1
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Kuwabara T, Kohno H, Hatakeyama M, Kubo T. Evolutionary dynamics of mushroom body Kenyon cell types in hymenopteran brains from multifunctional type to functionally specialized types. SCIENCE ADVANCES 2023; 9:eadd4201. [PMID: 37146148 PMCID: PMC10162674 DOI: 10.1126/sciadv.add4201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Evolutionary dynamics of diversification of brain neuronal cell types that have underlain behavioral evolution remain largely unknown. Here, we compared transcriptomes and functions of Kenyon cell (KC) types that compose the mushroom bodies between the honey bee and sawfly, a primitive hymenopteran insect whose KCs likely have the ancestral properties. Transcriptome analyses show that the sawfly KC type shares some of the gene expression profile with each honey bee KC type, although unique gene expression profiles have also been acquired in each honey bee KC type. In addition, functional analysis of two sawfly genes suggested that the functions in learning and memory of the ancestral KC type were heterogeneously inherited among the KC types in the honey bee. Our findings strongly suggest that the functional evolution of KCs in Hymenoptera involved two previously hypothesized processes for evolution of cell function: functional segregation and divergence.
Collapse
Affiliation(s)
- Takayoshi Kuwabara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masatsugu Hatakeyama
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Matsumura Y, To TK, Kunieda T, Kohno H, Kakutani T, Kubo T. Mblk-1/E93, an ecdysone related-transcription factor, targets synaptic plasticity-related genes in the honey bee mushroom bodies. Sci Rep 2022; 12:21367. [PMID: 36494426 PMCID: PMC9734179 DOI: 10.1038/s41598-022-23329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
Among hymenopteran insects, aculeate species such as bees, ants, and wasps have enlarged and morphologically elaborate mushroom bodies (MBs), a higher-order brain center in the insect, implying their relationship with the advanced behavioral traits of aculeate species. The molecular bases leading to the acquisition of complicated MB functions, however, remains unclear. We previously reported the constitutive and MB-preferential expression of an ecdysone-signaling related transcription factor, Mblk-1/E93, in the honey bee brain. Here, we searched for target genes of Mblk-1 in the worker honey bee MBs using chromatin immunoprecipitation sequence analyses and found that Mblk-1 targets several genes involved in synaptic plasticity, learning, and memory abilities. We also demonstrated that Mblk-1 expression is self-regulated via Mblk-1-binding sites, which are located upstream of Mblk-1. Furthermore, we showed that the number of the Mblk-1-binding motif located upstream of Mblk-1 homologs increased associated with evolution of hymenopteran insects. Our findings suggest that Mblk-1, which has been focused on as a developmental gene transiently induced by ecdysone, has acquired a novel expression pattern to play a role in synaptic plasticity in honey bee MBs, raising a possibility that molecular evolution of Mblk-1 may have partly contributed to the elaboration of MB function in insects.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taiko Kim To
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuji Kakutani
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Conceição de Assis J, Eduardo da Costa Domingues C, Tadei R, Inês da Silva C, Soares Lima HM, Decio P, Silva-Zacarin ECM. Sublethal doses of imidacloprid and pyraclostrobin impair fat body of solitary bee Tetrapedia diversipes (Klug, 1810). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119140. [PMID: 35301028 DOI: 10.1016/j.envpol.2022.119140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Solitary bees present greater species diversity than social bees. However, they are less studied than managed bees, mainly regarding the harmful effects of pesticides present in agroecosystems commonly visited by them. This study aimed to evaluate the effect of residual doses of imidacloprid and pyraclostrobin, alone and in combination, on the fat body (a multifunctional organ) of the neotropical solitary bee Tetrapedia diversipes by means of morphological and histochemical evaluation of oenocytes and trophocytes. Males and females of newly-emerged adults were submitted to bioassays of acute topical exposure. Experimental groups were essayed: control (CTR), solvent control (ACT), imidacloprid (IMI, 0.0028 ng/μL), pyraclostrobin (PYR, 2.7 ng/μL) and imidacloprid + pyraclostrobin (I + P). The data demonstrated that the residual doses applied in T. diversipes adults are sublethal at 96 h. Both oenocytes and trophocytes cells responded to topical exposure to the pesticides, showing morphological changes. In the IMI group, the bee oenocytes showed the greatest proportion of vacuolization and altered nuclei. The pyraclostrobin exposure increased the intensity of PAS-positive labeling (glycogen) in trophocytes. This increase was also observed in the I + P group. Changes in energy reserve (glycogen) of trophocytes indicate a possible mobilization impairment of this neutral polysaccharide to the hemolymph, which can compromise the fitness of exposed individuals. Also, changes in oenocytes can compromise the detoxification function performed by the fat body. This is the first study to show sublethal effects in neotropical solitary bees and highlight the importance of studies with native bees.
