1
|
Temnik M, Rudyk M, Balakin A, Gurin S, Dovbynchuk T, Byshovets R, Dzubenko N, Tolstanova G, Skivka L. Anti-inflammatory effects of 64Zn-aspartate is accompanied by cognitive improvements in rats with Aβ 1-40-induced alzheimer disease. Sci Rep 2025; 15:14272. [PMID: 40274975 PMCID: PMC12022080 DOI: 10.1038/s41598-025-97830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Alzheimer disease (AD) is a debilitating progressive dementia, whose pathophysiology is not fully understood. Chronic inflammation is now widely accepted as one of the key features of AD pathogenesis. Because of this, anti-inflammatory preparations are considered as putative disease modifying agents. A new compound of zinc aspartate with enriched light atoms 64Zn (64Zn-asp) was evaluated as a possible anti-AD agent using Aβ1-40-induced AD model. Intrahippocampal Aβ1-40 injection resulted in pronounced neuroinflammation, as was evidenced by increased phagocytic activity, augmented reactive oxygen species generation, and up-regulated CD86 and CD206 expression by microglia. In rats with Aβ1-40-induced AD, persistent systemic inflammation was also registered, as was ascertained by significantly increased white blood cell-based inflammatory indices and development of anemia of inflammation. Neuro- and systemic inflammation in rats was accompanied by hippocampal dopamine neuron loss, as well as by impairment of short-term and remote spatial memory and cognitive flexibility. Intravenous 64Zn-asp administration rats with AD was associated with returning all microglia indicators to normal range. All aforementioned features of systemic inflammation were not observed in these animals. Anti-inflammatory 64Zn-asp effect was strongly correlated with improvement of short-term spatial memory and cognitive flexibility, and moderately-with betterment of remote spatial memory. These results demonstrated that i.v. 64Zn-asp administration could reverse the inflammatory and, as a result, cognitive effects of intra-hippocampal Aβ1-40 in rats. Therefore, its use may be a viable approach in the complex therapeutic strategy for AD.
Collapse
Affiliation(s)
- Max Temnik
- Physical Chemistry, Vector Vitale, North Miami Beach, USA
| | - Mariia Rudyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkova Avenue, Kyiv, 03022, Ukraine.
| | | | - Sergey Gurin
- Physical Chemistry, Vector Vitale, North Miami Beach, USA
| | - Taisa Dovbynchuk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Roman Byshovets
- Department of Internal Diseases, Bogomolets National Medical University, 13, Shevchenko Blvd., Kyiv, 01004, Ukraine
| | - Nataliia Dzubenko
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4g, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Ganna Tolstanova
- Educational and Scientific Institute of High Technologies, Taras Shevchenko National University of Kyiv, 4g, Hlushkova Avenue, Kyiv, 03022, Ukraine
| | - Larysa Skivka
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, 2, Hlushkova Avenue, Kyiv, 03022, Ukraine
| |
Collapse
|
2
|
Brooks J, Everett J, Sadler PJ, Telling N, Collingwood JF. On the origin of metal species in the human brain: a perspective on key physicochemical properties. Metallomics 2025; 17:mfaf004. [PMID: 39924175 PMCID: PMC11890113 DOI: 10.1093/mtomcs/mfaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Normal functioning of the human brain is dependent on adequate regulation of essential metal nutrients. However, it is also highly sensitive to metal-mediated toxicity, linked to various neurodegenerative disorders. Exposure to environmental metal sources (especially to particulate air pollution) can stimulate toxicity and neuropathologic effects, which is particularly evident in populations chronically exposed to high levels of air pollution. Identifying the sources of metal-rich deposits in the human brain is important in not only distinguishing the effects of environmentally acquired metals from endogenous metal dysregulation, but also for tracing pollutant sources which may be subject to exposure control. This perspective reviews evidence for key physicochemical properties (size/morphology, chemical composition, oxidation state, magnetic properties, and isotopic composition) concerning their capacity to distinguish sources of metals in the brain. The scope for combining analytical techniques to study properties in tandem is also discussed.
Collapse
Affiliation(s)
- Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - James Everett
- School of Engineering, University of Warwick, Coventry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | | |
Collapse
|
3
|
Jeong H, Ra K, Araújo DF, Yoo CM, Hyeong K, Park SJ. Zinc and copper isotope fractionation in metal leaching from hydrothermal ore deposits: Environmental implications for deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174833. [PMID: 39025143 DOI: 10.1016/j.scitotenv.2024.174833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Deep-sea mining can remobilize large amounts of inert metals from hydrothermal seafloor massive sulfides (SMSs) into bioavailable toxic forms that are dissolved in the water column, potentially impacting marine ecosystems. It is thus critical to assess the impacts of deep-sea mining on the reactivities and behaviors of crucial elements (e.g., Zn and Cu) and their isotopes during mineral leaching processes. To this end, we conducted leaching experiments using different SMS mineral types (CuFe rich, Fe rich, and ZnFe rich) to assess metal releases and the isotope fractionations of Zn and Cu. Significant correlations were observed between Ni, Cu, Zn, Cd, and Pb concentrations in leachates and the SMSs, suggesting that metal leaching into seawater depended on individual SMS metal content. The Zn and Cu concentrations in leachates varied greatly by both SMS type and the leaching time. Zn concentrations from ZnFe rich SMSs exceeded the recommended effluent limits set by the IFC World Bank and the USEPA. SMS ore leachates exhibited Cu and Zn isotope ratios distinct from those of Indian Ocean deep seawater. The isotope fractionation magnitude (Δore-seawater) of Cu was more pronounced than that of Zn, likely due to the redox process involved in the leaching processes. In contrast, the Zn isotope signatures in leachates conserve those of minerals, although slight isotope fractionations occurred in solution following the adsorption and precipitation processes of Fe-oxyhydroxides. Our findings confirm that leveraging the chemical and isotope signatures of toxic metals offers a valuable approach for assessing the extent of metal contamination of leachates and mine tailings stemming from deep-sea mining operations, concerning their influence on the surrounding water columns.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France; Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea.
