1
|
Jia N, Yimin Y, Li M, Jiang L, Liu Y. Identification of a novel nonsense mutation and a recurrent missense mutation in UROS gene in a patient with congenital erythropoietic porphyria. Front Genet 2025; 16:1486595. [PMID: 40230347 PMCID: PMC11994962 DOI: 10.3389/fgene.2025.1486595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Background: Congenital erythropoietic porphyria (CEP, OMIM #263700) is a rare autosomal recessive disease characterized by skin photosensitivity, hypertrichosis, scarring in light-exposed areas, erythrodontia, and dark-reddish urine. The severity of the clinical phenotype is directly associated with the complete loss of enzymatic activity resulting from UROS mutations. Methods: To understand the genetic etiology of CEP in a 9-year-old female proband, we checked clinical data and collected peripheral blood samples from her and her parents. Genomic DNA was isolated and subjected to polymerase chain reaction (PCR) amplification. Sanger sequencing was performed to detect potential mutations. Bioinformatics analysis was performed to assess the pathogenicity of the identified variant, and 3D protein modeling was conducted to predict its impact on protein structure. Results: The proband presents with red wine-colored urine in early infancy, reddish-brown, notched incisors, and vellus hair on the forehead and trunk. Blisters develop on sun-exposed areas, leaving hyperpigmented macules after rupture. Sanger sequencing identified a previously reported missense mutation (c 0.425C > T: p.P142L) and a novel nonsense mutation in the UROS gene (c 0.325A > T: p.K109*). Bioinformatic analysis indicated that the c 0.325A > T: p.K109* variant is pathogenic. Structural modeling demonstrated that the heterozygous c.325A > T transversion in exon 6 of UROS caused a K109 termination at the protein's α6 helix chain. Conclusion: Our findings underscored the critical role of Sanger sequencing in the accurate diagnosis of atypical CEP cases and in facilitating informed genetic counseling. The identification of a UROS gene novel mutation in this case indicates a mild phenotype, further expanding the spectrum of disorders associated with UROS variants.
Collapse
Affiliation(s)
- Ning Jia
- Department of central laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yusupu Yimin
- Department of Dermatology, Kashi Prefecture Second People’s Hospital, Xinjiang, China
| | - Ming Li
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai, China
| | - Long Jiang
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Al kindi S, Al-Mamari A, Al-Zadjali S, Al-Rawahi M, Al Madhani A, Pathare AV. Case report: A novel 11-bp deletion in exon 11 causing a frameshift in the C-terminal of the ALAS2 gene leading to X-linked sideroblastic anemia-a family study. Front Med (Lausanne) 2025; 11:1452873. [PMID: 39995829 PMCID: PMC11847639 DOI: 10.3389/fmed.2024.1452873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/14/2024] [Indexed: 02/26/2025] Open
Abstract
X-linked sideroblastic anemia (XLSA) (MIM 300752) is the most common genetic form of sideroblastic anemia, a heterogeneous group of disorders characterized by iron deposits in the mitochondria of erythroid precursors. It is due to mutations of the erythroid-specific enzyme ALAS2, the first enzyme of the heme biosynthetic pathway. Herein, we report a novel 11-bp deletion in exon 11 leading to a frameshift in the C-terminal region of the ALAS2 gene with a non-functional longer polypeptide of 614 amino acids leading to a loss-of-function mutation manifested as an X-linked sideroblastic anemia phenotype. The proband was a 29-year-old man with moderately severe microcytic hypochromic anemia with splenomegaly and increased ring sideroblasts in the bone marrow with considerable iron overload. Sanger sequencing documented a missense mutation leading to a frameshift with an elongated polypeptide of 614 AA instead of the normal 587 AA protein c.1743_1753 del (p.Gln581Hisfs*35). This mutation affected the interaction with cofactor pyridoxal 5'-phosphate since the patient's hemoglobin improved with oral administration of pyridoxine tablets. His iron overload also responded to sustained oral iron chelation therapy with deferasirox. The screening of the entire family's kindred revealed that two other male siblings were also hemizygous for the same mutation with hypochromic microcytic anemia and tissue iron overload, whereas, three female siblings and their mother were heterozygous for the mutant allele. They did not have anemia or iron overload.
Collapse
Affiliation(s)
- Salam Al kindi
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
- College of Medicine & Health Sciences, Muscat, Oman
| | | | - Shoaib Al-Zadjali
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mohamed Al-Rawahi
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Anil V. Pathare
- Department of Haematology, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
3
|
Cottle T, Joh L, Posner C, DeCosta A, Kardon JR. An adaptor for feedback regulation of heme biosynthesis by the mitochondrial protease CLPXP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602318. [PMID: 39005287 PMCID: PMC11245108 DOI: 10.1101/2024.07.05.602318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Heme biosynthesis is tightly coordinated such that essential heme functions including oxygen transport, respiration, and catalysis are fully supplied without overproducing toxic heme precursors and depleting cellular iron. The initial heme biosynthetic enzyme, ALA synthase (ALAS), exhibits heme-induced degradation that is dependent on the mitochondrial AAA+ protease complex CLPXP, but the mechanism for this negative feedback regulation had not been elucidated. By biochemical reconstitution, we have discovered that POLDIP2 serves as a heme-sensing adaptor protein to deliver ALAS for degradation. Similarly, loss of POLDIP2 strongly impairs ALAS turnover in cells. POLDIP2 directly recognizes heme-bound ALAS to drive assembly of the degradation complex. The C-terminal element of ALAS, truncation of which leads to a form of porphyria (XLDPP), is dispensable for interaction with POLDIP2 but necessary for degradation. Our findings establish the molecular basis for heme-induced degradation of ALAS by CLPXP, establish POLDIP2 as a substrate adaptor for CLPXP, and provide mechanistic insight into two forms of erythropoietic protoporphyria linked to CLPX and ALAS.
Collapse
|
4
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Hussain Z, Qi Q, Zhu J, Anderson KE, Ma X. Protoporphyrin IX-induced phototoxicity: Mechanisms and therapeutics. Pharmacol Ther 2023; 248:108487. [PMID: 37392940 PMCID: PMC10529234 DOI: 10.1016/j.pharmthera.2023.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Protoporphyrin IX (PPIX) is an intermediate in the heme biosynthesis pathway. Abnormal accumulation of PPIX due to certain pathological conditions such as erythropoietic protoporphyria and X-linked protoporphyria causes painful phototoxic reactions of the skin, which can significantly impact daily life. Endothelial cells in the skin have been proposed as the primary target for PPIX-induced phototoxicity through light-triggered generation of reactive oxygen species. Current approaches for the management of PPIX-induced phototoxicity include opaque clothing, sunscreens, phototherapy, blood therapy, antioxidants, bone marrow transplantation, and drugs that increase skin pigmentation. In this review, we discuss the present understanding of PPIX-induced phototoxicity including PPIX production and disposition, conditions that lead to PPIX accumulation, symptoms and individual differences, mechanisms, and therapeutics.