Collapse
Affiliation(s)
- Josimere Conceição de Assis
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil
| | | | - Rafaela Tadei
- São Paulo State University, UNESP, Postgraduate Program in Biological Sciences, Rio Claro, São Paulo State, Brazil
| | - Cláudia Inês da Silva
- Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Environmental Sciences, Sorocaba, São Paulo State, Brazil
| | - Hellen Maria Soares Lima
- Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil
| | - Pâmela Decio
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil
| | - Elaine C M Silva-Zacarin
- Federal University of São Carlos, UFSCar, Postgraduate Program in Biotechnology and Environmental Monitoring, Sorocaba, São Paulo State, Brazil; Federal University of São Carlos, UFSCar, Department of Biology, Laboratory of Ecotoxicology and Environmental Integrity (LEIA), Sorocaba, São Paulo State, Brazil.
| |
Collapse
|
5
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
6
|
Iino S, Shiota Y, Nishimura M, Asada S, Ono M, Kubo T. Neural activity mapping of bumble bee (Bombus ignitus) brains during foraging flight using immediate early genes. Sci Rep 2020; 10:7887. [PMID: 32398802 PMCID: PMC7217898 DOI: 10.1038/s41598-020-64701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Honey bees and bumble bees belong to the same family (Apidae) and their workers exhibit a division of labor, but the style of division of labor differs between species. The molecular and neural bases of the species-specific social behaviors of Apidae workers have not been analyzed. Here, we focused on two immediate early genes, hormone receptor 38 (HR38) and early growth response gene-1 (Egr1), and late-upregulated ecdysone receptor (EcR), all of which are upregulated by foraging flight and expressed preferentially in the small-type Kenyon cells of the mushroom bodies (MBs) in the honey bee brain. Gene expression analyses in Bombus ignitus revealed that HR38 and Egr1, but not EcR, exhibited an immediate early response during awakening from CO2 anesthesia. Both premature mRNA for HR38 and mature mRNA for Egr1 were induced during foraging flight, and mRNAs for HR38 and Egr1 were sparsely detected inside the whole MB calyces. In contrast, EcR expression was higher in forager brains than in nurse bees and was expressed preferentially in the small-type Kenyon cells inside the MBs. Our findings suggest that Kenyon cells are active during foraging flight and that the function of late-upregulated EcR in the brain is conserved among these Apidae species.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yurika Shiota
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masakazu Nishimura
- Laboratory of Entomology, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Shinichi Asada
- Bioresource Sciences Major, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Masato Ono
- Laboratory of Entomology, Graduate School of Agriculture, Tamagawa University, Machida-Shi, Tokyo, 194-8610, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
7
|
Wang YF, Chen XD, Wang G, Li QY, Liang XY, Sima YH, Xu SQ. Influence of hyperproteinemia on reproductive development in an invertebrate model. Int J Biol Sci 2019; 15:2170-2181. [PMID: 31592097 PMCID: PMC6775287 DOI: 10.7150/ijbs.33310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/09/2019] [Indexed: 12/25/2022] Open
Abstract
Hyperproteinemia is a severe metabolic disease characterized by abnormally elevated plasma protein concentrations (PPC). However, there is currently no reliable animal model for PPC, and the pathological mechanism of hyperproteinemia thus remains unclear. In this study, we evaluated the effects of hyperproteinemia on reproductive development in an invertebrate silkworm model with a controllable PPC and no primary disease effects. High PPC inhibited the synthesis of vitellogenin and 30K protein essential for female ovarian development in the fat body of metabolic tissues, and inhibited their transport through the hemolymph to the ovary. High PPC also induced programmed cell death in testis and ovary cells, slowed the development of germ cells, and significantly reduced the reproductive coefficient. Furthermore, the intensities and mechanisms of high-PPC-induced reproductive toxicity differed between sexes in this silkworm model.
Collapse
Affiliation(s)
- Yong-Feng Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Xue-Dong Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Guang Wang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Qiu-Ying Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Xin-Yin Liang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.,Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Suenami S, Oya S, Kohno H, Kubo T. Kenyon Cell Subtypes/Populations in the Honeybee Mushroom Bodies: Possible Function Based on Their Gene Expression Profiles, Differentiation, Possible Evolution, and Application of Genome Editing. Front Psychol 2018; 9:1717. [PMID: 30333766 PMCID: PMC6176018 DOI: 10.3389/fpsyg.2018.01717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Mushroom bodies (MBs), a higher-order center in the honeybee brain, comprise some subtypes/populations of interneurons termed as Kenyon cells (KCs), which are distinguished by their cell body size and location in the MBs, as well as their gene expression profiles. Although the role of MBs in learning ability has been studied extensively in the honeybee, the roles of each KC subtype and their evolution in hymenopteran insects remain mostly unknown. This mini-review describes recent progress in the analysis of gene/protein expression profiles and possible functions of KC subtypes/populations in the honeybee. Especially, the discovery of novel KC subtypes/populations, the “middle-type KCs” and “KC population expressing FoxP,” necessitated a redefinition of the KC subtype/population. Analysis of the effects of inhibiting gene function in a KC subtype-preferential manner revealed the function of the gene product as well as of the KC subtype where it is expressed. Genes expressed in a KC subtype/population-preferential manner can be used to trace the differentiation of KC subtypes during the honeybee ontogeny and the possible evolution of KC subtypes in hymenopteran insects. Current findings suggest that the three KC subtypes are unique characteristics to the aculeate hymenopteran insects. Finally, prospects regarding future application of genome editing for the study of KC subtype functions in the honeybee are described. Genes expressed in a KC subtype-preferential manner can be good candidate target genes for genome editing, because they are likely related to highly advanced brain functions and some of them are dispensable for normal development and sexual maturation in honeybees.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Shah A, Jain R, Brockmann A. Egr-1: A Candidate Transcription Factor Involved in Molecular Processes Underlying Time-Memory. Front Psychol 2018; 9:865. [PMID: 29928241 PMCID: PMC5997935 DOI: 10.3389/fpsyg.2018.00865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
In honey bees, continuous foraging is accompanied by a sustained up-regulation of the immediate early gene Egr-1 (early growth response protein-1) and candidate downstream genes involved in learning and memory. Here, we present a series of feeder training experiments indicating that Egr-1 expression is highly correlated with the time and duration of training even in the absence of the food reward. Foragers that were trained to visit a feeder over the whole day and then collected on a day without food presentation showed Egr-1 up-regulation over the whole day with a peak expression around 14:00. When exposed to a time-restricted feeder presentation, either 2 h in the morning or 2 h in the evening, Egr-1 expression in the brain was up-regulated only during the hours of training. Foragers that visited a feeder in the morning as well as in the evening showed two peaks of Egr-1 expression. Finally, when we prevented time-trained foragers from leaving the colony using artificial rain, Egr-1 expression in the brains was still slightly but significantly up-regulated around the time of feeder training. In situ hybridization studies showed that active foraging and time-training induced Egr-1 up-regulation occurred in the same brain areas, preferentially the small Kenyon cells of the mushroom bodies and the antennal and optic lobes. Based on these findings we propose that foraging induced Egr-1 expression can get regulated by the circadian clock after time-training over several days and Egr-1 is a candidate transcription factor involved in molecular processes underlying time-memory.
