1
|
Vigil K, Wu H, Aw TG. A systematic review on global zoonotic virus-associated mortality events in marine mammals. One Health 2024; 19:100872. [PMID: 39206255 PMCID: PMC11357810 DOI: 10.1016/j.onehlt.2024.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Marine mammals play a critical role as sentinels for tracking the spread of zoonotic diseases, with viruses being the primary causative factor behind infectious disease induced mortality events. A systematic review was conducted to document marine mammal mortality events attributed to zoonotic viral infections in published literature across the globe. This rigorous search strategy yielded 2883 studies with 88 meeting inclusion criteria. The studies spanned from 1989 to 2023, with a peak in publications observed in 2020. Most of the included studies were retrospective, providing valuable insights into historical trends. The United States (U.S.) reported the highest number of mortality events followed by Spain, Italy, Brazil and the United Kingdom. Harbor seals were the most impacted species, particularly in regions like Anholt, Denmark and the New England Coast, U.S. Analysis revealed six main viruses responsible for mortality events, with Morbillivirus causing the highest proportion of deaths. Notably, the occurrence of these viral events varied geographically, with distinct patterns observed in different regions. Immunohistochemistry emerged as the most employed detection method. This study underscores the importance of global surveillance efforts in understanding and mitigating the impact of viral infections on marine mammal populations, thereby emphasizing the necessity of collaborative One Health approaches to address emerging threats at the human-animal-environment interface. Additionally, the potential transfer of zoonotic viruses to aquatic organisms used in food production, such as fish and shellfish, highlights the broader implications for food safety, food security and public health.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Vargas-Castro I, Giorda F, Mattioda V, Goria M, Serracca L, Varello K, Carta V, Nodari S, Maniaci MG, Dell’Atti L, Testori C, Pussini N, Iulini B, Battistini R, Zoppi S, Nocera FD, Lucifora G, Fontanesi E, Acutis P, Casalone C, Grattarola C, Peletto S. Herpesvirus surveillance in stranded striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) from Italy with emphasis on neuropathological characterization. PLoS One 2024; 19:e0311767. [PMID: 39441833 PMCID: PMC11498698 DOI: 10.1371/journal.pone.0311767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Herpesvirus (HV) is widely distributed among cetacean populations, with the highest prevalence reported in the Mediterranean Sea. In this study, a comprehensive analysis was conducted, including epidemiological, phylogenetic, and pathological aspects, with particular emphasis on neuropathology, to better understand the impact of HV in these animals. Our results show a higher presence of HV in males compared to females, with males exhibiting a greater number of positive tissues. Additionally, adults were more frequently affected by HV infection than juveniles, with no infections detected in calves or neonates. The affected species were striped (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus). The highest positivity rates were observed in the genital system, cerebrum, and skin tissues. Phylogenetic analysis indicated a higher occurrence of Gammaherpesvirus (GHV) sequences but increased genetic diversity within Alphaherpesvirus (AHV). Key neuropathological features included astro-microgliosis (n = 4) and meningitis with minimal to mild perivascular cuffing (n = 2). The presence of concurrent infections with other pathogens, particularly cetacean morbillivirus (CeMV), underscores the complex nature of infectious diseases in cetaceans. However, the presence of lesions at the Central Nervous System (CNS) with molecular positivity for GHV, excluding the involvement of other potential neurotropic agents, would confirm the potential of this HV subfamily to induce neurological damage. Pathological examination identified lesions in other organs that could potentially be associated with HV, characterized by lymphoid depletion and tissue inflammation. These findings enhance our understanding of HV in odontocetes and highlight the need for ongoing research into the factors driving these infections and their broader implications.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Virginia Mattioda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Valerio Carta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Sabrina Nodari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Maria Grazia Maniaci
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Luana Dell’Atti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Camilla Testori