Collapse
Affiliation(s)
- Zahir Hussain
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qian Qi
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Karl E Anderson
- Porphyria Laboratory and Center, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Tran JU, Brown BL. The yeast ALA synthase C-terminus positively controls enzyme structure and function. Protein Sci 2023; 32:e4600. [PMID: 36807942 PMCID: PMC10031213 DOI: 10.1002/pro.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
5-Aminolevulinic acid synthase (ALAS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of heme biosynthesis in α-proteobacteria and several non-plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C-terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C-terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C-terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C-terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel β-sheet important to Fold-Type I PLP-dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C-terminus has a homolog-specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Breann L. Brown
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
7
|
Hunter GA, Ferreira GC. An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms. Front Mol Biosci 2022; 9:920668. [PMID: 35911972 PMCID: PMC9329541 DOI: 10.3389/fmolb.2022.920668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational studies demonstrated that the overall enzyme reaction is limited by subtle conformational changes of a hairpin loop gating the active site. These findings, coupled with structural information, facilitated early prediction of allosteric regulation of activity via an extended C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently supported by the discoveries that mutations in the extended C-terminus of the erythroid ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate by modulating conformational flexibility of the active site loop. However, the precise identity of any such molecule remains to be defined. Here we discuss the most plausible allosteric regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures and suggest how the mystery of the mechanism whereby the extended C-terminus of mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be unraveled.
Collapse
Affiliation(s)
- Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| |
Collapse
|
8
|
Medlock AE, Dailey HA. New Avenues of Heme Synthesis Regulation. Int J Mol Sci 2022; 23:ijms23137467. [PMID: 35806474 PMCID: PMC9267699 DOI: 10.3390/ijms23137467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
During erythropoiesis, there is an enormous demand for the synthesis of the essential cofactor of hemoglobin, heme. Heme is synthesized de novo via an eight enzyme-catalyzed pathway within each developing erythroid cell. A large body of data exists to explain the transcriptional regulation of the heme biosynthesis enzymes, but until recently much less was known about alternate forms of regulation that would allow the massive production of heme without depleting cellular metabolites. Herein, we review new studies focused on the regulation of heme synthesis via carbon flux for porphyrin synthesis to post-translations modifications (PTMs) that regulate individual enzymes. These PTMs include cofactor regulation, phosphorylation, succinylation, and glutathionylation. Additionally discussed is the role of the immunometabolite itaconate and its connection to heme synthesis and the anemia of chronic disease. These recent studies provide new avenues to regulate heme synthesis for the treatment of diseases including anemias and porphyrias.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA 30602, USA
- Correspondence: (A.E.M.); (H.A.D.)
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: (A.E.M.); (H.A.D.)
| |
Collapse
|
9
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
10
|
Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem 2022; 298:101643. [PMID: 35093382 PMCID: PMC8892079 DOI: 10.1016/j.jbc.2022.101643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023] Open
Abstract
Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.
Collapse
Affiliation(s)
- Jessica L Taylor
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Breann L Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
11
|
ABCB6 Polymorphisms are not Overly Represented in Patients with Porphyria. Blood Adv 2021; 6:760-766. [PMID: 34724702 PMCID: PMC8945301 DOI: 10.1182/bloodadvances.2021005484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
ABCB6 is expressed on the cell surface and by multiple organelles, but transport specificity is incompletely understood. In all types of porphyria, ABCB6 polymorphisms are not overrepresented when compared with the overall population.
The Mendelian inheritance pattern of acute intermittent porphyria, hereditary coproporphyria, and variegate porphyria is autosomal dominant, but the clinical phenotype is heterogeneous. Within the general population, penetrance is low, but among first-degree relatives of a symptomatic proband, penetrance is higher. These observations suggest that genetic factors, in addition to mutation of the specific enzyme of the biosynthetic pathway of heme, contribute to the clinical phenotype. Recent studies by others suggested that the genotype of the transporter protein ABCB6 contribute to the porphyria phenotype. Identifying the molecule(s) that are transported by ABCB6 has been problematic and has led to uncertainty with respect to how or if variants/mutants contribute to phenotypic heterogeneity. Knockout mouse models of Abcb6 have not provided a direction for investigation as homozygous knockout animals do not have a discrete phenotype. To address the proposed link between ABC6 genotype and porphyria phenotype, a large cohort of patients with acute hepatic porphyria and erythropoietic protoporphyria was analyzed. Our studies showed that ABCB6 genotype did not correlate with disease severity. Therefore, genotyping of ABCB6 in patients with acute hepatic porphyria and erythropoietic protoporphyria is not warranted.
Collapse
|
12
|
The immunometabolite itaconate inhibits heme synthesis and remodels cellular metabolism in erythroid precursors. Blood Adv 2021; 5:4831-4841. [PMID: 34492704 PMCID: PMC9153040 DOI: 10.1182/bloodadvances.2021004750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
The immunometabolite itaconate is taken up by erythroid precursors and converted to itaconyl-CoA by the CoA transferase SUGCT. Itaconyl-CoA is a competitive inhibitor of ALAS2 and inhibits erythropoietic heme synthesis.
As part of the inflammatory response by macrophages, Irg1 is induced, resulting in millimolar quantities of itaconate being produced. This immunometabolite remodels the macrophage metabolome and acts as an antimicrobial agent when excreted. Itaconate is not synthesized within the erythron but instead may be acquired from central macrophages within the erythroid island. Previously, we reported that itaconate inhibits hemoglobinization of developing erythroid cells. Herein we show that this action is accomplished by inhibition of tetrapyrrole synthesis. In differentiating erythroid precursors, cellular heme and protoporphyrin IX synthesis are reduced by itaconate at an early step in the pathway. In addition, itaconate causes global alterations in cellular metabolite pools, resulting in elevated levels of succinate, 2-hydroxyglutarate, pyruvate, glyoxylate, and intermediates of glycolytic shunts. Itaconate taken up by the developing erythron can be converted to itaconyl–coenzyme A (CoA) by the enzyme succinyl-CoA:glutarate-CoA transferase. Propionyl-CoA, propionyl-carnitine, methylmalonic acid, heptadecanoic acid, and nonanoic acid, as well as the aliphatic amino acids threonine, valine, methionine, and isoleucine, are increased, likely due to the impact of endogenous itaconyl-CoA synthesis. We further show that itaconyl-CoA is a competitive inhibitor of the erythroid-specific 5-aminolevulinate synthase (ALAS2), the first and rate-limiting step in heme synthesis. These findings strongly support our hypothesis that the inhibition of heme synthesis observed in chronic inflammation is mediated not only by iron limitation but also by limitation of tetrapyrrole synthesis at the point of ALAS2 catalysis by itaconate. Thus, we propose that macrophage-derived itaconate promotes anemia during an inflammatory response in the erythroid compartment.