Collapse
Affiliation(s)
- Aridni Shah
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bengaluru, India
| | - Rikesh Jain
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Axel Brockmann
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bengaluru, India
| |
Collapse
|
10
|
Singh AS, Shah A, Brockmann A. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway. INSECT MOLECULAR BIOLOGY 2018; 27:90-98. [PMID: 28987007 DOI: 10.1111/imb.12350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses.
Collapse
Affiliation(s)
- A S Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Shah
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - A Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
11
|
Kaneko K, Suenami S, Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells. ZOOLOGICAL LETTERS 2016; 2:14. [PMID: 27478620 PMCID: PMC4967334 DOI: 10.1186/s40851-016-0051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
12
|
Suenami S, Paul RK, Takeuchi H, Okude G, Fujiyuki T, Shirai K, Kubo T. Analysis of the Differentiation of Kenyon Cell Subtypes Using Three Mushroom Body-Preferential Genes during Metamorphosis in the Honeybee (Apis mellifera L.). PLoS One 2016; 11:e0157841. [PMID: 27351839 PMCID: PMC4924639 DOI: 10.1371/journal.pone.0157841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023] Open
Abstract
The adult honeybee (Apis mellifera L.) mushroom bodies (MBs, a higher center in the insect brain) comprise four subtypes of intrinsic neurons: the class-I large-, middle-, and small-type Kenyon cells (lKCs, mKCs, and sKCs, respectively), and class-II KCs. Analysis of the differentiation of KC subtypes during metamorphosis is important for the better understanding of the roles of KC subtypes related to the honeybee behaviors. In the present study, aiming at identifying marker genes for KC subtypes, we used a cDNA microarray to comprehensively search for genes expressed in an MB-preferential manner in the honeybee brain. Among the 18 genes identified, we further analyzed three genes whose expression was enriched in the MBs: phospholipase C epsilon (PLCe), synaptotagmin 14 (Syt14), and discs large homolog 5 (dlg5). Quantitative reverse transcription-polymerase chain reaction analysis revealed that expression of PLCe, Syt14, and dlg5 was more enriched in the MBs than in the other brain regions by approximately 31-, 6.8-, and 5.6-fold, respectively. In situ hybridization revealed that expression of both Syt14 and dlg5 was enriched in the lKCs but not in the mKCs and sKCs, whereas expression of PLCe was similar in all KC subtypes (the entire MBs) in the honeybee brain, suggesting that Syt14 and dlg5, and PLCe are available as marker genes for the lKCs, and all KC subtypes, respectively. In situ hybridization revealed that expression of PLCe is already detectable in the class-II KCs at the larval fifth instar feeding stage, indicating that PLCe expression is a characteristic common to the larval and adult MBs. In contrast, expression of both Syt14 and dlg5 became detectable at the day three pupa, indicating that Syt14 and dlg5 expressions are characteristic to the late pupal and adult MBs and the lKC specific molecular characteristics are established during the late pupal stages.
Collapse
Affiliation(s)
- Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Rajib Kumar Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Genta Okude
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Tomoko Fujiyuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Kenichi Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113–0033, Japan
- * E-mail:
| |
Collapse
|
13
|
Galbraith DA, Wang Y, Amdam GV, Page RE, Grozinger CM. Reproductive physiology mediates honey bee (Apis mellifera) worker responses to social cues. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1963-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ueno T, Takeuchi H, Kawasaki K, Kubo T. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors. PLoS One 2015; 10:e0130206. [PMID: 26083737 PMCID: PMC4470657 DOI: 10.1371/journal.pone.0130206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/18/2015] [Indexed: 01/24/2023] Open
Abstract
The hypopharyngeal glands (HPGs) of worker honeybees undergo physiological changes along with the age-dependent role change from nursing to foraging: nurse bee HPGs secrete mainly major royal jelly proteins, whereas forager HPGs secrete mainly α-glucosidase III, which converts the sucrose in the nectar into glucose and fructose. We previously identified two other genes, Apis mellifera buffy (Ambuffy) and Apis mellifera matrix metalloproteinase 1 (AmMMP1), with enriched expression in nurse bee and forager HPGs, respectively. In the present study, to clarify the molecular mechanisms that coordinate HPG physiology with worker behavior, we first analyzed whether Ambuffy, AmMMP1, mrjp2 (a gene encoding one of major royal jelly protein isoforms), and Hbg3 (a gene encoding α-glucosidase III) expression, is associated with worker behavior in 'single-cohort colonies' where workers of almost the same age perform different tasks. Expression of these genes correlated with the worker’s role, while controlling for age, indicating their regulation associated with the worker’s behavior. Associated gene expression suggested the possible involvement of some hormonal factors in its regulation. We therefore examined the relationship between ecdysone- and juvenile hormone (JH)-signaling, and the expression profiles of these ‘indicator’ genes (nurse bee HPG-selective genes: mrjp2 and Ambuffy, and forager HPG-selective genes: Hbg3 and AmMMP1). Expression of both ecdysone-regulated genes (ecdysone receptor, mushroom body large type Kenyon cell specific protein-1, and E74) and JH-regulated genes (Methoprene tolerant and Krüppel homolog 1) was higher in the forager HPGs than in the nurse bee HPGs, suggesting the possible roles of ecdysone- and JH-regulated genes in worker HPGs. Furthermore, 20-hydroxyecdysone-treatment repressed both nurse bee- and forager-selective gene expression, whereas methoprene-treatment enhanced the expression of forager-selective genes and repressed nurse bee-selective genes in the HPGs. Our findings suggest that both ecdysone- and JH-signaling cooperatively regulate the physiological state of the HPGs in association with the worker’s behavior.
