show considerable variation, and a wider sampling of taxa is indicated. RESULTS We evaluated the model in three species from two families by direct observation of living embryos. Movements of individual cells were traced from timelapse recordings and the origin and fate of the cumulus determined by CM-DiI labeling. We show that there are two distinct regions of internalization: most cells enter the deep layer via the central blastopore but many additional cells ingress via an extra-blastoporal ring, either at the periphery of the germ disc (Latrodectus spp.) or nearer the central field (Cheiracanthium mildei). In all species, the cumulus cells internalize first; this is shown by tracing cells in timelapse, histology, and by CM-DiI injection into the deep layer. Injection very early in gastrulation labels only cumulus mesenchyme cells whereas injections at later stages label non-cumulus mesoderm and endoderm. CONCLUSIONS We propose a revised model to accommodate the new data. Our working model has the prospective cumulus cells internalizing first, at the central blastopore. The cumulus cells begin migration before other cells enter the deep layer. This is consistent with early specification of the cumulus and suggests that cell-cell interaction with other deep layer cells is not required for its function. As the cumulus migrates, additional mesendoderm internalizes at two distinct locations: through the central blastopore and at an extra-blastoporal ring. Our work thus demonstrates early, cell-autonomous behavior of the cumulus and variation in subsequent location and timing of cell internalization during gastrulation in spiders.
Collapse
Affiliation(s)
- Allison Edgar
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
- />Department of Biology, Duke University, Durham, NC 27708 USA
| | - Christine Bates
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
- />Department of Internal Medicine, Duke University, Durham, NC 27708 USA
| | - Kay Larkin
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
| | - Steven Black
- />Kleinholtz Biological Laboratories, Department of Biology, Reed College, 3203 S.E. Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
25
|
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WGM, Prpic NM, McGregor AP, Extavour CG. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS One 2014; 9:e104885. [PMID: 25118601 PMCID: PMC4132015 DOI: 10.1371/journal.pone.0104885] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022] Open
Abstract
Parasteatoda tepidariorum is an increasingly popular model for the study of spider development and the evolution of development more broadly. However, fully understanding the regulation and evolution of P. tepidariorum development in comparison to other animals requires a genomic perspective. Although research on P. tepidariorum has provided major new insights, gene analysis to date has been limited to candidate gene approaches. Furthermore, the few available EST collections are based on embryonic transcripts, which have not been systematically annotated and are unlikely to contain transcripts specific to post-embryonic stages of development. We therefore generated cDNA from pooled embryos representing all described embryonic stages, as well as post-embryonic stages including nymphs, larvae and adults, and using Illumina HiSeq technology obtained a total of 625,076,514 100-bp paired end reads. We combined these data with 24,360 ESTs available in GenBank, and 1,040,006 reads newly generated from 454 pyrosequencing of a mixed-stage embryo cDNA library. The combined sequence data were assembled using a custom de novo assembly strategy designed to optimize assembly product length, number of predicted transcripts, and proportion of raw reads incorporated into the assembly. The de novo assembly generated 446,427 contigs with an N50 of 1,875 bp. These sequences obtained 62,799 unique BLAST hits against the NCBI non-redundant protein data base, including putative orthologs to 8,917 Drosophila melanogaster genes based on best reciprocal BLAST hit identity compared with the D. melanogaster proteome. Finally, we explored the utility of the transcriptome for RNA-Seq studies, and showed that this resource can be used as a mapping scaffold to detect differential gene expression in different cDNA libraries. This resource will therefore provide a platform for future genomic, gene expression and functional approaches using P. tepidariorum.