Collapse
|
13
|
Heeney MM, Berhe S, Campagna DR, Oved JH, Kurre P, Shaw PJ, Teo J, Shanap MA, Hassab HM, Glader BE, Shah S, Yoshimi A, Ameri A, Antin JH, Boudreaux J, Briones M, Dickerson KE, Fernandez CV, Farah R, Hasle H, Keel SB, Olson TS, Powers JM, Rose MJ, Shimamura A, Bottomley SS, Fleming MD. SLC25A38 congenital sideroblastic anemia: Phenotypes and genotypes of 31 individuals from 24 families, including 11 novel mutations, and a review of the literature. Hum Mutat 2021; 42:1367-1383. [PMID: 34298585 DOI: 10.1002/humu.24267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/10/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders of erythropoiesis characterized by pathologic deposits of iron in the mitochondria of developing erythroblasts. Mutations in the mitochondrial glycine carrier SLC25A38 cause the most common recessive form of CSA. Nonetheless, the disease is still rare, there being fewer than 70 reported families. Here we describe the clinical phenotype and genotypes of 31 individuals from 24 families, including 11 novel mutations. We also review the spectrum of reported mutations and genotypes associated with the disease, describe the unique localization of missense mutations in transmembrane domains and account for the presence of several alleles in different populations.
Collapse
Affiliation(s)
- Matthew M Heeney
- Division of Hematology, Dana-Farber Boston Children's Cancer and Blood Disorders Center and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Berhe
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H Oved
- Cellular Therapy and Transplant Section, Division of Oncology and Comprehensive Bone Marrow Failure Center, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Philadelphia, USA
| | - Peter Kurre
- Pediatric Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter J Shaw
- BMT Services, Children's Hospital at Westmead; Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Juliana Teo
- Department of Haematology, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | | - Hoda M Hassab
- Department of Paediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Bertil E Glader
- Division of Hematology-Oncology, Lucille Packard Children's Hospital, Stanford, California, USA
| | - Sanjay Shah
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Ayami Yoshimi
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Afshin Ameri
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, Georgia, USA
| | - Joseph H Antin
- Hematopoietic Stem Cell Transplantation Program, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeanne Boudreaux
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Michael Briones
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Kathryn E Dickerson
- Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Conrad V Fernandez
- Division of Hematology-Oncology, IWH Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Roula Farah
- Department of Pediatrics, Lebanese American University Medical Center, Beirut, Lebanon
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Sioban B Keel
- Division of Hematology, University of Washington and Seattle Cancer Care Alliance, Seattle, Washington, USA
| | - Timothy S Olson
- Cellular Therapy and Transplant Section, Division of Oncology and Comprehensive Bone Marrow Failure Center, Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jacquelyn M Powers
- Texas Children's Hospital and Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa J Rose
- Division of Hematology & Oncology, Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Akiko Shimamura
- Division of Hematology, Dana-Farber Boston Children's Cancer and Blood Disorders Center and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sylvia S Bottomley
- Hematology-Oncology Section, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Multiple roles of haem in cystathionine β-synthase activity: implications for hemin and other therapies of acute hepatic porphyria. Biosci Rep 2021; 41:229241. [PMID: 34251022 PMCID: PMC8298261 DOI: 10.1042/bsr20210935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The role of haem in the activity of cystathionine β-synthase (CBS) is reviewed and a hypothesis postulating multiple effects of haem on enzyme activity under conditions of haem excess or deficiency is proposed, with implications for some therapies of acute hepatic porphyrias. CBS utilises both haem and pyridoxal 5′-phosphate (PLP) as cofactors. Although haem does not participate directly in the catalytic process, it is vital for PLP binding to the enzyme and potentially also for CBS stability. Haem deficiency can therefore undermine CBS activity by impairing PLP binding and facilitating CBS degradation. Excess haem can also impair CBS activity by inhibiting it via CO resulting from haem induction of haem oxygenase 1 (HO 1), and by induction of a functional vitamin B6 deficiency following activation of hepatic tryptophan 2,3-dioxygenase (TDO) and subsequent utilisation of PLP by enhanced kynurenine aminotransferase (KAT) and kynureninase (Kynase) activities. CBS inhibition results in accumulation of the cardiovascular risk factor homocysteine (Hcy) and evidence is emerging for plasma Hcy elevation in patients with acute hepatic porphyrias. Decreased CBS activity may also induce a proinflammatory state, inhibit expression of haem oxygenase and activate the extrahepatic kynurenine pathway (KP) thereby further contributing to the Hcy elevation. The hypothesis predicts likely changes in CBS activity and plasma Hcy levels in untreated hepatic porphyria patients and in those receiving hemin or certain gene-based therapies. In the present review, these aspects are discussed, means of testing the hypothesis in preclinical experimental settings and porphyric patients are suggested and potential nutritional and other therapies are proposed.
Collapse
|
15
|
Gould SA, White M, Wilbrey AL, Pór E, Coleman MP, Adalbert R. Protection against oxaliplatin-induced mechanical and thermal hypersensitivity in Sarm1 -/- mice. Exp Neurol 2021; 338:113607. [PMID: 33460644 DOI: 10.1016/j.expneurol.2021.113607] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/22/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of cancer treatment, often associated with degeneration of sensory axons or their terminal regions. Presence of the slow Wallerian degeneration protein (WLDS), or genetic deletion of sterile alpha and TIR motif containing protein 1 (SARM1), which strongly protect axons from degeneration after injury or axonal transport block, alleviate pain in several CIPN models. However, oxaliplatin can cause an acute pain response, suggesting a different mechanism of pain generation. Here, we tested whether the presence of WLDS or absence of SARM1 protects against acute oxaliplatin-induced pain in mice after a single oxaliplatin injection. In BL/6 and WldS mice, oxaliplatin induced significant mechanical and cold hypersensitivities which were absent in Sarm1-/- mice. Despite the presence of hypersensitivity there was no significant loss of intraepidermal nerve fibers (IENFs) in the footpads of any mice after oxaliplatin treatment, suggesting that early stages of pain hypersensitivity could be independent of axon degeneration. To identify other changes that could underlie the pain response, RNA sequencing was carried out in DRGs from treated and control mice of each genotype. Sarm1-/- mice had fewer gene expression changes than either BL/6 or WldS mice. This is consistent with the pain measurements in demonstrating that Sarm1-/- DRGs remain relatively unchanged after oxaliplatin treatment, unlike those in BL/6 and WldS mice. Changes in levels of four transcripts - Alas2, Hba-a1, Hba-a2, and Tfrc - correlated with oxaliplatin-induced pain, or absence thereof, across the three genotypes. Our findings suggest that targeting SARM1 could be a viable therapeutic approach to prevent oxaliplatin-induced acute neuropathic pain.