Collapse
Affiliation(s)
- Takayuki Ueno
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| |
Collapse
|
15
|
Mello TRP, Aleixo AC, Pinheiro DG, Nunes FMF, Bitondi MMG, Hartfelder K, Barchuk AR, Simões ZLP. Developmental regulation of ecdysone receptor (EcR) and EcR-controlled gene expression during pharate-adult development of honeybees (Apis mellifera). Front Genet 2014; 5:445. [PMID: 25566327 PMCID: PMC4273664 DOI: 10.3389/fgene.2014.00445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023] Open
Abstract
Major developmental transitions in multicellular organisms are driven by steroid hormones. In insects, these, together with juvenile hormone (JH), control development, metamorphosis, reproduction and aging, and are also suggested to play an important role in caste differentiation of social insects. Here, we aimed to determine how EcR transcription and ecdysteroid titers are related during honeybee postembryonic development and what may actually be the role of EcR in caste development of this social insect. In addition, we expected that knocking-down EcR gene expression would give us information on the participation of the respective protein in regulating downstream targets of EcR. We found that in Apis mellifera females, EcR-A is the predominantly expressed variant in postembryonic development, while EcR-B transcript levels are higher in embryos, indicating an early developmental switch in EcR function. During larval and pupal stages, EcR-B expression levels are very low, while EcR-A transcripts are more variable and abundant in workers compared to queens. Strikingly, these transcript levels are opposite to the ecdysteroid titer profile. 20-hydroxyecdysone (20E) application experiments revealed that low 20E levels induce EcR expression during development, whereas high ecdysteroid titers seem to be repressive. By means of RNAi-mediated knockdown (KD) of both EcR transcript variants we detected the differential expression of 234 poly-A+ transcripts encoding genes such as CYPs, MRJPs and certain hormone response genes (Kr-h1 and ftz-f1). EcR-KD also promoted the differential expression of 70 miRNAs, including highly conserved ones (e.g., miR-133 and miR-375), as well honeybee-specific ones (e.g., miR-3745 and miR-3761). Our results put in evidence a broad spectrum of EcR-controlled gene expression during postembryonic development of honeybees, revealing new facets of EcR biology in this social insect.
Collapse
Affiliation(s)
- Tathyana R P Mello
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Aline C Aleixo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Daniel G Pinheiro
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista São Paulo, Brazil
| | - Francis M F Nunes
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos São Carlos, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular, Molecular e de Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| | - Angel R Barchuk
- Laboratório de Biologia Animal Integrativa, Departamento de Biologia Celular, Tecidual e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas Alfenas, Brazil
| | - Zilá L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
16
|
Yuan HX, Xu X, Sima YH, Xu SQ. Reproductive toxicity effects of 4-nonylphenol with known endocrine disrupting effects and induction of vitellogenin gene expression in silkworm, Bombyx mori. CHEMOSPHERE 2013; 93:263-268. [PMID: 23719487 DOI: 10.1016/j.chemosphere.2013.04.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/16/2013] [Accepted: 04/27/2013] [Indexed: 06/02/2023]
Abstract
4-Nonylphenol (4-NP) a known endocrine disrupting chemical is a persistent environmental contaminant. However, the mechanism of reproductive toxicity caused by 4-NP is still largely unresolved in invertebrates. In this study, Bombyx mori larvae were constantly fed 4-NP at concentrations ranging from 0.05 to 0.4gkg(-1), reproductive toxicity and induction of vitellogenin gene (Vg) expression were investigated in this organism which is an ideal lepidopteran model insect. The results showed that gonad development was retarded and maturity was decreased in both male and female pupae, while the sex ratio was unaffected by 4-NP exposure. In the 4-NP exposed animals, the corresponding egg yolk protein, vitellin, involved in energy reserves for embryonic development in oviparous animals, was present in the testis of male pupae, and the mRNA transcript of the Vg gene was detected in the fat body, a specific organ of Vg synthesis, which is normally silent in males. In addition, expression of the Vg gene was up-regulated in the fat body of female pupae and adults, while the protein was decreased in developing eggs. Furthermore, expression of the ecdysone receptor gene (EcR) in the ovaries of pupae was down-regulated, suggested that the transport of Vg from the fat body to developing oocytes was disturbed by 4-NP due to interference in the expression of EcR related to ecdysone activity.