Collapse
Affiliation(s)
- Nico Posnien
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail: (NP); (CGE)
| | - Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Matthias Pechmann
- Cologne Biocenter, Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Joseph D. Keefe
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Nikola-Michael Prpic
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Department of Developmental Biology, Georg-August-University Göttingen, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (NP); (CGE)
| |
Collapse
|
26
|
Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 2012; 139:2655-62. [DOI: 10.1242/dev.078204] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiders belong to the chelicerates, which is an arthropod group that branches basally from myriapods, crustaceans and insects. Spiders are thus useful models with which to investigate whether aspects of development are ancestral or derived with respect to the arthropod common ancestor. Moreover, they serve as an important reference point for comparison with the development of other metazoans. Therefore, studies of spider development have made a major contribution to advancing our understanding of the evolution of development. Much of this knowledge has come from studies of the common house spider, Parasteatoda tepidariorum. Here, we describe how the growing number of experimental tools and resources available to study Parasteatoda development have provided novel insights into the evolution of developmental regulation and have furthered our understanding of metazoan body plan evolution.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
27
|
Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol 2012; 222:189-216. [PMID: 22569930 DOI: 10.1007/s00427-012-0401-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/18/2012] [Indexed: 12/22/2022]
Abstract
The cobweb spider Parasteatoda tepidariorum (C. L. Koch, 1841; syn.: Achaearanea tepidariorum) has become an important study organism in developmental biology and evolution as well as in genetics. Besides Cupiennius salei, it has become a chelicerate model organism for evo-devo studies in recent years. However, a staging system taking into account the entire development, and detailed enough to apply to modern studies, is still required. Here we describe the embryonic development of P. tepidariorum and provide a staging system which allows easy recognition of the distinct stages using simple laboratory tools. Differences between P. tepidariorum and other chelicerates, primarily C. salei, are discussed. Furthermore, cocoon production and the first postembryonic moulting procedure are described. Schematic drawings of all stages are provided to ease stage recognition.
Collapse
Affiliation(s)
- Beate Mittmann
- School of Biological and Chemical Sciences, Queen Mary University, London, UK.
| | | |
Collapse
|
28
|
Hannibal RL, Price AL, Parchem RJ, Patel NH. Analysis of snail genes in the crustacean Parhyale hawaiensis: insight into snail gene family evolution. Dev Genes Evol 2012; 222:139-51. [PMID: 22466422 DOI: 10.1007/s00427-012-0396-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/11/2012] [Indexed: 01/03/2023]
Abstract
The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.
Collapse
Affiliation(s)
- Roberta L Hannibal
- Department of Molecular and Cell Biology, University of California, 519A LSA #3200, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
29
|
Hunnekuhl VS, Wolff C. Reconstruction of cell lineage and spatiotemporal pattern formation of the mesoderm in the amphipod crustacean Orchestia cavimana. Dev Dyn 2012; 241:697-717. [PMID: 22374787 DOI: 10.1002/dvdy.23758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cell lineage studies in amphipods have revealed an early restriction of blastomere fate. The mesendodermal cell lineage is specified with the third cleavage of the egg. We took advantage of this stereotyped mode of development by fluorescently labeling the mesodermal precursors in embryos of Orchestia cavimana and followed the morphogenesis of the mesodermal cell layer through embryonic development. RESULTS The mesoderm of the trunk segments is formed by a very regular and stereotypic cell division pattern of the mesoteloblasts and their segmental daughters. The head mesoderm in contrast is generated by cell movements and divisions out of a mesendodermal cell mass. Our reconstructions reveal the presence of three different domains within the trunk mesoderm of the later embryo. We distinguish a cell group median to the limbs, a major central population from which the limb mesoderm arises and a dorsolateral branch of mesodermal cells. CONCLUSIONS Our detailed description of mesodermal development relates different precursor cell groups to distinct muscle groups of the embryo. A dorsoventral subdivision of mesoderm is prepatterned within the longitudinal mesodermal columns of the germ-band stage. This makes amphipods excellent crustacean models for studying mesodermal differentiation on a cellular and molecular level.