Collapse
Affiliation(s)
- Stacey Anne Gould
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; The Babraham Institute, Cambridge, UK
| | - Matthew White
- The Babraham Institute, Cambridge, UK; Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RT, UK
| | - Anna L Wilbrey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Erzsébet Pór
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged H-6724, Hungary
| | - Michael Philip Coleman
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; The Babraham Institute, Cambridge, UK
| | - Robert Adalbert
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK; The Babraham Institute, Cambridge, UK; Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged H-6724, Hungary.
| |
Collapse
|
16
|
Lahiji AP, Anderson KE, Chan A, Simon A, Desnick RJ, Ramanujam VMS. 5-Aminolevulinate dehydratase porphyria: Update on hepatic 5-aminolevulinic acid synthase induction and long-term response to hemin. Mol Genet Metab 2020; 131:418-423. [PMID: 33199206 DOI: 10.1016/j.ymgme.2020.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND 5-Aminolevulinic acid dehydratase (ALAD) porphyria (ADP) is an ultrarare autosomal recessive disease, with only eight documented cases, all of whom were males. Although classified as an acute hepatic porphyria (AHP), induction of the rate limiting hepatic enzyme 5-aminolevulinic acid synthase-1 (ALAS1) has not been demonstrated, and the marrow may also contribute excess 5-aminolevulinic acid (ALA). Two patients have died and reported follow up for the others is limited, so the natural history of this disease is poorly understood and treatment experience limited. METHODS We report new molecular findings and update the clinical course and treatment of the sixth reported ADP patient, now 31 years old and the only known case in the Americas, and review published data regarding genotype-phenotype correlation and treatment. RESULTS Circulating hepatic 5-aminolevulinic acid synthase-1 (ALAS1) mRNA was elevated in this case, as in other AHPs. Gain of function mutation of erythroid specific ALAS2 - an X-linked modifying gene in some other porphyrias - was not found. Seven reported ADP cases had compound heterozygous ALAD mutations resulting in very low residual ALAD activity and symptoms early in life or adolescence. One adult with a germline ALAD mutant allele developed ADP in association with a clonal myeloproliferative disorder, polycythemia vera. CONCLUSIONS Elevation in circulating hepatic ALAS1 and response to treatment with hemin indicate that the liver is an important source of excess ALA in ADP, although the marrow may also contribute. Intravenous hemin was effective in most reported cases for treatment and prevention of acute attacks of neurological symptoms.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/blood
- 5-Aminolevulinate Synthetase/genetics
- Adolescent
- Adult
- Child
- Child, Preschool
- Female
- Heme/genetics
- Hemin/administration & dosage
- Humans
- Infant
- Infant, Newborn
- Liver/metabolism
- Liver/pathology
- Male
- Middle Aged
- Mutation/genetics
- Porphobilinogen/metabolism
- Porphobilinogen Synthase/blood
- Porphobilinogen Synthase/deficiency
- Porphobilinogen Synthase/genetics
- Porphyria, Acute Intermittent/blood
- Porphyria, Acute Intermittent/drug therapy
- Porphyria, Acute Intermittent/genetics
- Porphyria, Acute Intermittent/pathology
- Porphyrias, Hepatic/blood
- Porphyrias, Hepatic/drug therapy
- Porphyrias, Hepatic/genetics
- Porphyrias, Hepatic/pathology
- RNA, Messenger/blood
- Young Adult
Collapse
Affiliation(s)
- Arian Pourmehdi Lahiji
- Departments of Preventive Medicine and Population Health, and Internal Medicine (Division of Gastroenterology and Hepatology), University of Texas Medical Branch, Galveston, Texas, USA
| | - Karl E Anderson
- Departments of Preventive Medicine and Population Health, and Internal Medicine (Division of Gastroenterology and Hepatology), University of Texas Medical Branch, Galveston, Texas, USA.
| | - Amy Chan
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Amy Simon
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V M Sadagopa Ramanujam
- Departments of Preventive Medicine and Population Health, and Internal Medicine (Division of Gastroenterology and Hepatology), University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
17
|
Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun 2020; 11:2813. [PMID: 32499479 PMCID: PMC7272653 DOI: 10.1038/s41467-020-16586-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
5'-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.
Collapse
Affiliation(s)
- Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gustavo A Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Siladitya Padhi
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - William R Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elzbieta Rembeza
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Arijit Roy
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - David F Bishop
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert J Desnick
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
18
|
Yasuda M, Chen B, Desnick RJ. Recent advances on porphyria genetics: Inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Mol Genet Metab 2019; 128:320-331. [PMID: 30594473 PMCID: PMC6542720 DOI: 10.1016/j.ymgme.2018.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
The inborn errors of heme biosynthesis, the Porphyrias, include eight major disorders resulting from loss-of-function (LOF) or gain-of-function (GOF) mutations in eight of the nine heme biosynthetic genes. The major sites of heme biosynthesis are the liver and erythron, and the underlying pathophysiology of each of these disorders depends on the unique biochemistry, cell biology, and genetic mechanisms in these tissues. The porphyrias are classified into three major categories: 1) the acute hepatic porphyrias (AHPs), including Acute Intermittent Porphyria (AIP), Hereditary Coproporphyria (HCP), Variegate Porphyria (VP), and 5-Aminolevlulinic Acid Dehydratase Deficient Porphyria (ADP); 2) a hepatic cutaneous porphyria, Porphyria Cutanea Tarda (PCT); and 3) the cutaneous erythropoietic porphyrias, Congenital Erythropoietic Porphyria (CEP), Erythropoietic Protoporphyria (EPP), and X-Linked Protoporphyria (XLP). Their modes of inheritance include autosomal dominant with markedly decreased penetrance (AIP, VP, and HCP), autosomal recessive (ADP, CEP, and EPP), or X-linked (XLP), as well as an acquired sporadic form (PCT). There are severe homozygous dominant forms of the three AHPs. For each porphyria, its phenotype, inheritance pattern, unique genetic principles, and molecular genetic heterogeneity are presented. To date, >1000 mutations in the heme biosynthetic genes causing their respective porphyrias have been reported, including low expression alleles and genotype/phenotype correlations that predict severity for certain porphyrias. The tissue-specific regulation of heme biosynthesis and the unique genetic mechanisms for each porphyria are highlighted.