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Nicola Pussini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | | | - Pierluigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Carla Grattarola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta—WOAH Collaborating Centre for the Health of Marine Mammals, Turin, Italy
| |
Collapse
|
3
|
Lee SB, Lee KL, Kim SW, Jung WJ, Park DS, Lee S, Giri SS, Kim SG, Jo SJ, Park JH, Hwang MH, Park EJ, Seo JP, Kim BY, Park SC. Novel Gammaherpesvirus Infections in Narrow-Ridged Finless Porpoise ( Neophocaena asiaeorientalis) and False Killer Whales ( Pseudorca crassidens) in the Republic of Korea. Viruses 2024; 16:1234. [PMID: 39205209 PMCID: PMC11359890 DOI: 10.3390/v16081234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
A female narrow-ridged finless porpoise (Neophocaena asiaeorientalis) stranded on a beach on Jeju Island showed epithelial proliferative skin lesions on its body. Two false killer whales (Pseudorca crassidens), caught using nets near Gangneung and Samcheok, respectively, had multiple plaques on their penile epidermis. Histological examination of the epidermis revealed that all the lesions had common features, including accentuated rete pegs, ballooning changes, and eosinophilic intranuclear inclusion (INI) bodies. Based on the histopathological results, herpesvirus infection was suspected, and thus further analysis was conducted using herpesvirus-specific primers. Based on nested polymerase chain reaction (PCR) tests using the herpesvirus-detectable primers, the PCR products demonstrated two fragments: a 222-base-pair (bp) sequence of the DNA polymerase gene, SNUABM_CeHV01, showing 96.4% identity with a bottlenose dolphin herpesvirus from the Jeju narrow-ridged finless porpoise; and a 222 bp sequence of the DNA polymerase gene, SNUABM_CeHV02, showing 95.95% identity with the same bottlenose dolphin herpesvirus from the Gangneung and Samcheok false killer whales. The significance of this study lies in its ability to demonstrate the existence of novel cetacean herpesviruses in South Korean seawater, representing an important step forward in studying potentially harmful pathogens that affect endangered whale and dolphin populations.
Collapse
Affiliation(s)
- Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Kyung Lee Lee
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan 44780, Republic of Korea;
| | - Sang Wha Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Da Sol Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Seyoung Lee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Eun Jae Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| | - Jong-pil Seo
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea; (S.L.); (J.-p.S.)
| | - Byung Yeop Kim
- Department of Marine Industry and Maritime Police, College of Ocean Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.B.L.); (W.J.J.); (D.S.P.); (S.S.G.); (S.J.J.); (J.H.P.); (M.H.H.); (E.J.P.)
| |
Collapse
|
4
|
Sacristán C, Ewbank AC, Duarte-Benvenuto A, Sacristán I, Zamana-Ramblas R, Costa-Silva S, Lanes Ribeiro V, Bertozzi CP, Del Rio do Valle R, Castilho PV, Colosio AC, Marcondes MCC, Lailson-Brito J, de Freitas Azevedo A, Carvalho VL, Pessi CF, Cremer M, Esperón F, Catão-Dias JL. Survey of selected viral agents (herpesvirus, adenovirus and hepatitis E virus) in liver and lung samples of cetaceans, Brazil. Sci Rep 2024; 14:2689. [PMID: 38302481 PMCID: PMC10834590 DOI: 10.1038/s41598-023-45315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 02/03/2024] Open
Abstract
Hepatic and pulmonary lesions are common in cetaceans, despite their poorly understood viral etiology. Herpesviruses (HV), adenoviruses (AdV) and hepatitis E virus (HEV) are emerging agents in cetaceans, associated with liver and/or pulmonary damage in mammals. We isolated and molecularly tested DNA for HV and AdV (n = 218 individuals; 187 liver and 108 lung samples) and RNA for HEV (n = 147 animals; 147 liver samples) from six cetacean families. All animals stranded or were bycaught in Brazil between 2001 and 2021. Positive-animals were analyzed by histopathology. Statistical analyses assessed if the prevalence of viral infection could be associated with the variables: species, family, habitat, region, sex, and age group. All samples were negative for AdV and HEV. Overall, 8.7% (19/218) of the cetaceans were HV-positive (4.8% [9/187] liver and 11.1% [12/108] lung), without HV-associated lesions. HV-prevalence was statistically significant higher in Pontoporiidae (19.2%, 10/52) when compared to Delphinidae (4.1%, 5/121), and in southeastern (17.1%, 13/76)-the most industrialized Brazilian region-when compared to the northeastern region (2.4%, 3/126). This study broadens the herpesvirus host range in cetaceans, including its description in pygmy sperm whales (Kogia breviceps) and humpback whales (Megaptera novaeangliae). Further studies must elucidate herpesvirus drivers in cetaceans.