| | - Kongtae Ra
- Marine Environmental Research Department, Korea Institute of Ocean Science and Technology (KIOST), Busan 49111, Republic of Korea; Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Daniel F Araújo
- Ifremer, CCEM-Unité Contamination Chimique des Ecosystèmes Marins (CCEM), F-44300 Nantes, France
| | - Chan Min Yoo
- Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Kiseong Hyeong
- Ocean Georesources Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Sang Joon Park
- Critical Minerals Research Center, Korea Institute of Geosciences and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| |
Collapse
|
4
|
Marchán-Moreno C, Louvat P, Bueno M, Berail S, Corns WT, Cherel Y, Bustamante P, Amouroux D, Pedrero Z. First-Time Isotopic Characterization of Seleno-Compounds in Biota: A Pilot Study of Selenium Isotopic Composition in Top Predator Seabirds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39018327 DOI: 10.1021/acs.est.4c02319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The study was conducted on various internal organs of giant petrels (Macronectes spp.), encompassing bulk tissues (δ82/78Sebulk), distinct Se-specific fractions such as selenoneine (δ82/78SeSEN), and HgSe nanoparticles (δ82/78SeNPs). The δ82/78Sebulk results (2.0-5.6‰) offer preliminary insights into the fate of Se in key internal organs of seabirds, including the liver, the kidneys, the muscle, and the brain. Notably, the liver of all individuals was enriched in heavier Se isotopes compared to other examined tissues. In nanoparticle fraction, δ82/78Se varies significantly across individuals (δ82/78SeNPs from 0.6 to 5.7‰, n = 8), whereas it exhibits remarkable consistency among tissues and individuals for selenoneine (δ82/78SeSEN, 1.7 ± 0.3‰, n = 8). Significantly, there was a positive correlation between the shift from δ82/78Sebulk to δ82/78SeSEN and the proportion of Se present as selenoneine in the internal organs. This pilot study proves that Se species-specific isotopic composition is a promising tool for a better understanding of Se species fate, sources, and dynamics in animals.
Collapse
Affiliation(s)
- Claudia Marchán-Moreno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Pascale Louvat
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Maite Bueno
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Sylvain Berail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Warren T Corns
- PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington BR5 3HP, Kent, U.K
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS─La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle 17000, France
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| | - Zoyne Pedrero
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie Pour l'Environnement et les Matériaux, Pau 64000, France
| |
Collapse
|
5
|
Bian X, Yang SC, Raad RJ, Hawco NJ, Sakowski J, Huang KF, Kong KP, Conway TM, John SG. A rapid procedure for isotopic purification of copper and nickel from seawater using an automated chromatography system. Anal Chim Acta 2024; 1312:342753. [PMID: 38834266 DOI: 10.1016/j.aca.2024.342753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Trace metals such as iron, nickel, copper, zinc, and cadmium (Fe, Ni, Cu, Zn, and Cd) are essential micronutrients (and sometimes toxins) for phytoplankton, and the analysis of trace-metal stable isotopes in seawater is a valuable tool for exploring the biogeochemical cycling of these elements in the ocean. However, the complex and often time-consuming chromatography process required to purify these elements from seawater has limited the number of trace-metal isotope samples which can be easily processed in biogeochemical studies. To facilitate the trace-metal stable isotope analysis, here, we describe a new rapid procedure that utilizes automated chromatography for extracting and purifying Ni and Cu from seawater for isotope analysis using a prepFAST-MC™ system (Elemental Scientific Inc.). RESULTS We have tested the matrix removal effectiveness, recoveries, and procedural blanks of the new purification procedure with satisfactory results. A nearly complete recovery of Ni and a quantitative recovery of Cu are achieved. The total procedural blanks are 0.33 ± 0.24 ng for Ni and 0.42 ± 0.18 ng for Cu, which is negligible for natural seawater samples. The new procedure cleanly separates Ni and Cu from key seawater matrix elements that may cause interferences during mass spectrometry analysis. When the new procedure was used to purify seawater samples for Ni and Cu stable isotope analysis by multi-collector ICP-MS, we achieved an overall uncertainty of 0.07 ‰ for δ60Ni and 0.09 ‰ for δ65Cu (2 SD). The new purification procedure was also tested using natural seawater samples from the South Pacific, for comparison of δ60Ni and δ65Cu achieved in the same samples purified by traditional hand columns. Both methods produced similar results, and the results from both methods are consistent with analyses of δ60Ni and δ65Cu from other ocean locations as reported by other laboratories. SIGNIFICANCE This study presents a new rapid procedure for seawater stable-metal isotope analysis by automating the chromatography step. We anticipate that the automated chromatography described here will facilitate the rapid and accurate analysis of seawater δ60Ni and δ65Cu in future studies, and may be adapted in the future to automate chromatographic purification of Fe, Zn, and Cd isotopes from seawater.