Collapse
Affiliation(s)
- Hong-Xia Yuan
- Department of Applied Biology, School of Biology and Basical Medical Science, Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | |
Collapse
|
17
|
Kaneko K, Ikeda T, Nagai M, Hori S, Umatani C, Tadano H, Ugajin A, Nakaoka T, Paul RK, Fujiyuki T, Shirai K, Kunieda T, Takeuchi H, Kubo T. Novel middle-type Kenyon cells in the honeybee brain revealed by area-preferential gene expression analysis. PLoS One 2013; 8:e71732. [PMID: 23990981 PMCID: PMC3749211 DOI: 10.1371/journal.pone.0071732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
The mushroom bodies (a higher center) of the honeybee (Apis mellifera L) brain were considered to comprise three types of intrinsic neurons, including large- and small-type Kenyon cells that have distinct gene expression profiles. Although previous neural activity mapping using the immediate early gene kakusei suggested that small-type Kenyon cells are mainly active in forager brains, the precise Kenyon cell types that are active in the forager brain remain to be elucidated. We searched for novel gene(s) that are expressed in an area-preferential manner in the honeybee brain. By identifying and analyzing expression of a gene that we termed mKast (middle-type Kenyon cell-preferential arrestin-related protein), we discovered novel ‘middle-type Kenyon cells’ that are sandwiched between large- and small-type Kenyon cells and have a gene expression profile almost complementary to those of large– and small-type Kenyon cells. Expression analysis of kakusei revealed that both small-type Kenyon cells and some middle-type Kenyon cells are active in the forager brains, suggesting their possible involvement in information processing during the foraging flight. mKast expression began after the differentiation of small- and large-type Kenyon cells during metamorphosis, suggesting that middle-type Kenyon cells differentiate by modifying some characteristics of large– and/or small-type Kenyon cells. Interestingly, CaMKII and mKast, marker genes for large– and middle-type Kenyon cells, respectively, were preferentially expressed in a distinct set of optic lobe (a visual center) neurons. Our findings suggested that it is not simply the Kenyon cell-preferential gene expression profiles, rather, a ‘clustering’ of neurons with similar gene expression profiles as particular Kenyon cell types that characterize the honeybee mushroom body structure.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tsubomi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mirai Nagai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Hori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Tadano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ugajin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayoshi Nakaoka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Rajib Kumar Paul
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Fujiyuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenichi Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Geddes LH, McQuillan HJ, Aiken A, Vergoz V, Mercer AR. Steroid hormone (20-hydroxyecdysone) modulates the acquisition of aversive olfactory memories in pollen forager honeybees. Learn Mem 2013; 20:399-409. [DOI: 10.1101/lm.030825.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Duportets L, Maria A, Vitecek S, Gadenne C, Debernard S. Steroid hormone signaling is involved in the age-dependent behavioral response to sex pheromone in the adult male moth Agrotis ipsilon. Gen Comp Endocrinol 2013; 186:58-66. [PMID: 23474331 DOI: 10.1016/j.ygcen.2013.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
In most animals, including insects, male reproduction depends on the detection and processing of female-produced sex pheromones. In the male moth, Agrotis ipsilon, both behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to female sex pheromone are age- and hormone-dependent. In many animal species, steroids are known to act at the brain level to modulate the responsiveness to sexually relevant chemical cues. We aimed to address the hypothesis that the steroidal system and in particular 20-hydroxyecdysone (20E), the main insect steroid hormone, might also be involved in this olfactory plasticity. Therefore, we first cloned the nuclear ecdysteroid receptor EcR (AipsEcR) and its partner Ultraspiracle (AipsUSP) of A. ipsilon, the expression of which increased concomitantly with age in ALs. Injection of 20E into young sexually immature males led to an increase in both responsiveness to sex pheromone and amount of AipsEcR and AipsUSP in their ALs. Conversely, the behavioral response decreased in older, sexually mature males after injection of cucurbitacin B (CurB), an antagonist of the 20E/EcR/USP complex. Also, the amount of AipsEcR and AipsUSP significantly declined after treatment with CurB. These results suggest that 20E is involved in the expression of sexual behavior via the EcR/USP signaling pathway, probably acting on central pheromone processing in A. ipsilon.
Collapse
Affiliation(s)
- Line Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
20
|
Cousin M, Silva-Zacarin E, Kretzschmar A, El Maataoui M, Brunet JL, Belzunces LP. Size changes in honey bee larvae oenocytes induced by exposure to Paraquat at very low concentrations. PLoS One 2013; 8:e65693. [PMID: 23724149 PMCID: PMC3665783 DOI: 10.1371/journal.pone.0065693] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 05/01/2013] [Indexed: 12/04/2022] Open
Abstract
The effects of the herbicide Paraquat were investigated in honey bee larvae with attention focused on oenocytes. Honey bee larvae were exposed to Paraquat at different concentrations in the food: 0, 0.001, 0.01, 0.1 and 1 µg/kg. In controls, between 24 h and 48 h, oenocytes grew from 630.1 to 1643.8 µm(2) while nuclei changed in size from 124.9 to 245.6 µm(2). At 24 h, Paraquat induced a slight decrease in the size of oenocytes and nuclei. N-acetylcysteine (NAC), an antioxidant substance, slightly lowered the effects of Paraquat. At 48 h, Paraquat elicited a strong concentration-dependent decrease in the size of oenocytes, even at the lowest concentration. NAC reversed the effect of Paraquat at a concentration of ≥0.01 µg/kg. This reversion suggested different modes of action of Paraquat, with an oxidant action prevalent at concentrations ≥0.01 µg/kg. This study is the first which reports an effect of a pesticide at the very low concentration of 1 ng/kg, a concentration below the detection limits of the most efficient analytic methods. It shows that chemicals, including pesticides, are likely to have a potential impact at such exposure levels. We also suggest that Paraquat could be used as a suitable tool for investigating the functions of oenocytes.