Collapse
Affiliation(s)
- C Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos, Madrid, Spain.
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | - A C Ewbank
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - A Duarte-Benvenuto
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - I Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar de Talamanca, Km. 8,1, 28130, Valdeolmos, Madrid, Spain
| | - R Zamana-Ramblas
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - S Costa-Silva
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - C P Bertozzi
- São Paulo State University - UNESP, São Vicente, SP, Brazil
| | - R Del Rio do Valle
- Instituto Ecoema de Estudo e Conservação do Meio Ambiente, Peruíbe, SP, Brasil
| | - P V Castilho
- Universidade do Estado de Santa Catarina-UDESC, Laguna, SC, Brazil
| | - A C Colosio
- Instituto Baleia Jubarte, Caravelas, BA, Brazil
| | | | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores 'Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - A de Freitas Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores 'Profa Izabel M. G. do N. Gurgel' (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - V L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, CE, Brazil
| | - C F Pessi
- Instituto de Pesquisas Cananéia (IpeC), Cananéia, SP, Brazil
| | - M Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros - TETRAMAR, Universidade da Região de Joinville - UNIVILLE, São Francisco Do Sul, SC, Brazil
| | - F Esperón
- Universidad Europea, Villaviciosa de Odon, Spain
| | - J L Catão-Dias
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Si H, Tucciarone CM, Cecchinato M, Legnardi M, Mazzariol S, Centelleghe C. Comparison between Sampling Techniques for Virological Molecular Analyses: Dolphin Morbillivirus and Herpesvirus Detection from FTA ® Card and Frozen Tissue. Viruses 2023; 15:2422. [PMID: 38140663 PMCID: PMC10747605 DOI: 10.3390/v15122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Stranded animals offer valuable information on marine mammal physiology and pathology; however, the decomposition state of the carcasses and lack of a rigorous cold chain for sample preservation can sometimes discourage diagnostic analyses based on nucleic acid detection. The present paper aims at evaluating the reliability of FTA® card tissue imprints as an alternative matrix to frozen tissues for virological analyses based on biomolecular methods. Given the contribution of Cetacean morbillivirus (CeMV) to strandings and the increase of herpesvirus detection in cetaceans, these two pathogens were selected as representative of RNA and DNA viruses. Dolphin morbillivirus (DMV) and herpesvirus presence was investigated in parallel on tissue imprints on FTA® cards and frozen tissues collected during necropsy of dolphins stranded in Italy. Samples were analysed by nested RT-PCR for DMV and nested-PCR for herpesvirus. Only one animal was positive for herpesvirus, hampering further considerations on this virus. DMV was detected in all animals, both in FTA® card imprints and tissue samples, with differences possibly related to the decomposition condition category of the carcasses. Tissue sampling on FTA® cards seems a promising alternative to frozen tissues for biomolecular analyses, especially when ensuring adequate storage and shipment conditions for frozen tissues is difficult.
Collapse
Affiliation(s)
- Haiyang Si
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (H.S.); (M.C.); (M.L.)
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (H.S.); (M.C.); (M.L.)
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (H.S.); (M.C.); (M.L.)
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (H.S.); (M.C.); (M.L.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (C.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (C.C.)