Collapse
Affiliation(s)
- Xiaopeng Bian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Shun-Chung Yang
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Robert J Raad
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicholas J Hawco
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Kuo-Fang Huang
- Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
| | - Kyeong Pil Kong
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Tim M Conway
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Seth G John
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Malaterre C, Ten Kate IL, Baqué M, Debaille V, Grenfell JL, Javaux EJ, Khawaja N, Klenner F, Lara YJ, McMahon S, Moore K, Noack L, Patty CHL, Postberg F. Is There Such a Thing as a Biosignature? ASTROBIOLOGY 2023; 23:1213-1227. [PMID: 37962841 DOI: 10.1089/ast.2023.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The concept of a biosignature is widely used in astrobiology to suggest a link between some observation and a biological cause, given some context. The term itself has been defined and used in several ways in different parts of the scientific community involved in the search for past or present life on Earth and beyond. With the ongoing acceleration in the search for life in distant time and/or deep space, there is a need for clarity and accuracy in the formulation and reporting of claims. Here, we critically review the biosignature concept(s) and the associated nomenclature in light of several problems and ambiguities emphasized by recent works. One worry is that these terms and concepts may imply greater certainty than is usually justified by a rational interpretation of the data. A related worry is that terms such as "biosignature" may be inherently misleading, for example, because the divide between life and non-life-and their observable effects-is fuzzy. Another worry is that different parts of the multidisciplinary community may use non-equivalent or conflicting definitions and conceptions, leading to avoidable confusion. This review leads us to identify a number of pitfalls and to suggest how they can be circumvented. In general, we conclude that astrobiologists should exercise particular caution in deciding whether and how to use the concept of biosignature when thinking and communicating about habitability or life. Concepts and terms should be selected carefully and defined explicitly where appropriate. This would improve clarity and accuracy in the formulation of claims and subsequent technical and public communication about some of the most profound and important questions in science and society. With this objective in mind, we provide a checklist of questions that scientists and other interested parties should ask when assessing any reported detection of a "biosignature" to better understand exactly what is being claimed.
Collapse
Affiliation(s)
- Christophe Malaterre
- Département de philosophie, Chaire de recherche du Canada en philosophie des sciences de la vie, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre interuniversitaire de recherche sur la science et la technologie (CIRST), Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Inge Loes Ten Kate
- Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Mickael Baqué
- Planetary Laboratories Department, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Vinciane Debaille
- Laboratoire G-Time, Université libre de Bruxelles, Brussels, Belgium
| | - John Lee Grenfell
- Department of Extrasolar Planets and Atmospheres, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Yannick J Lara
- Early Life Traces & Evolution-Astrobiology, UR Astrobiology, University of Liège, Liège, Belgium
| | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Keavin Moore
- Department of Earth & Planetary Sciences, McGill University, Montreal, Québec, Canada
- Trottier Space Institute, McGill University, Montreal, Québec, Canada
| | - Lena Noack
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - C H Lucas Patty
- Physikalisches Institut, Universität Bern, Bern, Switzerland
- Center for Space and Habitability, Universität Bern, Bern, Switzerland
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Guillin O, Albalat E, Vindry C, Errazuriz-Cerda E, Ohlmann T, Balter V, Chavatte L. Zinc Uptake by HIV-1 Viral Particles: An Isotopic Study. Int J Mol Sci 2023; 24:15274. [PMID: 37894953 PMCID: PMC10607083 DOI: 10.3390/ijms242015274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Zinc, an essential trace element that serves as a cofactor for numerous cellular and viral proteins, plays a central role in the dynamics of HIV-1 infection. Among the viral proteins, the nucleocapsid NCp7, which contains two zinc finger motifs, is abundantly present viral particles and plays a crucial role in coating HIV-1 genomic RNA, thus concentrating zinc within virions. In this study, we investigated whether HIV-1 virus production impacts cellular zinc homeostasis and whether isotopic fractionation occurs between the growth medium, the producing cells, and the viral particles. We found that HIV-1 captures a significant proportion of cellular zinc in the neo-produced particles. Furthermore, as cells grow, they accumulate lighter zinc isotopes from the medium, resulting in a concentration of heavier isotopes in the media, and the viruses exhibit a similar isotopic fractionation to the producing cells. Moreover, we generated HIV-1 particles in HEK293T cells enriched with each of the five zinc isotopes to assess the potential effects on the structure and infectivity of the viruses. As no strong difference was observed between the HIV-1 particles produced in the various conditions, we have demonstrated that enriched isotopes can be accurately used in future studies to trace the fate of zinc in cells infected by HIV-1 particles. Comprehending the mechanisms underlying zinc absorption by HIV-1 viral particles offers the potential to provide insights for developing future treatments aimed at addressing this specific facet of the virus's life cycle.