Collapse
Affiliation(s)
- Marianne Cousin
- INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Avignon, France
| | - Elaine Silva-Zacarin
- Universidade Federal de São Carlos, Laboratory of Structural and Functional Biology, Sorocaba, São Paulo State, Brazil
| | | | | | - Jean-Luc Brunet
- INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Avignon, France
| | - Luc P. Belzunces
- INRA, UR 406 Abeilles & Environnement, Laboratoire de Toxicologie Environnementale, Avignon, France
| |
Collapse
|
21
|
Uno Y, Fujiyuki T, Morioka M, Kubo T. Mushroom body-preferential expression of proteins/genes involved in endoplasmic reticulum Ca(2+)-transport in the worker honeybee (Apis mellifera L.) brain. INSECT MOLECULAR BIOLOGY 2013; 22:52-61. [PMID: 23170949 DOI: 10.1111/imb.12002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
To identify the molecular characteristics specific to the mushroom body (MB, a higher processing centre) neurones in the honeybee brain, we previously used proteomics to identify proteins that are preferentially expressed in these MBs. Here we continued our proteomic analysis to show that reticulocalbin, which is involved in endoplasmic reticulum (ER) Ca(2+) transport, is also preferentially expressed in the MBs in the honeybee brain. Gene expression analysis revealed that reticulocalbin is preferentially expressed in the large-type Kenyon cells, which are MB-intrinsic neurones. In addition, the gene for the ryanodine receptor, which is also involved in ER Ca(2+) transport, was also preferentially expressed in the large-type Kenyon cells. In contrast, the expression of three other ER-related genes, protein disulphide isomerase, sec61 and erp60, was not enriched in the MBs. These findings further support the notion that the function of ER Ca(2+)-signalling, but not the mere intracellular density of ER, is specifically enhanced in the large-type Kenyon cells in the honeybee brain.
Collapse
Affiliation(s)
- Y Uno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
22
|
McQuillan HJ, Nakagawa S, Mercer AR. Mushroom bodies of the honeybee brain show cell population-specific plasticity in expression of amine-receptor genes. Learn Mem 2012; 19:151-8. [PMID: 22411422 DOI: 10.1101/lm.025353.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dopamine and octopamine released in the mushroom bodies of the insect brain play a critical role in the formation of aversive and appetitive memories, respectively. As recent evidence suggests a complex relationship between the effects of these two amines on the output of mushroom body circuits, we compared the expression of dopamine- and octopamine-receptor genes in three major subpopulations of mushroom body intrinsic neurons (Kenyon cells). Using the brain of the honeybee, Apis mellifera, we found that expression of amine-receptor genes differs markedly across Kenyon cell subpopulations. We found, in addition, that levels of expression of these genes change dramatically during the lifetime of the bee and that shifts in expression are cell population-specific. Differential expression of amine-receptor genes in mushroom body neurons and the plasticity that exists at this level are features largely ignored in current models of mushroom body function. However, our results are consistent with the growing body of evidence that short- and long-term olfactory memories form in different regions of the mushroom bodies of the brain and that there is functional compartmentalization of the modulatory inputs to this multifunctional brain center.
Collapse
Affiliation(s)
- H James McQuillan
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
23
|
Schwedes CC, Carney GE. Ecdysone signaling in adult Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:293-302. [PMID: 22310011 DOI: 10.1016/j.jinsphys.2012.01.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
The steroid hormone 20-hydroxyecdysone and its EcR/USP receptor are vital during arthropod development for coordinating molting and metamorphosis. Traditionally, little attention has been given to potential post-developmental functions for this hormone signaling system. However, recent studies in Drosophila melanogaster indicate that the hormone and receptor are present and active in adults and that mutations decreasing hormone or receptor levels affect diverse processes such as reproduction, behavior, stress resistance, and lifespan. We review the current state of knowledge regarding adult hormone production and titers and discuss receptor expression and activity in order to identify potential mechanisms which explain the observed mutant phenotypes. Finally, we describe future research directions focused on identifying isoform-specific functions of EcR, distinguishing effects from EcR/USP gene activation and repression, and determining how ecdysone signaling impacts different tissue types.
Collapse
Affiliation(s)
- Christoph C Schwedes
- Department of Biology, Texas A&M University, TAMU College Station, TX 77843, USA.
| | | |
Collapse
|
24
|
Bigot L, Shaik HA, Bozzolan F, Party V, Lucas P, Debernard S, Siaussat D. Peripheral regulation by ecdysteroids of olfactory responsiveness in male Egyptian cotton leaf worms, Spodoptera littoralis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:22-31. [PMID: 22044719 DOI: 10.1016/j.ibmb.2011.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/26/2011] [Accepted: 10/13/2011] [Indexed: 05/31/2023]
Abstract
Physiological and behavioral plasticity allows animals to adapt to changes in external (environmental) and internal (physiological) factors. In insects, the physiological state modulates adult behavior in response to different odorant stimuli. Hormones have the potential to play a major role in the plasticity of the olfactory responses. To explore if peripheral olfactory processing could be regulated by steroid hormones, we characterized the molecular, electrophysiological, and behavioral response to changes in endogenous hormone levels in adult male Spodoptera littoralis. The expression of the receptor complex (EcR/USP) was localized by in situ hybridization in the olfactory sensilla of antennae. Injections of 20-hydroxyecdysone (20E) induced an ecdysteroid signaling pathway in antennae and increased expression of the nuclear receptors EcR, USP and E75. Diacylglycerol kinase (DGK) and CaM expression were also up-regulated by 20E. Taken together, these molecular, electrophysiological, and behavioral results suggest a hormonal regulation of the peripheral olfactory processing in S. littoralis.