| |
Collapse
|
6
|
Vargas-Castro I, Crespo-Picazo JL, Jiménez Martínez MÁ, Marco-Cabedo V, Muñoz-Baquero M, García-Párraga D, Sánchez-Vizcaíno JM. First description of a lesion in the upper digestive mucosa associated with a novel gammaherpesvirus in a striped dolphin (Stenella coeruleoalba) stranded in the Western Mediterranean Sea. BMC Vet Res 2023; 19:118. [PMID: 37563731 PMCID: PMC10413511 DOI: 10.1186/s12917-023-03677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND A wide variety of lesions have been associated with herpesvirus in cetaceans. However, descriptions of herpesvirus infections in the digestive system of cetaceans are scarce. CASE REPORT A young female striped dolphin stranded in the Valencian Community (Spain) on the 6th August 2021. The animal showed external macroscopic lesions suggestive of an aggressive interaction with bottlenose dolphins (rake marks in the epidermis). Internally, the main findings included congestion of the central nervous system and multiple, well-defined, whitish, irregularly shaped, proliferative lesions on the oropharyngeal and laryngopharyngeal mucosa. Histopathology revealed lymphoplasmacytic and histiocytic meningoencephalitis, consistent with neuro brucellosis. The oropharyngeal and laryngopharyngeal plaques were comprised histologically of focally extensive epithelial hyperplasia. As part of the health surveillance program tissue samples were tested for cetacean morbillivirus using a real-time reverse transcription-PCR, for Brucella spp. using a real-time PCR, and for herpesvirus using a conventional nested PCR. All samples were negative for cetacean morbillivirus; molecular positivity for Brucella spp. was obtained in pharyngeal tonsils and cerebrospinal fluid; herpesvirus was detected in a proliferative lesion in the upper digestive mucosa. Phylogenetic analysis showed that the herpesvirus sequence was included in the Gammaherpesvirinae subfamily. This novel sequence showed the greatest identity with other Herpesvirus sequences detected in skin, pharyngeal and genital lesions in five different species. CONCLUSIONS To the best of the authors' knowledge, this is the first report of a proliferative lesion in the upper digestive mucosa associated with gammaherpesvirus posititvity in a striped dolphin (Stenella coeruleoalba).
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, 28040, Spain.
| | - José Luis Crespo-Picazo
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
| | - Mª Ángeles Jiménez Martínez
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain
| | - Vicente Marco-Cabedo
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
| | - Marta Muñoz-Baquero
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
| | - Daniel García-Párraga
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46013, Valencia, Spain
- Biology Department, Oceanogràfic, Ciudad de las Artes y las Ciencias, 46013, Valencia, Spain
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
7
|
Molecular Characterization of Herpesviral Encephalitis in Cetaceans: Correlation with Histopathological and Immunohistochemical Findings. Animals (Basel) 2022; 12:ani12091149. [PMID: 35565575 PMCID: PMC9105563 DOI: 10.3390/ani12091149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary In this study we describe the molecular and pathological characteristics of alpha- and gamma-herpesvirus infection of the central nervous system of stranded cetaceans and correlate them with viral load, immunohistochemical findings and biological data such as age, sex, and the presence of co-infections. The viruses (alpha- and gamma-herpesvirus) were detected in twelve out of 103 analysed stranded cetaceans and were associated with a wide range of histopathological lesions, as previously described for these and other species. In five out the twelve animals, lesions were severe enough (malacia, neuronal necrosis and neuronophagia) to cause death. Intranuclear inclusions bodies were present in brain tissue samples from half of the HV-positive animals, indicating that the injury was due to an infective agent belonging to a group of filterable viruses. These results are in accordance with immunohistochemical findings, as all the brain tissue samples with INIBs were immunolabeled with Anti-HSV1. Males, juveniles, and calves were predominantly infected among the analysed cetaceans and a 41.6% (5/12) incidence of co-infections in the brain was detected, with three animals co-infected with Dolphin Morbillivirus (DMV). In this study, we present, to the best of our knowledge, the first histopathological evidence of superinfection between HV and DMV pathogens in brain tissue. Abstract Herpesviruses are causative agents of meningitis and encephalitis in cetaceans, which are among the main leading known natural causes of death in these species. Brain samples from 103 stranded cetaceans were retrospectively screened for the presence of herpesvirus DNA in the brain. Molecular detection of Cetacean Morbillivirus was performed in HV positive brain cases. Histopathologic evaluation of brain samples included the presence or absence of the following findings (n = 7): meningitis, perivascular cuffings, microgliosis, intranuclear inclusion bodies, malacia, neuronal necrosis and neurophagic nodules, and haemorrhages. Histological evidence of the involvement of other etiological agents led to complementary analysis. We detected the presence of alpha and gamma-HVs in 12 out of 103 (11.6%) brain samples from stranded cetaceans of five different species: one bottlenose dolphin, six striped dolphins, three Atlantic spotted dolphins, one Cuvier’s beaked whale, and one common dolphin. Pathogenic factors such as viral strain, age, sex, and the presence of co-infections were analysed and correlated with the brain histopathological findings in each case. Herpesvirus was more prevalent in males, juveniles, and calves and a 41.6% incidence of co-infections in the brain was detected in our study: three with Dolphin Morbillivirus, one with Staphilococcus aureus septicaemia and one with Brucella spp.