Collapse
Affiliation(s)
- Vera S Hunnekuhl
- Laboratory for Evolution and Development, Department of Zoology, Cambridge, UK
| | | |
Collapse
|
30
|
Pechmann M, Khadjeh S, Turetzek N, McGregor AP, Damen WGM, Prpic NM. Novel function of Distal-less as a gap gene during spider segmentation. PLoS Genet 2011; 7:e1002342. [PMID: 22028676 PMCID: PMC3197691 DOI: 10.1371/journal.pgen.1002342] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/29/2011] [Indexed: 12/27/2022] Open
Abstract
Despite many aspects of the regulation of segmentation being conserved among arthropods, the evolution of novel gene functions has played an important role in the evolution of developmental regulation and the emergence of new segmental structures. Moreover the study of such novel gene functions can be informative with respect to the patterns and direction of evolutionary changes in developmental programs. The homeobox gene Distal-less (Dll) is known for its conserved function in appendage development in metazoans. In arthropods, Dll is required for the specification of distal appendage structures. Here we describe a novel and unexpected role of Dll in the spider Achaearanea tepidariorum. We detect At-Dll transcripts not only in the appendages, but unexpectedly also in an anterior domain during early development, prior to the specification of the limb primordia. A similar early Dll domain is present in the distantly related spider Pholcus phalangioides. In A. tepidariorum this early At-Dll expression is required for head segmentation. RNA interference results in spiders that lack either the first or the first and the second walking leg segments. The early At-Dll expression is also required for the activation of the segment polarity genes engrailed and hedgehog in this region. Our work identifies the Distal-less gene as a novel factor in anterior spider segmentation with a gap gene-like function. This novel role of Dll is interesting because Dll expression is reduced in this region in crustaceans and the homologous insect segment, the mandible segment, does not express Dll and does not require this gene for patterning. We therefore discuss the possible implications of our results for understanding the evolution and diversification of the mandible segment. The development and segmentation of the head of the fly Drosophila is one of the best-studied examples of how tissues become genetically specified during embryonic development. However, the mechanisms for head segmentation vary considerably among the arthropods. This is on the one hand surprising because the head consists of the same series of segments in all arthropods. On the other hand, changes in gene regulatory networks are the basis for the evolution of novel morphologies and biodiversity. In this paper, we describe our study of the Distal-less gene in the spider Achaearanea tepidariorum. Distal-less is well-known for its function in appendage development, but here we show that in the spider it also has a novel function during head segmentation that is not found in Drosophila or other arthropods. In Achaearanea the Distal-less gene is necessary for the formation of the first walking-leg segment, which is homologous to the mandible segment of the head of other arthropods. Intriguingly, the mandible segment in other arthropods exhibits reduced or missing Distal-less expression. Thus, our results suggest that this difference in the role of Distal-less in the first walking-leg/mandible segment of spiders and other arthropods may underlie the diversification of this segment.
Collapse
Affiliation(s)
- Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Sara Khadjeh
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Natascha Turetzek
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
| | - Alistair P. McGregor
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Vienna, Austria
- School of Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Wim G. M. Damen
- Friedrich-Schiller-Universität Jena, Department of Genetics, Jena, Germany
| | - Nikola-Michael Prpic
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst-Caspari-Haus, Göttingen, Germany
- * E-mail:
| |
Collapse
|
31
|
Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun 2011; 2:500. [PMID: 21988916 PMCID: PMC3207210 DOI: 10.1038/ncomms1510] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022] Open
Abstract
During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.
Collapse
Affiliation(s)
- Masaki Kanayama
- JT Biohistory Research Hall, Murasaki-cho, Takatsuki, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Wolff C, Hilbrant M. The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 2011; 8:15. [PMID: 21672209 PMCID: PMC3141654 DOI: 10.1186/1742-9994-8-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/14/2011] [Indexed: 12/04/2022] Open
Abstract
Background The spider Cupiennius salei (Keyserling 1877) has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies). This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1) early differentiation of the precheliceral neuroectoderm; 2) the morphogenetic process of inversion and 3) initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the tracheal and book lung respiratory systems.