Collapse
Affiliation(s)
- Olivia Guillin
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Emmanuelle Albalat
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5276 (UMR5276), 69007 Lyon, France
| | - Caroline Vindry
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Elisabeth Errazuriz-Cerda
- Center of Quantitative Imagery Lyon Est (CIQLE), Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| | - Vincent Balter
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5276 (UMR5276), 69007 Lyon, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France; (O.G.); (C.V.); (T.O.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, 69007 Lyon, France;
- Division Recherche, Université Claude Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), 69007 Lyon, France
| |
Collapse
|
8
|
Reich MS, Kindra M, Dargent F, Hu L, Flockhart DTT, Norris DR, Kharouba H, Talavera G, Bataille CP. Metals and metal isotopes incorporation in insect wings: Implications for geolocation and pollution exposure. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anthropogenic activities are exposing insects to elevated levels of toxic metals and are altering the bioavailability of essential metals. Metals and metal isotopes have also become promising tools for the geolocation of migratory insects. Understanding the pathways of metal incorporation in insect tissues is thus important for assessing the role of metals in insect physiology and ecology and for the development of metals and metal isotopes as geolocation tools. We conducted a diet-switching experiment on monarch butterflies [Danaus plexippus (L.)] with controlled larval and adult diets to evaluate the sources of 23 metals and metalloids, strontium isotopes, and lead isotopes to insect wing tissues over a period of 8 weeks. Concentrations of Ca, Co, Mo, and Sb differed between the sexes or with body mass. Ni and Zn bioaccumulated in the insect wing tissues over time, likely from the adult diet, while increases in Al, Cr, Cd, Cu, Fe, and Pb were, at least partially, from external sources (i.e., dust aerosols). Bioaccumulation of Pb in the monarch wings was confirmed by Pb isotopes to mainly be sourced from external anthropogenic sources, revealing the potential of Pb isotopes to become an indicator and tracer of metal pollution exposure along migratory paths. Concentrations of Ba, Cs, Mg, Na, Rb, Sr, Ti, Tl, and U appeared to be unaffected by intrinsic factors or additions of metals from adult dietary or external sources, and their potential for geolocation should be further explored. Strontium isotope ratios remained indicative of the larval diet, at least in males, supporting its potential as a geolocation tool. However, the difference in strontium isotope ratios between sexes, as well as the possibility of external contamination by wetting, requires further investigation. Our results demonstrate the complexity of metal incorporation processes in insects and the value of studying metals to develop new tools to quantify pollution exposure, metal toxicity, micronutrient uptake, and insect mobility.
Collapse
|
9
|
Lu Z, Zhu JM, Tan D, Johnson TM, Wang X. Double Spike-Standard Addition Technique and Its Application in Measuring Isotopes. Anal Chem 2023; 95:2253-2259. [PMID: 36638820 DOI: 10.1021/acs.analchem.2c03802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Double spike (DS) method has been extensively used in determining stable isotope ratios of many elements. However, challenges remain in obtaining high-precision isotope data for ultra-trace elements owing to the limitations of instrumental signal-to-noise ratios and the systematics of precision of DS-based measurements. Here, the DS-standard addition (SA) (DSSA) technique is proposed to improve measurements of isotope compositions of ultra-trace elements in natural samples. According to the U-shaped relationship between DS measurement uncertainty and the spike/sample ratio, theoretical equations and an error propagation model (EPM) were constructed comprehensively. In our method, a spiked secondary standard solution with a high, precisely known spike/sample ratio is mixed with samples such that the mixtures have spike/sample ratios within the optimal range. The abundances of the samples relative to the added standards (sample fraction; fspl) and the samples' isotope ratios can then be obtained exactly using a standard DS data reduction routine and the isotope binary mixing model. The accuracy and precision of the DSSA approach were verified by measurements of cadmium and molybdenum isotopes at as low as 5 ng levels. Compared with traditional DS measurements, the sample size for isotope analysis is reduced to 1/6-1/5 of the original with no loss of measurement precision. The optimal mixing range fspl = 0.15-0.5 is recommended. The DSSA method can be extended to isotope measurement of more than 33 elements where the DS method is applicable, especially for the ultra-trace elements such as platinum group and rare earth element isotopes.
Collapse
Affiliation(s)
- Zhuo Lu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing100083, China
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Beijing), Beijing100083, China.,State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Decan Tan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China
| | - Thomas M Johnson
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States
| | - Xiangli Wang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing100029, China
| |
Collapse
|
10
|
Qu R, Han G, Tian Y, Zhao Y. Calcium isotope ratio in kidney stones: preliminary exploration of mechanism from the geochemical perspective. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6874760. [PMID: 36472544 DOI: 10.1093/mtomcs/mfac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Stable calcium (Ca) isotope ratios are sensitive and radiation-free biomarkers in monitoring biological processes in human bodies. Recently, the Ca isotope ratios of bone, blood, and urine have been widely reported to study bone mineral balance. However, as a pure Ca crystallization product, there is no report on the Ca isotope ratios of kidney stones, even though the prevalence of kidney stones is currently on the rise. Here, we measured Ca isotope data of 21 kidney stone samples collected in Beijing, China. The δ44/42CaNIST 915a values ranged from 0.25‰ to 2.85‰ for calcium oxalate, and from 0.38‰ to 3.00‰ and 0.61‰ to 0.69‰ for carbonate apatite and uric acid, respectively. Kidney stones have heavier Ca isotope ratios than bone or blood, which is probably because complexed Ca contains more heavy Ca isotopes than free Ca2+. Ca isotope evidence suggests that magnesium (Mg) affects kidney stone formation, as the δ44/42CaNIST 915a value is inversely correlated with the Ca/Mg ratio. This study provides important preliminary reference values on the Ca isotopic composition of kidney stones and proposes a factor influencing Ca isotope fractionation in biological processes for future research.