Collapse
|
8
|
Vargas-Castro I, Melero M, Crespo-Picazo JL, Jiménez MDLÁ, Sierra E, Rubio-Guerri C, Arbelo M, Fernández A, García-Párraga D, Sánchez-Vizcaíno JM. Systematic Determination of Herpesvirus in Free-Ranging Cetaceans Stranded in the Western Mediterranean: Tissue Tropism and Associated Lesions. Viruses 2021; 13:v13112180. [PMID: 34834986 PMCID: PMC8621769 DOI: 10.3390/v13112180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The monitoring of herpesvirus infection provides useful information when assessing marine mammals’ health. This paper shows the prevalence of herpesvirus infection (80.85%) in 47 cetaceans stranded on the coast of the Valencian Community, Spain. Of the 966 tissues evaluated, 121 tested positive when employing nested-PCR (12.53%). The largest proportion of herpesvirus-positive tissue samples was in the reproductive system, nervous system, and tegument. Herpesvirus was more prevalent in females, juveniles, and calves. More than half the DNA PCR positive tissues contained herpesvirus RNA, indicating the presence of actively replicating virus. This RNA was most frequently found in neonates. Fourteen unique sequences were identified. Most amplified sequences belonged to the Gammaherpesvirinae subfamily, but a greater variation was found in Alphaherpesvirinae sequences. This is the first report of systematic herpesvirus DNA and RNA determination in free-ranging cetaceans. Nine (19.14%) were infected with cetacean morbillivirus and all of them (100%) were coinfected with herpesvirus. Lesions similar to those caused by herpesvirus in other species were observed, mainly in the skin, upper digestive tract, genitalia, and central nervous system. Other lesions were also attributable to concomitant etiologies or were nonspecific. It is necessary to investigate the possible role of herpesvirus infection in those cases.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
- Correspondence:
| | - Mar Melero
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
- Division of External Health, Government Delegation in the Community of Madrid, Ministry of Territorial Policy, 28071 Madrid, Spain
| | - José Luis Crespo-Picazo
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, 46013 Valencia, Spain; (J.L.C.-P.); (D.G.-P.)
| | - María de los Ángeles Jiménez
- Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Eva Sierra
- Division of Veterinary Histology and Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35416 Canary Islands, Spain; (E.S.); (M.A.); (A.F.)
| | - Consuelo Rubio-Guerri
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
- Department of Pharmacy, Facultad de CC de la Salud, UCH-CEU University, 46113 Valencia, Spain
| | - Manuel Arbelo
- Division of Veterinary Histology and Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35416 Canary Islands, Spain; (E.S.); (M.A.); (A.F.)
| | - Antonio Fernández
- Division of Veterinary Histology and Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, 35416 Canary Islands, Spain; (E.S.); (M.A.); (A.F.)
| | - Daniel García-Párraga
- Research Department, Fundación Oceanogràfic de la Comunitat Valenciana, 46013 Valencia, Spain; (J.L.C.-P.); (D.G.-P.)
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain; (M.M.); (C.R.-G.); (J.M.S.-V.)