Collapse
Affiliation(s)
- Carsten Wolff
- Humboldt-Universität zu Berlin Institut für Biologie/Vergleichende Zoologie Philippstraße 13, 10115 Berlin, Germany
| | - Maarten Hilbrant
- Universität zu Köln Institut für Genetik, Zülpicher Straße 47a, 50674 Köln, Germany.,Oxford Brookes University Headington Campus Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
33
|
Kanayama M, Akiyama-Oda Y, Oda H. Early embryonic development in the spider Achaearanea tepidariorum: Microinjection verifies that cellularization is complete before the blastoderm stage. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:436-445. [PMID: 20601115 DOI: 10.1016/j.asd.2010.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/15/2010] [Accepted: 05/31/2010] [Indexed: 05/29/2023]
Abstract
The spider Achaearanea tepidariorum is emerging as a non-insect model for studying developmental biology. However, the availability of microinjection into early embryos of this spider has not been reported. We defined the early embryonic stages in A. tepidariorum and applied microinjection to its embryos. During the preblastoderm 16- and 32-nucleus stages, the energids were moving toward the egg periphery. When fluorochrome-conjugated dextran was microinjected into the peripheral region of 16-nucleus stage embryos, it was often incorporated into a single energid and inherited in the progeny without leaking out to surrounding energids. This suggested that 16-nucleus stage embryos consisted of compartments, each containing a single energid. These compartments were considered to be separate cells. Fluorochrome-conjugated dextran could be introduced into single cells of 16- to 128-nucleus stage embryos, allowing us to track cell fate and movement. Injection with mRNA encoding a nuclear localization signal/green fluorescent protein fusion construct demonstrated exogenous expression of the protein in live spider embryos. We propose that use of microinjection will facilitate studies of spider development. Furthermore, these data imply that in contrast to the Drosophila syncytial blastoderm embryo, the cell-based structure of the Achaearanea blastoderm embryo restricts diffusion of cytoplasmic gene products.
Collapse
Affiliation(s)
- Masaki Kanayama
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | | | | |
Collapse
|
34
|
Akiyama-Oda Y, Oda H. Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 2010; 137:1263-73. [PMID: 20332148 DOI: 10.1242/dev.045625] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The early embryo of the spider Achaearanea tepidariorum is emerging as a model for the simultaneous study of cell migration and pattern formation. A cell cluster internalized at the center of the radially symmetric germ disc expresses the evolutionarily conserved dorsal signal Decapentaplegic. This cell cluster migrates away from the germ disc center along the basal side of the epithelium to the germ disc rim. This cell migration is thought to be the symmetry-breaking event that establishes the orientation of the dorsoventral axis. In this study, knockdown of a patched homolog, At-ptc, that encodes a putative negative regulator of Hedgehog (Hh) signaling, prevented initiation of the symmetry-breaking cell migration. Knockdown of a smoothened homolog, At-smo, showed that Hh signaling inactivation also arrested the cells at the germ disc center, whereas moderate inactivation resulted in sporadic failure of cell migration termination at the germ disc rim. hh transcript expression patterns indicated that the rim and outside of the germ disc were the source of the Hh ligand. Analyses of patterning events suggested that in the germ disc, short-range Hh signal promotes anterior specification and long-range Hh signal represses caudal specification. Moreover, negative regulation of Hh signaling by At-ptc appears to be required for progressive derepression of caudal specification from the germ disc center. Cell migration defects caused by At-ptc and At-smo knockdown correlated with patterning defects in the germ disc epithelium. We propose that the cell migration crucial for dorsoventral axis orientation in Achaearanea is coordinated with anteroposterior patterning mediated by Hh signaling.
Collapse
|
35
|
Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WG. hunchback Functions as a Segmentation Gene in the Spider Achaearanea tepidariorum. Curr Biol 2009; 19:1333-40. [DOI: 10.1016/j.cub.2009.06.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/18/2009] [Accepted: 06/19/2009] [Indexed: 11/30/2022]
|
36
|
Kerner P, Hung J, Béhague J, Le Gouar M, Balavoine G, Vervoort M. Insights into the evolution of the snail superfamily from metazoan wide molecular phylogenies and expression data in annelids. BMC Evol Biol 2009; 9:94. [PMID: 19426549 PMCID: PMC2688512 DOI: 10.1186/1471-2148-9-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 05/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An important issue concerning the evolution of duplicated genes is to understand why paralogous genes are retained in a genome even though the most likely fate for a redundant duplicated gene is nonfunctionalization and thereby its elimination. Here we study a complex superfamily generated by gene duplications, the snail related genes that play key roles during animal development. We investigate the evolutionary history of these genes by genomic, phylogenetic, and expression data studies. RESULTS We systematically retrieved the full complement of snail related genes in several sequenced genomes. Through phylogenetic analysis, we found that the snail superfamily is composed of three ancestral families, snail, scratchA and scratchB. Analyses of the organization of the encoded proteins point out specific molecular signatures, indicative of functional specificities for Snail, ScratchA and ScratchB proteins. We also report the presence of two snail genes in the annelid Platynereis dumerilii, which have distinct expression patterns in the developing mesoderm, nervous system, and foregut. The combined expression of these two genes is identical to that of two independently duplicated snail genes in another annelid, Capitella spI, but different aspects of the expression patterns are differentially shared among paralogs of Platynereis and Capitella. CONCLUSION Our study indicates that the snail and scratchB families have expanded through multiple independent gene duplications in the different bilaterian lineages, and highlights potential functional diversifications of Snail and ScratchB proteins following duplications, as, in several instances, paralogous proteins in a given species show different domain organizations. Comparisons of the expression pattern domains of the two Platynereis and Capitella snail paralogs provide evidence for independent subfunctionalization events which have occurred in these two species. We propose that the snail related genes may be especially prone to subfunctionalization, and this would explain why the snail superfamily underwent so many independent duplications leading to maintenance of functional paralogs.