Collapse
Affiliation(s)
- Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
19
|
Weiss Y, Balwani M, Chen B, Yasuda M, Nazarenko I, Desnick RJ. Congenital erythropoietic porphyria and erythropoietic protoporphyria: Identification of 7 uroporphyrinogen III synthase and 20 ferrochelatase novel mutations. Mol Genet Metab 2019; 128:358-362. [PMID: 30454868 DOI: 10.1016/j.ymgme.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
The erythropoietic porphyrias are inborn errors of heme biosynthesis with prominent cutaneous manifestations. They include autosomal recessive Congenital Erythropoietic Porphyria (CEP) due to loss-of-function (LOF) mutations in the Uroporphyrinogen III Synthase (UROS) gene, Erythropoietic Protoporphyria (EPP) due to LOF mutations in the ferrochelatase (FECH) gene, and X-Linked Protoporphyria (XLP) due to gain-of-function mutations in the terminal exon of the Aminolevulinic Acid Synthase 2 (ALAS2) gene. During the 11-year period from 01/01/2007 through 12/31/2017, the Mount Sinai Porphyrias Diagnostic Laboratory provided molecular diagnostic testing for one or more of these disorders in 628 individuals, including 413 unrelated individuals. Of these 628, 120 patients were tested for CEP, 483 for EPP, and 331 for XLP, for a total of 934 tests. For CEP, 24 of 78 (31%) unrelated individuals tested had UROS mutations, including seven novel mutations. For EPP, 239 of 362 (66%) unrelated individuals tested had pathogenic FECH mutations, including twenty novel mutations. The IVS3-48 T > C low-expression allele was present in 231 (97%) of 239 mutation-positive EPP probands with a pathogenic FECH mutation. In the remaining 3%, three patients with two different FECH mutations in trans were identified. For XLP, 24 of 250 (10%) unrelated individuals tested had ALAS2 exon 11 mutations. No novel ALAS2 mutations were identified. Among family members referred for testing, 33 of 42 (79%) CEP, 62 of 121 (51%) EPP, and 31 of 81 (38%) XLP family members had the respective family mutation. Mutation-positive CEP, EPP, and XLP patients who had been biochemically tested had marked elevations of the disease-appropriate porphyrin intermediates. These results expand the molecular heterogeneity of the erythropoietic porphyrias by adding a total of 27 novel mutations. The results document the usefulness of molecular testing to confirm the positive biochemical findings in these patients and to identify heterozygous family members.
Collapse
Affiliation(s)
- Yedidyah Weiss
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Irina Nazarenko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Phillips J, Farrell C, Wang Y, Singal AK, Anderson K, Balwani M, Bissell M, Bonkovsky H, Seay T, Paw B, Desnick R, Bloomer J. Strong correlation of ferrochelatase enzymatic activity with Mitoferrin-1 mRNA in lymphoblasts of patients with protoporphyria. Mol Genet Metab 2019; 128:391-395. [PMID: 30391163 PMCID: PMC7328821 DOI: 10.1016/j.ymgme.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 11/25/2022]
Abstract
Accumulation of protoporphyrin IX (PPIX) and Zn-PPIX, are the clinical hallmarks of protoporphyria. Phenotypic expression of protoporphyria is due to decreased activity of ferrochelatase (FECH) or to increased activity of aminolevulinic acid synthase (ALAS) in red blood cells. Other genetic defects have been shown to contribute to disease severity including loss of function mutations in the mitochondrial AAA-ATPase, CLPX and mutations in the Iron-responsive element binding protein 2 (IRP2), in mice. It is clear that multiple paths lead to a common phenotype of excess plasma PPIX that causes a phototoxic reaction on sun exposed areas. In this study we examined the association between mitochondrial iron acquisition and utilization with activity of FECH. Our data show that there is a metabolic link between the activity FECH and levels of MFRN1 mRNA. We examined the correlation between FECH activity and MFRN1 mRNA in cell lines established from patients with the classical protoporphyria, porphyria due to defects in ALAS2 mutations. Our data confirm MFRN1 message levels positively correlated with FECH enzymatic activity in all cell types.
Collapse
Affiliation(s)
- John Phillips
- Department of Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, United States.
| | - Collin Farrell
- Department of Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Yongming Wang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashwani K Singal
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Karl Anderson
- Department of Medicine, Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX, United States
| | - Manisha Balwani
- Department of Genetics, Icahn school of Medicine, New York, NY, United States
| | - Montgomery Bissell
- Department of Medicine, Division of Gastroenterology, University of California in San Francisco, San Francisco, CA, United States
| | - Herbert Bonkovsky
- Department of Medicine, Division of Gastroenterology, Wake Forest University, United States
| | - Toni Seay
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barry Paw
- Department of Medicine, Hematology, Brigham and Women's Hospital, Boston, MA, United States
| | - Robert Desnick
- Department of Genetics, Icahn school of Medicine, New York, NY, United States
| | - Joseph Bloomer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Erwin AL, Desnick RJ. Congenital erythropoietic porphyria: Recent advances. Mol Genet Metab 2019; 128:288-297. [PMID: 30685241 PMCID: PMC6597325 DOI: 10.1016/j.ymgme.2018.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by photosensitivity and by hematologic abnormalities in affected individuals. CEP is caused by mutations in the uroporphyrinogen synthase (UROS) gene. In three reported cases, CEP has been associated with a specific X-linked GATA1 mutation. Disease-causing mutations in either gene result in absent or markedly reduced UROS enzymatic activity. This in turn leads to the accumulation of the non-physiologic and photoreactive porphyrinogens, uroporphyrinogen I and coproporphyrinogen I, which damage erythrocytes and elicit a phototoxic reaction upon light exposure. The clinical spectrum of CEP depends on the level of residual UROS activity, which is determined by the underlying pathogenic loss-of-function UROS mutations. Disease severity ranges from non-immune hydrops fetalis in utero to late-onset disease with only mild cutaneous involvement. The clinical characteristics of CEP include exquisite photosensitivity to visible light resulting in bullous vesicular lesions which, when infected lead to progressive photomutilation of sun-exposed areas such as the face and hands. In addition, patients have erythrodontia (brownish discoloration of teeth) and can develop corneal scarring. Chronic transfusion-dependent hemolytic anemia is common and leads to bone marrow hyperplasia, which further increases porphyrin production. Management of CEP consists of strict avoidance of exposure to visible light with sun-protective clothing, sunglasses, and car and home window filters. Adequate care of ruptured vesicles and use of topical antibiotics is indicated to prevent superinfections and osteolysis. In patients with symptomatic hemolytic anemia, frequent erythrocyte cell transfusions may be necessary to suppress hematopoiesis and decrease marrow production of the phototoxic porphyrins. In severe transfection-dependent cases, bone marrow or hematopoietic stem cell transplantation has been performed, which is curative. Therapeutic approaches including gene therapy, proteasome inhibition, and pharmacologic chaperones are under investigation.