| |
Collapse
|
9
|
Contribution to Herpesvirus Surveillance in Beaked Whales Stranded in the Canary Islands. Animals (Basel) 2021; 11:ani11071923. [PMID: 34203458 PMCID: PMC8300104 DOI: 10.3390/ani11071923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Herpesviruses (HVs) are a large family of DNA viruses infecting animals (including insects and mollusks) and humans. Cetaceans can be also infected by HVs presenting different range of lesions, from dermatitis to meningoencephalitis, or being asymptomatic. Several studies have addressed the question of HVs in cetaceans, although no previous systematic survey of HV in beaked whales (BWs) (Ziphiidae family) has been previously performed. The family Ziphiidae, which includes 22 species in 6 genera, is one of the most widespread families of cetaceans, with a strict oceanic habitat pattern. Beaked whales, Cuvier’s BW in particular, are one of the deepest diving whales and are of particular interest because of a notable relationship between military operations employing mid-frequency sonar and the mass stranding of BWs in different geographic areas, including the Canary Islands. In this study, we analyzed 55 BWs (294 samples) stranded in the Canary Islands from 1990 to 2017 by molecular methods (conventional nested polymerase chain reaction). Our results showed that 8 BWs were infected by HVs, although only three animals displayed lesions indicative of active viral replication. Phylogenetic analysis suggests that HV-BW sequences are species-specific, although more studies are needed to better address this question. Abstract Herpesviruses (HVs) (Alpha- and Gammaherpesvirinae subfamilies) have been detected in several species of cetaceans with different pathological implications. However, available information on their presence in beaked whales (BWs) is still scarce. In this study, a total of 55 BWs (35 Ziphius cavirostris and 20 animals belonging to the Mesoplodon genus) were analyzed. Samples (n = 294) were obtained from BWs stranded along the coasts of the Canary Islands (1990–2017). Molecular detection of HV was performed by means of a conventional nested PCR based on the DNA polymerase gene. Herpesvirus was detected in 14.45% (8/55) of the analyzed BWs, including 2 positive animals from a previous survey. A percentage positivity of 8.57% was found within the Cuvier’s BW group, while the percentage of positivity rose to 25% within the Mesoplodon genus group (three M. densirostris, one M. europaeus, and one M. bidens). All the obtained sequences from this study belonged to the Alphaherpesvirinae subfamily, from which three are considered novel sequences, all of them within the Mesoplodon genus group. In addition, to our knowledge, this is the first description of HV infection in Gervais’ and Sowerby’s BWs. Three out of eight HV-positive BWs displayed histopathological lesions indicative of active viral replication.
Collapse
|
10
|
Vargas-Castro I, Crespo-Picazo JL, Rivera-Arroyo B, Sánchez R, Marco-Cabedo V, Jiménez-Martínez MÁ, Fayos M, Serdio Á, García-Párraga D, Sánchez-Vizcaíno JM. Alpha- and gammaherpesviruses in stranded striped dolphins (Stenella coeruleoalba) from Spain: first molecular detection of gammaherpesvirus infection in central nervous system of odontocetes. BMC Vet Res 2020; 16:288. [PMID: 32787898 PMCID: PMC7425534 DOI: 10.1186/s12917-020-02511-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpesvirus infections in cetaceans have always been attributed to the Alphaherpesvirinae and Gammaherpesvirinae subfamilies. To date, gammaherpesviruses have not been reported in the central nervous system of odontocetes. CASE PRESENTATION A mass stranding of 14 striped dolphins (Stenella coeruleoalba) occurred in Cantabria (Spain) on 18th May 2019. Tissue samples were collected and tested for herpesvirus using nested polymerase chain reaction (PCR), and for cetacean morbillivirus using reverse transcription-PCR. Cetacean morbillivirus was not detected in any of the animals, while gammaherpesvirus was detected in nine male and one female dolphins. Three of these males were coinfected by alphaherpesviruses. Alphaherpesvirus sequences were detected in the cerebrum, spinal cord and tracheobronchial lymph node, while gammaherpesvirus sequences were detected in the cerebrum, cerebellum, spinal cord, pharyngeal tonsils, mesenteric lymph node, tracheobronchial lymph node, lung, skin and penile mucosa. Macroscopic and histopathological post-mortem examinations did not unveil the potential cause of the mass stranding event or any evidence of severe infectious disease in the dolphins. The only observed lesions that may be associated with herpesvirus were three cases of balanitis and one penile papilloma. CONCLUSIONS To the authors' knowledge, this is the first report of gammaherpesvirus infection in the central nervous system of odontocete cetaceans. This raises new questions for future studies about how gammaherpesviruses reach the central nervous system and how infection manifests clinically.