Collapse
Affiliation(s)
- Laetitia Bigot
- UMR 1272 Physiologie de l'Insecte, Signalisation et Communication, Université Pierre et Marie Curie, Paris VI, 7 Quai Saint Bernard, F-75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Kocher SD, Linksvayer TA, Grozinger CM, Page RE, Amdam GV. Regulation of behaviorally associated gene networks in worker honey bee ovaries. J Exp Biol 2012; 215:124-34. [PMID: 22162860 PMCID: PMC3233392 DOI: 10.1242/jeb.060889] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2011] [Indexed: 11/20/2022]
Abstract
Several lines of evidence support genetic links between ovary size and division of labor in worker honey bees. However, it is largely unknown how ovaries influence behavior. To address this question, we first performed transcriptional profiling on worker ovaries from two genotypes that differ in social behavior and ovary size. Then, we contrasted the differentially expressed ovarian genes with six sets of available brain transcriptomes. Finally, we probed behavior-related candidate gene networks in wild-type ovaries of different sizes. We found differential expression in 2151 ovarian transcripts in these artificially selected honey bee strains, corresponding to approximately 20.3% of the predicted gene set of honey bees. Differences in gene expression overlapped significantly with changes in the brain transcriptomes. Differentially expressed genes were associated with neural signal transmission (tyramine receptor, TYR) and ecdysteroid signaling; two independently tested nuclear hormone receptors (HR46 and ftz-f1) were also significantly correlated with ovary size in wild-type bees. We suggest that the correspondence between ovary and brain transcriptomes identified here indicates systemic regulatory networks among hormones (juvenile hormone and ecdysteroids), pheromones (queen mandibular pheromone), reproductive organs and nervous tissues in worker honey bees. Furthermore, robust correlations between ovary size and neuraland endocrine response genes are consistent with the hypothesized roles of the ovaries in honey bee behavioral regulation.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Aslam AFM, Kiya T, Mita K, Iwami M. Identification of novel bombyxin genes from the genome of the silkmoth Bombyx mori and analysis of their expression. Zoolog Sci 2011; 28:609-16. [PMID: 21801003 DOI: 10.2108/zsj.28.609] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin family peptide members play key roles in regulating growth, metabolism, and reproduction. Bombyxin is an insulin-related peptide of the silkmoth Bombyx mori. We analyzed the full genome of B. mori and identified five novel bombyxin families, V to Z. We characterized the genomic organization and chromosomal location of the novel bombyxin family genes. In contrast to previously identified bombyxin genes, bombyxin-V and -Z genes had intervening introns at almost the same positions as vertebrate insulin genes. We performed reverse transcription-polymerase chain reaction and in situ hybridization in different tissues and developmental stages to observe their temporal and spatial expression patterns. The newly identified bombyxin genes were expressed in diverse tissues: bombyxin-V, -W, and -Y mRNAs were expressed in the brain and bombyxin-X mRNA in fat bodies. Bombyxin-Y gene was expressed in both brain and ovary of larval stages. High level of bombyxin-Z gene expression in the follicular cells may suggest its function in reproduction. The presence of a short C-peptide domain and an extended A chain domain, and high expression of bombyxin-X gene in the fat body cells during non-feeding stages suggest its insulin-like growth factor-like function. These results suggest that the bombyxin genes originated from a common ancestral gene, similar to the vertebrate insulin gene, and evolved into a diverse gene family with multiple functions.
Collapse
Affiliation(s)
- Abu F M Aslam
- Division of Life Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
27
|
Ganter GK, Panaitiu AE, Desilets JB, Davis-Heim JA, Fisher EA, Tan LCH, Heinrich R, Buchanan EB, Brooks KM, Kenney MT, Verde MG, Downey J, Adams AM, Grenier JS, Maddula S, Shah P, Kincaid KM, O'Brien JRM. Drosophila male courtship behavior is modulated by ecdysteroids. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1179-84. [PMID: 21704633 PMCID: PMC3167006 DOI: 10.1016/j.jinsphys.2011.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 05/31/2023]
Abstract
Temperature-dependent induction of ecdysteroid deficiency in the ecdysoneless mutant ecd(1) adult Drosophila melanogaster results in altered courtship behavior in males. Ecdysteroid deficiency brings about significantly elevated male-male courtship behavior including song production resembling that directed toward females. Supplementation with dietary 20-hydroxyecdysone reduces male-male attraction, but does not change motor activity, courtship patterns or attraction to females. These observations support the hypothesis that reduced levels of ecdysteroids increase the probability that male fruit flies will display courtship behaviors to male stimuli.
Collapse
Affiliation(s)
- G K Ganter
- Department of Biology, College of Arts and Sciences, University of New England, Biddeford, ME 04005, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yamazaki Y, Kiuchi M, Takeuchi H, Kubo T. Ecdysteroid biosynthesis in workers of the European honeybee Apis mellifera L. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:283-93. [PMID: 21277979 DOI: 10.1016/j.ibmb.2011.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 05/12/2023]
Abstract
We previously reported preferential expression of genes for ecdysteroid signaling in the mushroom bodies of honeybee workers, suggesting a role of ecdysteroid signaling in regulating honeybee behaviors. The organs that produce ecdysteroids in worker honeybees, however, remain unknown. We show here that the expression of neverland and Non-molting glossy/shroud, which are involved in early steps of ecdysteroid synthesis, was enhanced in the ovary, while the expression of CYP306A1 and CYP302A1, which are involved in later steps of ecdysone synthesis, was enhanced in the brain, and the expression of CYP314A1, which is involved in converting ecdysone into active 20-hydroxyecdysone (20E), was enhanced in the brain, fat body, and ovary. In in vitro organ culture, a significant amount of ecdysteroids was detected in the culture medium of the brain, fat body, and hypopharyngeal glands. The ecdysteroids detected in the culture medium of the fat body were identified as ecdysone and 20E. These findings suggest that, in worker honeybees, cholesterol is converted into intermediate ecdysteroids in the ovary, whereas ecdysone is synthesized and secreted mainly by the brain and converted into 20E in the brain and fat body.