Collapse
Affiliation(s)
- Pierre Kerner
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| | - Johanne Hung
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Julien Béhague
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Martine Le Gouar
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Guillaume Balavoine
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
| | - Michel Vervoort
- Programme Development and Neurobiology, Institut Jacques Monod, UMR 7592 CNRS/Université Paris Diderot – Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
- Evolution et Développement des Métazoaires, Centre de Génétique Moléculaire- FRE 3144 CNRS, 1, av. de la terrasse, 91198 Gif-sur-Yvette, France
- UFR des Sciences du Vivant, Université Paris Diderot – Paris 7, 5, rue Marie-Andrée Lagroua Weill-Hallé, 75205 Paris Cedex 13, France
| |
Collapse
|
37
|
Abstract
Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.
Collapse
Affiliation(s)
- Ralf Janssen
- Institute for Genetics, Evolutionary Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Köln, Germany
| | | |
Collapse
|
38
|
Oda H, Akiyama-Oda Y. Differing strategies for forming the arthropod body plan: Lessons from Dpp, Sog and Delta in the fly Drosophila and spider Achaearanea. Dev Growth Differ 2008; 50:203-14. [DOI: 10.1111/j.1440-169x.2008.00998.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WG. Cupiennius salei andAchaearanea tepidariorum: Spider models for investigating evolution and development. Bioessays 2008; 30:487-98. [DOI: 10.1002/bies.20744] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Chaw RC, Vance E, Black SD. Gastrulation in the spiderZygiella x-notatainvolves three distinct phases of cell internalization. Dev Dyn 2007; 236:3484-95. [DOI: 10.1002/dvdy.21371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y. Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spiderAchaearanea tepidariorum. Development 2007; 134:2195-205. [PMID: 17507394 DOI: 10.1242/dev.004598] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the development of most arthropods, the caudal region of the elongating germ band (the growth zone) sequentially produces new segments. Previous work with the spider Cupiennius salei suggested involvement of Delta-Notch signaling in segmentation. Here, we report that, in the spider Achaearanea tepidariorum, the same signaling pathway exerts a different function in the presumptive caudal region before initiation of segmentation. In the developing spider embryo, the growth zone becomes morphologically apparent as a caudal lobe around the closed blastopore. We found that, preceding caudal lobe formation, transcripts of a Delta homolog, At-Delta,are expressed in evenly spaced cells in a small area covering the closing blastopore and then in a progressively wider area of the germ disc epithelium. Cells with high At-Delta expression are likely to be prospective mesoderm cells, which later express a twist homolog, At-twist, and individually internalize. Cells remaining at the surface begin to express a caudal homolog, At-caudal, to differentiate as caudal ectoderm. Knockdown of At-Delta by parental RNA interference results in overproduction of At-twist-expressing mesoderm cells at the expense of At-caudal-expressing ectoderm cells. This condition gives rise to a disorganized caudal region that fails to pattern the opisthosoma. In addition, knockdown of Notch and Suppressor of Hairless homologs produces similar phenotypes. We suggest that, in the spider, progressive activation of Delta-Notch signaling from around the blastopore leads to stochastic cell fate decisions between mesoderm and caudal ectoderm through a process of lateral inhibition to set up a functional caudal lobe.