Collapse
Affiliation(s)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Address all Correspondence to: R. J. Desnick, PhD, MD, Dean for Genetic and Genomic Medicine Professor and Chairman Emeritus, Department of Genetic and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029, Phone: (212) 659-6700 Fax: (212) 360-1809
| |
Collapse
|
22
|
Molecular expression, characterization and mechanism of ALAS2 gain-of-function mutants. Mol Med 2019; 25:4. [PMID: 30678654 PMCID: PMC6344999 DOI: 10.1186/s10020-019-0070-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background X-linked protoporphyria (XLP) (MIM 300752) is an erythropoietic porphyria due to gain-of-function mutations in the last exon (Ducamp et al., Hum Mol Genet 22:1280-88, 2013) of the erythroid-specific aminolevulinate synthase gene (ALAS2). Five ALAS2 exon 11 variants identified by the NHBLI Exome sequencing project (p.R559H, p.E565D, p.R572C, p.S573F and p.Y586F) were expressed, purified and characterized in order to assess their possible contribution to XLP. To further characterize the XLP gain-of-function region, five novel ALAS2 truncation mutations (p.P561X, p.V562X, p.H563X, p.E569X and p.F575X) were also expressed and studied. Methods Site-directed mutagenesis was used to generate ALAS2 mutant clones and all were prokaryotically expressed, purified to near homogeneity and characterized by protein and enzyme kinetic assays. Standard deviations were calculated for 3 or more assay replicates. Results The five ALAS2 single nucleotide variants had from 1.3- to 1.9-fold increases in succinyl-CoA Vmax and 2- to 3-fold increases in thermostability suggesting that most could be gain-of-function modifiers of porphyria instead of causes. One SNP (p.R559H) had markedly low purification yield indicating enzyme instability as the likely cause for XLSA in an elderly patient with x-linked sideroblastic anemia. The five novel ALAS2 truncation mutations had increased Vmax values for both succinyl-CoA and glycine substrates (1.4 to 5.6-fold over wild-type), while the Kms for both substrates were only modestly changed. Of interest, the thermostabilities of the truncated ALAS2 mutants were significantly lower than wild-type, with an inverse relationship to Vmax fold-increase. Conclusions Patients with porphyrias should always be assessed for the presence of the ALAS2 gain-of-function modifier variants identified here. A key region of the ALAS2 carboxyterminal region is identified by the truncation mutations studied here and the correlation of increased thermolability with activity suggests that increased molecular flexibility/active site openness is the mechanism of enhanced function of mutations in this region providing further insights into the role of the carboxyl-terminal region of ALAS2 in the regulation of erythroid heme synthesis. Electronic supplementary material The online version of this article (10.1186/s10020-019-0070-9) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Diffuse 18F-FDG Avidity in Liver Associated With X-Linked Protoporphyria on PET/CT. Clin Nucl Med 2018; 43:617-618. [DOI: 10.1097/rlu.0000000000002159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Glutamine via α-ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis. Blood 2018; 132:987-998. [PMID: 29991557 DOI: 10.1182/blood-2018-01-829036] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023] Open
Abstract
During erythroid differentiation, the erythron must remodel its protein constituents so that the mature red cell contains hemoglobin as the chief cytoplasmic protein component. For this, ∼109 molecules of heme must be synthesized, consuming 1010 molecules of succinyl-CoA. It has long been assumed that the source of succinyl-coenzyme A (CoA) for heme synthesis in all cell types is the tricarboxylic acid (TCA) cycle. Based upon the observation that 1 subunit of succinyl-CoA synthetase (SCS) physically interacts with the first enzyme of heme synthesis (5-aminolevulinate synthase 2, ALAS2) in erythroid cells, it has been posited that succinyl-CoA for ALA synthesis is provided by the adenosine triphosphate-dependent reverse SCS reaction. We have now demonstrated that this is not the manner by which developing erythroid cells provide succinyl-CoA for ALA synthesis. Instead, during late stages of erythropoiesis, cellular metabolism is remodeled so that glutamine is the precursor for ALA following deamination to α-ketoglutarate and conversion to succinyl-CoA by α-ketoglutarate dehydrogenase (KDH) without equilibration or passage through the TCA cycle. This may be facilitated by a direct interaction between ALAS2 and KDH. Succinate is not an effective precursor for heme, indicating that the SCS reverse reaction does not play a role in providing succinyl-CoA for heme synthesis. Inhibition of succinate dehydrogenase by itaconate, which has been shown in macrophages to dramatically increase the concentration of intracellular succinate, does not stimulate heme synthesis as might be anticipated, but actually inhibits hemoglobinization during late erythropoiesis.
Collapse
|
25
|
Anti-Correlation between the Dynamics of the Active Site Loop and C-Terminal Tail in Relation to the Homodimer Asymmetry of the Mouse Erythroid 5-Aminolevulinate Synthase. Int J Mol Sci 2018; 19:ijms19071899. [PMID: 29958424 PMCID: PMC6073955 DOI: 10.3390/ijms19071899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Biosynthesis of heme represents a complex process that involves multiple stages controlled by different enzymes. The first of these proteins is a pyridoxal 5′-phosphate (PLP)-dependent homodimeric enzyme, 5-aminolevulinate synthase (ALAS), that catalyzes the rate-limiting step in heme biosynthesis, the condensation of glycine with succinyl-CoA. Genetic mutations in human erythroid-specific ALAS (ALAS2) are associated with two inherited blood disorders, X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP). XLSA is caused by diminished ALAS2 activity leading to decreased ALA and heme syntheses and ultimately ineffective erythropoiesis, whereas XLPP results from “gain-of-function” ALAS2 mutations and consequent overproduction of protoporphyrin IX and increase in Zn2+-protoporphyrin levels. All XLPP-linked mutations affect the intrinsically disordered C-terminal tail of ALAS2. Our earlier molecular dynamics (MD) simulation-based analysis showed that the activity of ALAS2 could be regulated by the conformational flexibility of the active site loop whose structural features and dynamics could be changed due to mutations. We also revealed that the dynamic behavior of the two protomers of the ALAS2 dimer differed. However, how the structural dynamics of ALAS2 active site loop and C-terminal tail dynamics are related to each other and contribute to the homodimer asymmetry remained unanswered questions. In this study, we used bioinformatics and computational biology tools to evaluate the role(s) of the C-terminal tail dynamics in the structure and conformational dynamics of the murine ALAS2 homodimer active site loop. To assess the structural correlation between these two regions, we analyzed their structural displacements and determined their degree of correlation. Here, we report that the dynamics of ALAS2 active site loop is anti-correlated with the dynamics of the C-terminal tail and that this anti-correlation can represent a molecular basis for the functional and dynamic asymmetry of the ALAS2 homodimer.