Collapse
Affiliation(s)
- Rui Qu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guilin Han
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yu Tian
- Department of Urology, Peking University Third Hospital, Beijing100191, China
| | - Ye Zhao
- Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wresham LL13 9XS, UK
| |
Collapse
|
11
|
Wang W, Li Z, Lu Q, Zhang L, Lu D, Yang H, Yang X, Zhang L, Zhang Y, Liu Q, Wang B, Guo Y, Ren A, Jiang G. Natural copper isotopic abnormity in maternal serum at early pregnancy associated to risk of spontaneous preterm birth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157872. [PMID: 35940265 DOI: 10.1016/j.scitotenv.2022.157872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Spontaneous preterm birth (SPB) has drawn public attention due to its increasing incidence and adverse effects on fetal growth. Effect of copper (Cu) imbalance in maternal bodies on the risk of SPB remains a subject of debate, and the related mechanisms are still unraveled. Here we applied natural stable copper isotopes to explore the underlying association and mechanism of copper imbalance with SPB using a nested case-control study. We collected maternal sera at the early pregnancy stage and then measured their copper isotopic ratio (65Cu/63Cu, expressed as δ65Cu) as well as physiological and biochemical indexes from women with and without delivering SPB. We found that SPB cases had no significant difference in serum copper level from their controls, but their serum copper was significantly isotopically heavier than the controls (δ65Cu value = 0.15 ± 0.34 ‰ versus -0.15 ± 0.17 ‰, P = 0.0149). Compared with the controls with lower δ65Cu values, the crude odds ratio (OR) associated with SPB risk increased to 4.00 (95 % confidence interval (CI): 1.37-11.70) and the adjusted OR reached up to 11.35 (95 % CI: 1.35-95.60). Furthermore, via the copper isotopic fractionation, we revealed that dietary intake and blood ceruloplasmin may play more important roles than blood lipids and mother-to-child transmission in the copper imbalance associated with SPB. Further studies will be needed to understand the mechanisms of isotope fractionation related to reproductive health.
Collapse
Affiliation(s)
- Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Peking University/National Health Commission's Key Laboratory of Reproductive Health, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Luyao Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/National Health Commission's Key Laboratory of Reproductive Health, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Yali Zhang
- Institute of Reproductive and Child Health, Peking University/National Health Commission's Key Laboratory of Reproductive Health, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Wang
- Institute of Reproductive and Child Health, Peking University/National Health Commission's Key Laboratory of Reproductive Health, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University/National Health Commission's Key Laboratory of Reproductive Health, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Telouk P, Plissonnier ML, Merle P, Zoulim F, Fares N, Guilloreau P, Parent R, Bacchetta J, Danan M, Carandina S, Albarède F. Copper Isotope Evidence of Oxidative Stress-Induced Hepatic Breakdown and the Transition to Hepatocellular Carcinoma. GASTRO HEP ADVANCES 2022; 1:480-486. [PMID: 39131686 PMCID: PMC11307693 DOI: 10.1016/j.gastha.2022.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, and finding a single reliable biomarker to follow liver degradation is a challenging task. To document the relationship between liver failure, hypoxia, and HCC, copper isotope variations (δ65Cu) were evaluated in the serum of HCC-negative and HCC-positive patients as a biomarker of hepatic failure. Methods We analyzed Cu isotope variations in serum samples from 293 patients with potentially degraded liver functions presenting hepatitis B virus, hepatitis C virus, nonalcoholic steatohepatitis, and alcohol uptake (OH) etiologies and 105 controls. Ninety-five of the patients were diagnosed with HCC. Results On average, the δ65Cu values of the serum of patients with F3-F4 fibrosis score or HCC-positive are low. The Cu isotope data are strikingly bimodal with well-defined δ65Cu modes which imperfectly reflect etiology. The population with normal values (ca -0.3‰) is progressively replaced by a population with atypical δ65Cu values (ca -0.8‰), which reflects the progressive degradation of hepatic functions. Conclusion The clear bimodality does not correspond to a progressive shift of the δ65Cu values but to a replacement of one population by another. This bimodality sheds light on the persisting difficulties epitomized by α-fetoprotein in finding high-sensitivity and high-specificity HCC biomarkers. It is interpreted as a switch in the resistance of hepatic tissues to the oxidative stress that eventually leads to HCC oncogenesis.
Collapse
Affiliation(s)
| | - Marie-Laure Plissonnier
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, Université Claude Bernard Lyon1, Lyon, France
| | - Philippe Merle
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, Université Claude Bernard Lyon1, Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, Université Claude Bernard Lyon1, Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France
| | - Nadim Fares
- Rangueil Hospital, CHU Toulouse, Toulouse, France
| | - Paule Guilloreau
- Department of Hepatology, Hospices Civils de Lyon, Croix-Rousse Hospital, Lyon, France
| | - Romain Parent
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, Université Claude Bernard Lyon1, Lyon, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, INSERM 1033, Faculté de Médecine Lyon Est, Lyon, France
| | - Marc Danan
- Clinique Saint Michel, Société CCO, Toulon, France
| | | | | |
Collapse
|
13
|
Rodiouchkina K, Rodushkin I, Goderis S, Vanhaecke F. Longitudinal isotope ratio variations in human hair and nails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152059. [PMID: 34863743 DOI: 10.1016/j.scitotenv.2021.152059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Due to the straightforward and non-invasive sampling, ease of transport and long-term storage and access to time-resolved information, determination of element concentrations and isotope ratios in hair and nails finds increasing use. Multi-isotopic information preserved in keratinous tissues allows one to reveal dietary, physiological and environmental influences, but progress in this area is still limited by complicated and time-consuming analytical procedures and challenges in accuracy assessment. In this study, longitudinal distributions of δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, δ65Cu, δ26Mg, and δ114Cd were obtained for hair and nails collected from nine subjects with different age, biological sex, diet and/or place of residence. For S and Zn, the distribution along hair strands revealed a trend towards a heavier isotopic signature from the proximal to the distal end, with a maximum difference within the hair of a single subject of 1.2‰ (Δ34S) and 0.4‰ (Δ66Zn). For Fe, Cu, Mg and Cd, a shift towards either a lighter (Cu) or heavier (Fe, Mg and Cd) isotopic composition is accompanied by increasing concentration towards the distal hair end, indicating possible isotope fractionation during deposition or external contamination with a different isotopic composition. Pb and Sr isotope ratios are relatively stable throughout the hair strands despite notable concentration increases towards the distal end, likely reflecting external contamination. The isotopic composition of Sr points to tap water as a probable main source, explaining the relative stability of the ratio for individuals from the same geographical location. For Pb, isotopic compositions suggest tap water and/or indoor dust as possible sources. Similar δ34S, 87Sr/86Sr, 207,208Pb/206Pb, δ66Zn, δ56Fe, and δ65Cu observed for hair, fingernails and toenails sampled from the same individual suggest that keratinous tissues are conservative receivers of internal and external inputs and can be used complementary. Seasonal variation in δ34S, 207,208Pb/206Pb, and δ65Cu was observed for fingernails.