Collapse
Affiliation(s)
- Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Price AL, Patel NH. Investigating divergent mechanisms of mesoderm development in arthropods: the expression ofPh-twist andPh-mef2 inParhyale hawaiensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 310:24-40. [PMID: 17152085 DOI: 10.1002/jez.b.21135] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The evolution of mesoderm was important for the development of complex body plans as well as key organ systems. Genetic and molecular studies in the fruitfly, Drosophila melanogaster, have provided the majority of information concerning mesoderm development in arthropods. In Drosophila, twist is necessary for the specification and correct morphogenesis of mesoderm and myocyte enhancing factor 2 (mef2) is involved downstream of twist to activate muscle differentiation. In Drosophila, mesoderm is defined by positional cues in the blastoderm embryo, while in another arthropod group, the amphipod crustaceans, cell lineage plays a greater role in defining the mesoderm. It is not known how different mechanistic strategies such as positional information vs. cell-lineage-dependent development affect the timing and use of gene networks. Here we describe the development of the mesoderm in a malacostracan crustacean, Parhyale hawaiensis, and characterize the expression of Parhyale twist and mef2 orthologues. In Parhyale, the mesoderm of the post-mandibular segments arises mainly through the asymmetric division of mesoteloblasts as the germband elongates. Ph-twist expression is seen in a subset of segmental mesoderm during germband development, but not during early cleavages when the specific mesodermal cell lineages first arise. ph-mef2 expression starts after the segmental mesoderm begins to proliferate and persists in developing musculature. While the association of these genes with mesoderm differentiation appears to be conserved across the animal kingdom, the timing of expression and relationship with different mechanisms of mesoderm development may give us greater insight into the ancestral use of these genes during mesoderm differentiation.
Collapse
Affiliation(s)
- Alivia L Price
- Department of Molecular Genetics and Cell Biology, Committee on Developmental Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
43
|
Akiyama-Oda Y, Oda H. Axis specification in the spider embryo:dppis required for radial-to-axial symmetry transformation andsogfor ventral patterning. Development 2006; 133:2347-57. [PMID: 16720876 DOI: 10.1242/dev.02400] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism by which Decapentaplegic (Dpp) and its antagonist Short gastrulation (Sog) specify the dorsoventral pattern in Drosophilaembryos has been proposed to have a common origin with the mechanism that organizes the body axis in the vertebrate embryo. However, DrosophilaSog makes only minor contributions to the development of ventral structures that hypothetically correspond to the vertebrate dorsum where the axial notochord forms. In this study, we isolated a homologue of the Drosophila sog gene in the spider Achaearanea tepidariorum, and characterized its expression and function. Expression of sog mRNA initially appeared in a radially symmetrical pattern and later became confined to the ventral midline area, which runs axially through the germ band. RNA interference-mediated depletion of the spider sog gene led to a nearly complete loss of ventral structures, including the axial ventral midline and the central nervous system. This defect appeared to be the consequence of dorsalization of the ventral region of the germ band. By contrast, the extra-embryonic area formed normally. Furthermore, we showed that embryos depleted for a spider homologue of dpp failed to break the radial symmetry, displaying evenly high levels of sog expression except in the posterior terminal area. These results suggest that dppis required for radial-to-axial symmetry transformation of the spider embryo and sog is required for ventral patterning. We propose that the mechanism of spider ventral specification largely differs from that of the fly. Interestingly, ventral specification in the spider is similar to the process in vertebrates in which the antagonism of Dpp/BMP signaling plays a central role in dorsal specification.
Collapse
Affiliation(s)
- Yasuko Akiyama-Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | | |
Collapse
|
44
|
Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132:3151-61. [PMID: 15983400 DOI: 10.1242/dev.01907] [Citation(s) in RCA: 1050] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The functions of the Snail family of zinc-finger transcription factors are essential during embryonic development. One of their best-known functions is to induce epithelial to mesenchymal transitions (EMTs), which convert epithelial cells into migratory mesenchymal cells. In recent years, many orthologues of the Snail family have been identified throughout the animal kingdom, and their study is providing new clues about the EMT-dependent and -independent functions of Snail proteins. Here, we discuss these functions and how they influence cell behaviour during development and during diseases such as metastatic cancer. From these findings, we propose that Snail genes act primarily as survival factors and inducers of cell movement, rather than as inducers of EMT or cell fate.
Collapse
|