Collapse
Affiliation(s)
- Ignacio Vargas-Castro
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Belén Rivera-Arroyo
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Rocío Sánchez
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | | | - Manena Fayos
- Centro de Recuperación de Fauna Silvestre de Cantabria, 39690, Santander, Spain.,Tragsatec, 39005, Santander, Spain
| | - Ángel Serdio
- Dirección General de Biodiversidad, Medio Ambiente y Cambio Climático, 39011, Santander, Spain
| | | | - José Manuel Sánchez-Vizcaíno
- VISAVET Center and Animal Health Department, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
11
|
Sacristán C, Esperón F, Ewbank AC, Díaz-Delgado J, Ferreira-Machado E, Costa-Silva S, Sánchez-Sarmiento AM, Groch KR, Neves E, Pereira Dutra GH, Gravena W, Ferreira Da Silva VM, Marcondes MCC, Castaldo Colosio A, Cremer MJ, Carvalho VL, O Meirelles AC, Marigo J, Catão-Dias JL. Novel herpesviruses in riverine and marine cetaceans from South America. Acta Trop 2019; 190:220-227. [PMID: 30465743 DOI: 10.1016/j.actatropica.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/15/2022]
Abstract
Herpesvirus (HV) infections in cetaceans are frequently associated with skin and mucosal lesions. Although HV infections have been reported worldwide, their occurrence in southern Atlantic marine mammals is still poorly understood. We tested skin, oral and genital mucosal beta-actin PCR-positive samples from 109 free-ranging Brazilian cetaceans using a universal herpesvirus DNA polymerase PCR. Herpesvirus-positive skin samples from a Guiana dolphin (Sotalia guianensis), a dwarf sperm whale (Kogia sima), a Bolivian river dolphin (Inia boliviensis), and a lingual sample from an Atlantic spotted dolphin (Stenella frontalis) were histologically evaluated. Additional tissue samples from these animals were also PCR-positive for HV, including a novel sequence obtained from the dwarf sperm whale's stomach and mesenteric lymph node. Four novel HV species were detected in the Guiana dolphin (one), the dwarf sperm whale (two) and the Bolivian river dolphin (one). The cutaneous lesions (marked, focally extensive, chronic proliferative dermatitis) of the Guiana dolphin and the Bolivian river dolphin were similar to previous HV reports in cetaceans, despite the absence of intranuclear inclusion bodies. This is the largest HV survey in South American cetaceans and the first detection of HV infection in riverine dolphins worldwide.
Collapse
Affiliation(s)
- Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil.
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, Madrid, 28130, Spain
| | - Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Josué Díaz-Delgado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Eduardo Ferreira-Machado
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Samira Costa-Silva
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Angélica María Sánchez-Sarmiento
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Kátia R Groch
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - Elena Neves
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Valdeolmos, Madrid, 28130, Spain
| | | | - Waleska Gravena
- Instituto Nacional de Pesquisas da Amazônia, Manaus, 69067-375, AM, Brazil; Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Coari, 69460-000, AM, Brazil
| | | | | | | | - Marta J Cremer
- Laboratório de Ecologia e Conservação de Tetrápodes Marinhos e Costeiros, Universidade da Região de Joinville, São Francisco do Sul, 89240-000, SC, Brazil
| | - Vitor L Carvalho
- Associação de Pesquisa e Preservação de Ecossistemas Aquáticos, Caucaia, 61627-210, CE, Brazil
| | | | - Juliana Marigo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, SP, Brazil
| |
Collapse
|
12
|
Genome Sequence of a Gammaherpesvirus from a Common Bottlenose Dolphin ( Tursiops truncatus). GENOME ANNOUNCEMENTS 2017; 5:5/31/e00777-17. [PMID: 28774992 PMCID: PMC5543654 DOI: 10.1128/genomea.00777-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A herpesvirus genome was sequenced directly from a biopsy specimen of a rectal lesion from a female common bottlenose dolphin. This genome sequence comprises a unique region (161,235 bp) flanked by multiple copies of a terminal repeat (4,431 bp) and contains 72 putative genes. The virus was named common bottlenose dolphin gammaherpesvirus 1.