Collapse
Affiliation(s)
- Katerina Rodiouchkina
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium
| | - Ilia Rodushkin
- ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Luleå, Sweden
| | - Steven Goderis
- Vrije Universiteit Brussel, Department of Chemistry, Analytical, Environmental and Geo-Chemistry (AMGC) research group, Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank Vanhaecke
- Ghent University, Department of Chemistry, Atomic and Mass Spectrometry (A&MS) research group, Campus Sterre, Krijgslaan 281 - S12, 9000 Ghent, Belgium.
| |
Collapse
|
14
|
Wang W, Liu X, Zhang C, Sheng F, Song S, Li P, Dai S, Wang B, Lu D, Zhang L, Yang X, Zhang Z, Liu S, Zhang A, Liu Q, Jiang G. Identification of two-dimensional copper signatures in human blood for bladder cancer with machine learning. Chem Sci 2022; 13:1648-1656. [PMID: 35282611 PMCID: PMC8826767 DOI: 10.1039/d1sc06156a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
Currently, almost all available cancer biomarkers are based on concentrations of compounds, often suffering from low sensitivity, poor specificity, and false positive or negative results. The stable isotopic composition of elements provides a different dimension from the concentration and has been widely used as a tracer in geochemistry. In health research, stable isotopic analysis has also shown potential as a new diagnostic/prognostic tool, which is still in the nascent stage. Here we discovered that bladder cancer (BCa) could induce a significant variation in the ratio of natural copper isotopes (65Cu/63Cu) in the blood of patients relative to benign and healthy controls. Such inherent copper isotopic signatures permitted new insights into molecular mechanisms of copper imbalance underlying the carcinogenic process. More importantly, to enhance the diagnostic capability, a machine learning model was developed to classify BCa and non-BCa subjects based on two-dimensional copper signatures (copper isotopic composition and concentration in plasma and red blood cells) with a high sensitivity, high true negative rate, and low false positive rate. Our results demonstrated the promise of blood copper signatures combined with machine learning as a versatile tool for cancer research and potential clinical application. The blood Cu concentration and isotopic composition enable new insights into Cu imbalance and diagnosis of bladder cancer with machine learning.![]()
Collapse
Affiliation(s)
- Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Changwen Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology Tianjin 300211 China
| | - Fei Sheng
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology Tianjin 300211 China
| | - Shanjun Song
- National Institute of Metrology Beijing 100029 China
| | - Penghui Li
- Tianjin University of Technology Tianjin 300384 China
| | - Shaoqing Dai
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente P.O. Box 217 7500AE Enschede The Netherlands
| | - Bin Wang
- Institute of Reproductive and Child Health, National Health Commission's Key Laboratory of Reproductive Health, Peking University Beijing 100191 China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Luyao Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology Tianjin 300211 China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,Institute of Environment and Health, Jianghan University Wuhan 430056 China.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Araújo DF, Knoery J, Briant N, Vigier N, Ponzevera E. "Non-traditional" stable isotopes applied to the study of trace metal contaminants in anthropized marine environments. MARINE POLLUTION BULLETIN 2022; 175:113398. [PMID: 35114550 DOI: 10.1016/j.marpolbul.2022.113398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The advent of Multicollector ICP-MS inaugurated the analysis of new metal isotope systems, the so-called "non-traditional" isotopes. They are now available tools to study geochemical and ecotoxicological aspects of marine metal contamination and hence, to push the frontiers of our knowledge. However, such applications are still in their infancy, and an accessible state-of-the-art describing main applications, obstacles, gaps, and directions for further development was missing from the literature. This paper fills this gap and aims to encourage the marine scientific community to explore the contributions of this newly available information for the fields of chemical risk assessment, biomonitoring, and trophic transfer of metal contaminants. In the current "Anthropocene" epoch, metal contamination will continue to threaten marine aquatic ecosystems, and "non-traditional" isotopes can be a valuable tool to detect human-induced changes across time-space involving metal contaminants, and their interaction with marine biota.