Collapse
Affiliation(s)
- Yurika Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
30
|
Wegener J, Huang ZY, Lorenz MW, Bienefeld K. Regulation of hypopharyngeal gland activity and oogenesis in honey bee (Apis mellifera) workers. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:716-25. [PMID: 19446565 DOI: 10.1016/j.jinsphys.2009.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 05/20/2023]
Abstract
In the honey bee, vitellogenin has several functions in addition to egg provisioning. Among others, it serves as a precursor to brood food proteins secreted by the hypopharyngeal glands of worker bees. In queenless workers with developing gonads, oogenesis and development of the hypopharyngeal glands are correlated. Here we describe two experiments that explored whether this relationship also exists in non-reproductive workers, and investigated a possible role of ecdysteroid hormones in the regulation of vitellogenin uptake. In the first experiment, the correlation between oocyte length and hypopharyngeal gland development was measured in workers before and after de-queening. In the second experiment, we induced middle-aged bees with resting glands to suddenly initiate brood care behaviour, and measured haemolymph ecdysteroid and vitellogenin titres. A strong positive relationship existed between morphometrical parameters of hypopharyngeal glands and ovaries in both queenless and queenright (functionally sterile) workers. No response of ecdysteroid titres to the addition of brood was detected in experiment 2, but high concentrations were measured in a small group of bees characterised by the possession of oocytes on the brink of yolk incorporation. We conclude that hypopharyngeal glands may belong to a previously described group of reproduction-related traits that are pleiotropically regulated in workers. A possible role for ecdysteroids in honey bee reproduction is discussed.
Collapse
Affiliation(s)
- Jakob Wegener
- Institute for Bee Research, Hohen Neuendorf, Germany.
| | | | | | | |
Collapse
|
31
|
Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior. PLoS One 2009; 4:e6408. [PMID: 19641619 PMCID: PMC2713418 DOI: 10.1371/journal.pone.0006408] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background We conducted a large-scale transcriptomic profiling of selected regions of the central nervous system (CNS) across three species of honey bees, in foragers that were performing dance behavior to communicate to their nestmates the location, direction and profitability of an attractive floral resource. We used microarrays to measure gene expression in bees from Apis mellifera, dorsata and florea, species that share major traits unique to the genus and also show striking differences in biology and dance communication. The goals of this study were to determine the extent of regional specialization in gene expression and to explore the molecular basis of dance communication. Principal Findings This “snapshot” of the honey bee CNS during dance behavior provides strong evidence for both species-consistent and species-specific differences in gene expression. Gene expression profiles in the mushroom bodies consistently showed the biggest differences relative to the other CNS regions. There were strong similarities in gene expression between the central brain and the second thoracic ganglion across all three species; many of the genes were related to metabolism and energy production. We also obtained gene expression differences between CNS regions that varied by species: A. mellifera differed the most, while dorsata and florea tended to be more similar. Significance Species differences in gene expression perhaps mirror known differences in nesting habit, ecology and dance behavior between mellifera, florea and dorsata. Species-specific differences in gene expression in selected CNS regions that relate to synaptic activity and motor control provide particularly attractive candidate genes to explain the differences in dance behavior exhibited by these three honey bee species. Similarities between central brain and thoracic ganglion provide a unique perspective on the potential coupling of these two motor-related regions during dance behavior and perhaps provide a snapshot of the energy intensive process of dance output generation. Mushroom body results reflect known roles for this region in the regulation of learning, memory and rhythmic behavior.
Collapse
|
32
|
Velarde RA, Robinson GE, Fahrbach SE. Coordinated responses to developmental hormones in the Kenyon cells of the adult worker honey bee brain (Apis mellifera L.). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:59-69. [PMID: 19013465 DOI: 10.1016/j.jinsphys.2008.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 05/27/2023]
Abstract
The brains of experienced forager honey bees exhibit predictable changes in structure, including significant growth of the neuropil of the mushroom bodies. In vertebrates, members of the superfamily of nuclear receptors function as key regulators of neuronal structure. The adult insect brain expresses many members of the nuclear receptor superfamily, suggesting that insect neurons are also likely important targets of developmental hormones. The actions of developmental hormones (the ecdysteroids and the juvenile hormones) in insects have been primarily explored in the contexts of metamorphosis and vitellogenesis. The cascade of gene expression activated by 20-hydroxyecdysone and modulated by juvenile hormone is strikingly conserved in these different physiological contexts. We used quantitative RT-PCR to measure, in the mushroom bodies of the adult worker honey bee brain, relative mRNA abundances of key members of the nuclear receptor superfamily (EcR, USP, E75, Ftz-f1, and Hr3) that participate in the metamorphosis/vitellogenesis cascade. We measured responses to endogenous peaks of hormones experienced early in adult life and to exogenous hormones. Our studies demonstrate that a population of adult insect neurons is responsive to endocrine signals through the use of conserved portions of the canonical ecdysteroid transcriptional cascade previously defined for metamorphosis and vitellogenesis.
Collapse
Affiliation(s)
- Rodrigo A Velarde
- Department of Biology, Wake Forest University, Box 7325, Winston-Salem, NC 27109, USA.
| | | | | |
Collapse
|