Collapse
|
13
|
Coinfection and vertical transmission of Brucella and Morbillivirus in a neonatal sperm whale (Physeter macrocephalus) in Hawaii, USA. J Wildl Dis 2015; 51:227-32. [PMID: 25390763 DOI: 10.7589/2014-04-092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The viral genus Morbillivirus and the bacterial genus Brucella have emerged as important groups of pathogens that are known to affect cetacean health on a global scale, but neither pathogen has previously been reported from endangered sperm whales (Physeter macrocephalus). A female neonate sperm whale stranded alive and died near Laie on the island of Oahu, Hawaii, US, in May of 2011. Congestion of the cerebrum and enlarged lymph nodes were noted on the gross necropsy. Microscopic findings included lymphoid depletion, chronic meningitis, and pneumonia, suggesting an in utero infection. Cerebrum, lung, umbilicus, and select lymph nodes (tracheobronchial and mediastinal) were positive for Brucella by PCR. Brucella sp. was also cultured from the cerebrum and from mediastinal and tracheobronchial lymph nodes. Twelve different tissues were screened for Morbillivirus by reverse-transcriptase (RT)-PCR and select tissues by immunohistochemistry, but only the tracheobronchial lymph node and spleen were positive by RT-PCR. Pathologic findings observed were likely a result of Brucella, but Morbillivirus may have played a key role in immune suppression of the mother and calf. The in utero infection in this individual strongly supports vertical transmission of both pathogens.
Collapse
|
14
|
Arbelo M, Bellière EN, Sierra E, Sacchinni S, Esperón F, Andrada M, Rivero M, Diaz-Delgado J, Fernández A. Herpes virus infection associated with interstitial nephritis in a beaked whale (Mesoplodon densirostris). BMC Vet Res 2012; 8:243. [PMID: 23237059 PMCID: PMC3577509 DOI: 10.1186/1746-6148-8-243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background The capacity for herpesvirus to cause disease in cetaceans is unclear and may be varied depending on the different conditions of individuals and between different species. Kidney pathology and intralesional virus-associated infection have been rarely reported in cetaceans. Result On April 2004, an old adult male Blainville’s beaked whale (Mesoplodon densirostris) 420 cm long with a poor body condition was stranded on Tenerife Island. During necropsy, no gross lesions were observed in the kidneys. However, membranous glomerulonephritis, multifocal interstitial lymphoplasmacytic nephritis and acute multifocal necrotizing tubulointerstitial nephritis with intranuclear inclusion bodies was diagnosed by histological analysis. Tissue samples were submitted for bacteriological analysis and molecular viral screening. Conclusion A novel alpha herpesvirus associated with interstitial nephritis was identified in an old adult male Blainville's beaked whale (M. densirostris) with a poor body condition stranded in the Canary Islands. This report suggests that identification of herpesvirus infection could be used as a differential diagnosis for interstitial nephritis in cetaceans.
Collapse
Affiliation(s)
- Manuel Arbelo
- Unit of Veterinary Histology and Pathology, Institute for Animal Health (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Isolation of a novel herpesvirus from a Pacific white-sided dolphin. Arch Virol 2012; 158:695-9. [PMID: 23138155 DOI: 10.1007/s00705-012-1536-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
During establishment of primary cell culture from the kidney of a dead Pacific white-sided dolphin (Lagenorhynchus obliquidens), a cytopathic effect was observed. Polymerase chain reaction with a set of herpesvirus consensus primers yielded a fragment of the expected size. Nucleotide sequencing of the product indicated that the isolated virus was closely related to an alphaherpesvirus detected in a bottlenose dolphin in the United States, but the sequence identity at the protein level was low (86.6 %). Phylogenetic analysis of the encoded sequence confirmed that the new isolate belonged to the subfamily Alphaherpesvirinae and clustered together with other cetacean alphaherpesviruses. The complete gene encoding glycoprotein B (2,757 bp) was amplified from the novel isolate; the encoded protein was compared with the corresponding protein of other herpesviruses, revealing that this virus belongs to the genus Varicellovirus. Taken together, these results suggest that this virus corresponds to a novel herpesvirus capable of infecting Pacific white-sided dolphins.
Collapse
|