Collapse
Affiliation(s)
| | | | | | - Nathalie Vigier
- Laboratoire d'Océanographie de Villefranche sur Mer (LOV), IMEV, CNRS, Sorbonne Université, France
| | | |
Collapse
|
16
|
Kubik E, Moynier F, Paquet M, Siebert J. Iron Isotopic Composition of Biological Standards Relevant to Medical and Biological Applications. Front Med (Lausanne) 2021; 8:696367. [PMID: 34746169 PMCID: PMC8563829 DOI: 10.3389/fmed.2021.696367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Iron isotopes are fractionated by multiple biological processes, which offers a novel opportunity to study iron homeostasis. The determination of Fe isotope composition in biological samples necessitates certified biological reference materials with known Fe isotopic signature in order to properly assess external reproducibility and data quality between laboratories. We report the most comprehensive study on the Fe isotopic composition for widely available international biological reference materials. They consist of different terrestrial and marine animal organs (bovine, porcine, tuna, and mussel) as well as apple leaves and human hair (ERC-CE464, NIST1515, ERM-DB001, ERM-BB186, ERM-BB184, ERM-CE196, BCR668, ERM-BB185, ERM-BB124). Previously measured Fe isotopic compositions were available for only two of these reference materials (ERC-CE464 tuna fish and ERM-BB186 pig kidney) and these literature data are in excellent agreement with our data. The Fe isotopic ratios are reported as the permil deviation of the 56Fe/54Fe ratio from the IRMM-014 standard. All reference materials present δ56Fe ranging from −2.27 to −0.35%0. Combined with existing data, our results suggest that animal models could provide useful analogues of the human body regarding the metabolic pathways affecting Fe isotopes, with many potential applications to medicine.
Collapse
Affiliation(s)
- Edith Kubik
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| | - Marine Paquet
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Julien Siebert
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Stable Isotope Abundance and Fractionation in Human Diseases. Metabolites 2021; 11:metabo11060370. [PMID: 34207741 PMCID: PMC8228638 DOI: 10.3390/metabo11060370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
The natural abundance of heavy stable isotopes (13C, 15N, 18O, etc.) is now of considerable importance in many research fields, including human physiology. In fact, it varies between tissues and metabolites due to isotope effects in biological processes, that is, isotope discriminations between heavy and light isotopic forms during enzyme or transporter activity. The metabolic deregulation associated with many diseases leads to alterations in metabolic fluxes, resulting in changes in isotope abundance that can be identified easily with current isotope ratio technologies. In this review, we summarize the current knowledge on changes in natural isotope composition in samples (including various tissues, hair, plasma, saliva) found in patients compared to controls, caused by human diseases. We discuss the metabolic origin of such isotope fractionations and highlight the potential of using isotopes at natural abundance for medical diagnosis and/or prognostic.
Collapse
|
18
|
Chételat J, Nielsen SG, Auro M, Carpenter D, Mundy L, Thomas PJ. Vanadium Stable Isotopes in Biota of Terrestrial and Aquatic Food Chains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4813-4821. [PMID: 33755433 DOI: 10.1021/acs.est.0c07509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vanadium, a potentially toxic metal, is enriched in the environment from anthropogenic releases, particularly during fossil fuel production and use and steel manufacturing. Metal stable isotopes are sophisticated tools to trace pollution; however, only recent analytical advances have allowed for the accurate and precise measurement of vanadium isotope ratios (δ51V). To examine its potential as a tracer in terrestrial and aquatic ecosystems, δ51V was measured in soil, plant, lichen, marten, and lake sediment from sites near vanadium emissions at oil sands mines (Alberta, Canada) and in the sediment and biota (algae, zooplankton, fish) from a remote subarctic lake (Northwest Territories, Canada). Samples from Alberta had distinct δ51V values with marten liver the lowest (-1.7 ± 0.3‰), followed by lichen (-0.9 ± 0.1‰), soil (-0.7 ± 0.1‰), sediment (-0.5 ± 0.2‰), and plant root (-0.3 ± 0.2‰). Average values were lower than Alberta bitumen and petroleum coke (-0.1 ± 0.1‰). Plant roots had systematically higher δ51V than the soil from which they grew (Δ51Vplant-soil = 0.4 ± 0.1‰), while δ51V of lichen and aquatic biota were lower (0.1-0.3‰) than likely crustal sources. These δ51V measurements in terrestrial and aquatic biota demonstrate promise for tracer applications, although further study of its biological fractionation is needed.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| | - Sune G Nielsen
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, 02543 Woods Hole, Massachusetts, United States
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, 02543 Woods Hole, Massachusetts, United States
| | - Maureen Auro
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, 02543 Woods Hole, Massachusetts, United States
| | - David Carpenter
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| | - Lukas Mundy
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, K1A 0H3 Ontario, Canada
| |
Collapse
|
19
|
Lammel T, Thit A, Cui X, Mouneyrac C, Baun A, Valsami-Jones E, Sturve J, Selck H. Dietary uptake and effects of copper in Sticklebacks at environmentally relevant exposures utilizing stable isotope-labeled 65CuCl 2 and 65CuO NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143779. [PMID: 33279190 DOI: 10.1016/j.scitotenv.2020.143779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) accumulating in sediment can be taken up by invertebrates that serve as prey for fish. Thus, it is likely that the latter are exposed to CuO NPs via the gut. However, to this day it is unknown if CuO NPs can be taken up via the gastrointestinal tract and if and in which tissues/organs they accumulate. To address this knowledge gap, we synthesized CuO NPs enriched in the stable isotope 65Cu and incorporated them at low concentration (5 μg 65Cu g-1 ww food) into a practical diet prepared from worm homogenate, which was then fed to Three-spined Stickleback (Gasterosteus aculeatus) for 16 days. For comparison, fish were exposed to a diet spiked with a 65CuCl2 solution. Background Cu and newly taken up 65Cu in fish tissues/organs including gill, stomach, intestine, liver, spleen, gonad and carcass and feces were quantified by ICP-MS. In addition, expression levels of genes encoding for proteins related to Cu uptake, detoxification and toxicity (ctr-1, gcl, gr, gpx, sod-1, cat, mta and zo-1) were measured in selected tissues using RT-qPCR. The obtained results showed that feces of fish fed 65CuO NP-spiked diet contained important amounts of 65Cu. Furthermore, there was no significant accumulation of 65Cu in any of the analyzed internal organs, though 65Cu levels were slightly elevated in liver. No significant modulation in gene expression was measured in fish exposed to 65CuO NP-spiked diet, except for metallothionein, which was significantly upregulated in intestinal tissue compared to control fish. Altogether, our results suggests that dietary absorption efficiency of CuO NPs, their uptake across the gastrointestinal barrier into the organism, and effects on Cu-related genes is limited at low, environmentally relevant exposure doses (0.2 μg 65Cu -1 fish ww day-1).