Collapse
|
26
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
|
28
|
Acute hepatic and erythropoietic porphyrias: from ALA synthases 1 and 2 to new molecular bases and treatments. Curr Opin Hematol 2017; 24:198-207. [PMID: 28118224 DOI: 10.1097/moh.0000000000000330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Many studies over the past decade have together identified new genes including modifier genes and new regulation and pathophysiological mechanisms in inherited inborn diseases of the heme biosynthetic pathway. A new porphyria has been characterized: X-linked protoporphyria and the perspective to have innovative treatment at very short-term became a reality. We will summarize how recent data on both ALAS1 and ALAS2 have informed our understanding of disease pathogenesis with an emphasis on how this information may contribute to new therapeutic strategies. RECENT FINDINGS The development of clinical and biological porphyria networks improved the long-term follow up of cohorts. The ageing of patients have allowed for the identification of novel recurrently mutated genes, and highlighted long-term complications in acute hepatic porphyrias. The treatment of hepatic porphyrias by an RNAi-targeting hepatic ALAS1 is actually tested and may lead to improve the management of acute attacks.In erythropoietic porphyrias, the key role of ALAS2 as a gate keeper of the heme and subsequently hemoglobin synthesis has been demonstrated. Its implication as a modifier gene in over erythroid disorders has also been documented. SUMMARY The knowledge of both the genetic abnormalities and the regulation of heme biosynthesis has increased over the last 5 years and open new avenues in the management of erythropoietic and acute hepatic porphyrias.
Collapse
|
29
|
Balwani M, Naik H, Anderson KE, Bissell DM, Bloomer J, Bonkovsky HL, Phillips JD, Overbey JR, Wang B, Singal AK, Liu LU, Desnick RJ. Clinical, Biochemical, and Genetic Characterization of North American Patients With Erythropoietic Protoporphyria and X-linked Protoporphyria. JAMA Dermatol 2017; 153:789-796. [PMID: 28614581 DOI: 10.1001/jamadermatol.2017.1557] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Autosomal recessive erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are rare photodermatoses presenting with variable degrees of painful phototoxicity that markedly affects quality of life. The clinical variability, determinants of severity, and genotype/phenotype correlations of these diseases are not well characterized. Objective To describe the baseline clinical characteristics, genotypes, and determinants of disease severity in a large patient cohort with EPP or XLP. Design, Setting, and Participants A prospective observational study was conducted among patients with confirmed diagnoses of EPP or XLP from November 1, 2010, to December 6, 2015, at 6 academic medical centers of the Porphyrias Consortium of the National Institutes of Health Rare Diseases Clinical Research Network. Detailed medical histories, including history of phototoxicity and treatment, were collected on standardized case report forms. Patients underwent baseline laboratory testing, total erythrocyte protoporphyrin (ePPIX) testing, and molecular genetic testing. Data were entered into a centralized database. Main Outcomes and Measures Results of biochemical and genetic tests were explored for association with clinical phenotype in patients with EPP or XLP. Results Of the 226 patients in the study (113 female and 113 male patients; mean [SD] age, 36.7 [17.0] years), 186 (82.3%) had EPP with a FECH (OMIM 612386) mutation and the common low-expression FECH allele IVS3-48T>C, and only 1 patient had 2 FECH mutations. Twenty-two patients had XLP (9.7%; 10 male and 12 female patients), and 9 patients (4.0%) had elevated ePPIX levels and symptoms consistent with protoporphyria but no detectable mutation in the FECH or ALAS2 (OMIM 301300) gene. Samples of DNA could not be obtained from 8 patients. Patients' mean (SD) age at symptom onset was 4.4 (4.4) years. Anemia (107 [47.3%]), history of liver dysfunction (62 [27.4%]), and gallstones (53 [23.5%]) were commonly reported. Higher ePPIX levels were associated with earlier age of symptom onset (median ePPIX levels for those who developed symptoms before vs after 1 year of age, 1744 vs 1567 µg/dL; P = .02), less sun tolerance (median ePPIX levels for those reporting symptoms before vs after 10 minutes of sun exposure, 2233 vs 1524 µg/dL; P ≤ .001), and increased risk of liver dysfunction (median ePPIX levels for those with liver dysfunction vs normal liver function, 2016 vs 1510 µg/dL; P = .003). Patients with EPP and FECH missense mutations had significantly lower ePPIX levels than those with other mutations (1462 vs 1702 µg/dL; P = .01). Male patients with XLP had significantly higher ePPIX levels, on average, than did patients with EPP (3574 vs 1669 µg/dL; P < .001). Marked clinical variability was seen in female patients with XLP owing to random X-chromosomal inactivation. Conclusions and Relevance These data suggest that higher ePPIX levels are a major determinant of disease severity and risk of liver dysfunction in patients with EPP or XLP. These findings provide a framework for clinical monitoring and management of these disorders.
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Karl E Anderson
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston
| | | | - Joseph Bloomer
- Department of Medicine, University of Alabama, Birmingham
| | - Herbert L Bonkovsky
- Department of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - John D Phillips
- Department of Internal Medicine, University of Utah, Salt Lake City
| | - Jessica R Overbey
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce Wang
- Department of Medicine, University of California, San Francisco
| | | | - Lawrence U Liu
- Department of Liver Diseases and Recanti/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
30
|
Fratz-Berilla EJ, Breydo L, Gouya L, Puy H, Uversky VN, Ferreira GC. Isoniazid inhibits human erythroid 5-aminolevulinate synthase: Molecular mechanism and tolerance study with four X-linked protoporphyria patients. Biochim Biophys Acta Mol Basis Dis 2017; 1863:428-439. [DOI: 10.1016/j.bbadis.2016.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
31
|
Ninomiya Y, Kokunai Y, Tanizaki H, Akasaka E, Nakano H, Moriwaki S. X-linked dominant protoporphyria: The first reported Japanese case. J Dermatol 2015; 43:414-8. [PMID: 26387792 DOI: 10.1111/1346-8138.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023]
Abstract
A 12-year-old boy with photosensitivity since 3 years of age presented with small concavities on both cheeks, the nasal root and the dorsal surface of both hands. According to the clinical features, erythropoietic protoporphyria (EPP) was suspected. Urine and blood samples were tested for porphyrin derivatives, which revealed a markedly elevated level of erythrocyte protoporphyrin (EP) and a diagnosis of EPP was made. The patient's mother had no photosensitivity, however, lesions appearing slightly as small scars were found on the dorsum of her right hand; his elder sister and father showed no rash. The EP levels were elevated in samples from his mother and mildly elevated in those from his elder sister and father. To obtain a definitive diagnosis, genetic analyses were performed using samples from all family members, which revealed no mutations in the ferrochelatase-encoding gene (FECH), which is responsible for EPP. Instead, a pathological mutation of the 5-aminolevulinic acid synthase-encoding gene (ALAS2) was identified in samples from the patient, his mother and his elder sister, confirming a definitive diagnosis of X-linked dominant protoporphyria (XLDPP). This is the first Japanese family reported to have XLDPP, demonstrating evidence of the condition in Japan. In addition, because XLDPP is very similar to EPP in its clinical aspects and laboratory findings, a genetic analysis is required for the differential diagnosis.