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Science and Environment, Roskilde University, Denmark; Department of Biological and Environmental Sciences, University of Gothenburg, Sweden.
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, Denmark
| | - Xianjin Cui
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | | | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Henriette Selck
- Department of Science and Environment, Roskilde University, Denmark
| |
Collapse
|
20
|
Mahan B, Chung RS, Pountney DL, Moynier F, Turner S. Isotope metallomics approaches for medical research. Cell Mol Life Sci 2020; 77:3293-3309. [PMID: 32130428 PMCID: PMC11104924 DOI: 10.1007/s00018-020-03484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022]
Abstract
Metallomics is a rapidly evolving field of bio-metal research that integrates techniques and perspectives from other "-omics" sciences (e.g. genomics, proteomics) and from research vocations further afield. Perhaps the most esoteric of this latter category has been the recent coupling of biomedicine with element and isotope geochemistry, commonly referred to as isotope metallomics. Over the course of less than two decades, isotope metallomics has produced numerous benchmark studies highlighting the use of stable metal isotope distribution in developing disease diagnostics-e.g. cancer, neurodegeneration, osteoporosis-as well as their utility in deciphering the underlying mechanisms of such diseases. These pioneering works indicate an enormous wealth of potential and provide a call to action for researchers to combine and leverage expertise and resources to create a clear and meaningful path forward. Doing so with efficacy and impact will require not only building on existing research, but also broadening collaborative networks, bolstering and deepening cross-disciplinary channels, and establishing unified and realizable objectives. The aim of this review is to briefly summarize the field and its underpinnings, provide a directory of the state of the art, outline the most encouraging paths forward, including their limitations, outlook and speculative upcoming breakthroughs, and finally to offer a vision of how to cultivate isotope metallomics for an impactful future.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Sciences, James Cook University, Townsville, QLD, Australia.
- Department of Biomedical Research, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Roger S Chung
- Department of Biomedical Research, Macquarie University, Sydney, NSW, 2109, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, 4222, Australia
| | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238, Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Environmental Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
21
|
|
22
|
Minami H. Stable Isotope Analyses. ANAL SCI 2019; 35:607-608. [PMID: 31178542 DOI: 10.2116/analsci.highlights1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hirotsugu Minami
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology
| |
Collapse
|
23
|
Miller KA, Vicentini FA, Hirota SA, Sharkey KA, Wieser ME. Antibiotic treatment affects the expression levels of copper transporters and the isotopic composition of copper in the colon of mice. Proc Natl Acad Sci U S A 2019; 116:5955-5960. [PMID: 30850515 PMCID: PMC6442602 DOI: 10.1073/pnas.1814047116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Copper is a critical enzyme cofactor in the body but also a potent cellular toxin when intracellularly unbound. Thus, there is a delicate balance of intracellular copper, maintained by a series of complex interactions between the metal and specific copper transport and binding proteins. The gastrointestinal (GI) tract is the primary site of copper entry into the body and there has been considerable progress in understanding the intricacies of copper metabolism in this region. The GI tract is also host to diverse bacterial populations, and their role in copper metabolism is not well understood. In this study, we compared the isotopic fractionation of copper in the GI tract of mice with intestinal microbiota significantly depleted by antibiotic treatment to that in mice not receiving such treatment. We demonstrated variability in copper isotopic composition along the length of the gut. A significant difference, ∼1.0‰, in copper isotope abundances was measured in the proximal colon of antibiotic-treated mice. The changes in copper isotopic composition in the colon are accompanied by changes in copper transporters. Both CTR1, a copper importer, and ATP7A, a copper transporter across membranes, were significantly down-regulated in the colon of antibiotic-treated mice. This study demonstrated that isotope abundance measurements of metals can be used as an indicator of changes in metabolic processes in vivo. These measurements revealed a host-microbial interaction in the GI tract involved in the regulation of copper transport.
Collapse
Affiliation(s)
- Kerri A Miller
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada T2N 1N4;
| | - Fernando A Vicentini
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Simon A Hirota
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Michael E Wieser
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
24
|
Moore RET, Rehkämper M, Maret W, Larner F. Assessment of coupled Zn concentration and natural stable isotope analyses of urine as a novel probe of Zn status. Metallomics 2019; 11:1506-1517. [DOI: 10.1039/c9mt00160c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heavier Zn isotope compositions in urine compared to blood serum and an accompanying isotope-concentration trend likely reflects Zn processing in the kidneys in response to bodily Zn requirements.
Collapse
Affiliation(s)
| | - Mark Rehkämper
- Department of Earth Science and Engineering
- Imperial College London
- London
- UK
| | - Wolfgang Maret
- Department of Nutritional Sciences
- King's College London
- London
- UK
| | - Fiona Larner
- Department of Earth Sciences
- University of Oxford
- Oxford
- UK
| |
Collapse
|