Collapse
Affiliation(s)
- Yukiko Ninomiya
- Department of Dermatology, Osaka Medical College, Osaka, Japan
| | | | | | - Eijiro Akasaka
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | |
Collapse
|
32
|
Fratz EJ, Clayton J, Hunter GA, Ducamp S, Breydo L, Uversky VN, Deybach JC, Gouya L, Puy H, Ferreira GC. Human Erythroid 5-Aminolevulinate Synthase Mutations Associated with X-Linked Protoporphyria Disrupt the Conformational Equilibrium and Enhance Product Release. Biochemistry 2015; 54:5617-31. [PMID: 26300302 PMCID: PMC4573335 DOI: 10.1021/acs.biochem.5b00407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of 5-aminolevulinate synthase (ALAS) is at the origin of balanced heme production in mammals. Mutations in the C-terminal region of human erythroid-specific ALAS (hALAS2) are associated with X-linked protoporphyria (XLPP), a disease characterized by extreme photosensitivity, with elevated blood concentrations of free protoporphyrin IX and zinc protoporphyrin. To investigate the molecular basis for this disease, recombinant hALAS2 and variants of the enzyme harboring the gain-of-function XLPP mutations were constructed, purified, and analyzed kinetically, spectroscopically, and thermodynamically. Enhanced activities of the XLPP variants resulted from increases in the rate at which the product 5-aminolevulinate (ALA) was released from the enzyme. Circular dichroism spectroscopy revealed that the XLPP mutations altered the microenvironment of the pyridoxal 5'-phosphate cofactor, which underwent further and specific alterations upon succinyl-CoA binding. Transient kinetic analyses of the variant-catalyzed reactions and protein fluorescence quenching upon binding of ALA to the XLPP variants demonstrated that the protein conformational transition step associated with product release was predominantly affected. Of relevance is the fact that XLPP could also be modeled in cell culture. We propose that (1) the XLPP mutations destabilize the succinyl-CoA-induced hALAS2 closed conformation and thus accelerate ALA release, (2) the extended C-terminus of wild-type mammalian ALAS2 provides a regulatory role that allows for allosteric modulation of activity, thereby controlling the rate of erythroid heme biosynthesis, and (3) this control is disrupted in XLPP, resulting in porphyrin accumulation.
Collapse
Affiliation(s)
- Erica J. Fratz
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jerome Clayton
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Sarah Ducamp
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| | - Jean-Charles Deybach
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Laurent Gouya
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Hervé Puy
- Assistance Publique-Hôpitaux de Paris, Centre Français des Porphyries, Hôpital Louis Mourier, 178 rue des Renouillers, 92701 Colombes CEDEX, France
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l’inflammation, 16 rue Henri Huchard, 75018, Université Paris Diderot, Site Bichat, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
- Department of Chemistry, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
33
|
Karim Z, Lyoumi S, Nicolas G, Deybach JC, Gouya L, Puy H. Porphyrias: A 2015 update. Clin Res Hepatol Gastroenterol 2015; 39:412-25. [PMID: 26142871 DOI: 10.1016/j.clinre.2015.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
The hereditary porphyrias comprise a group of eight metabolic disorders of the heme biosynthesis pathway. Each porphyria is caused by abnormal function at a separate enzymatic step resulting in a specific accumulation of heme precursors. Porphyrias are classified as hepatic or erythropoietic, based on the organ system in which heme precursors (δ-aminolevulinic acid [ALA], porphobilinogen and porphyrins) are overproduced. Clinically, porphyrias are characterized by acute neurovisceral symptoms, skin lesions or both. However, most if not all the porphyrias impair hepatic or gastrointestinal function. Acute hepatic porphyrias present with severe abdominal pain, nausea, constipation, confusion and seizure, which may be life threatening, and patients are at risk of hepatocellular carcinoma without cirrhosis. Porphyria Cutanea presents with skin fragility and blisters, and patients are at risk of hepatocellular carcinoma with liver iron overload. Erythropoietic protoporphyria and X-linked protoporphyria present with acute painful photosensitivity, and patients are at risk of acute liver failure. Altogether, porphyrias are still underdiagnosed, but once they are suspected, early diagnosis based on measurement of biochemical metabolites that accumulate in the blood, urine, or feces is essential so specific treatment can be started as soon as possible and long-term liver complications are prevented. Screening families to identify presymptomatic carriers is also crucial to prevent overt disease and chronic hepatic complications.
Collapse
Affiliation(s)
- Zoubida Karim
- INSERM U1149 CNRS ERL 8252, centre de recherche sur l'inflammation, 16, rue Henri-Huchard, 75018 Paris, France; Laboratory of excellence, GR-Ex, 24, Boulevard du Montparnasse, 75015 Paris, France
| | - Said Lyoumi
- INSERM U1149 CNRS ERL 8252, centre de recherche sur l'inflammation, 16, rue Henri-Huchard, 75018 Paris, France; Laboratory of excellence, GR-Ex, 24, Boulevard du Montparnasse, 75015 Paris, France; Université Versailles-Saint-Quentin, 55, Avenue de Paris, 78000 Versailles, France
| | - Gael Nicolas
- INSERM U1149 CNRS ERL 8252, centre de recherche sur l'inflammation, 16, rue Henri-Huchard, 75018 Paris, France; Laboratory of excellence, GR-Ex, 24, Boulevard du Montparnasse, 75015 Paris, France
| | - Jean-Charles Deybach
- INSERM U1149 CNRS ERL 8252, centre de recherche sur l'inflammation, 16, rue Henri-Huchard, 75018 Paris, France; Université Versailles-Saint-Quentin, 55, Avenue de Paris, 78000 Versailles, France; Université Paris Diderot, site Bichat, Sorbonne Paris Cité, 75018 Paris, France; Centre français des porphyries, hôpital Louis-Mourier, AP-HP, 92701 Colombes, France
| | - Laurent Gouya
- INSERM U1149 CNRS ERL 8252, centre de recherche sur l'inflammation, 16, rue Henri-Huchard, 75018 Paris, France; Université Versailles-Saint-Quentin, 55, Avenue de Paris, 78000 Versailles, France; Université Paris Diderot, site Bichat, Sorbonne Paris Cité, 75018 Paris, France; Centre français des porphyries, hôpital Louis-Mourier, AP-HP, 92701 Colombes, France
| | - Hervé Puy
- INSERM U1149 CNRS ERL 8252, centre de recherche sur l'inflammation, 16, rue Henri-Huchard, 75018 Paris, France; Université Versailles-Saint-Quentin, 55, Avenue de Paris, 78000 Versailles, France; Université Paris Diderot, site Bichat, Sorbonne Paris Cité, 75018 Paris, France; Centre français des porphyries, hôpital Louis-Mourier, AP-HP, 92701 Colombes, France.
| |
Collapse
|
34
|
Brancaleoni V, Balwani M, Granata F, Graziadei G, Missineo P, Fiorentino V, Fustinoni S, Cappellini MD, Naik H, Desnick RJ, Di Pierro E. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria. Clin Genet 2015; 89:20-6. [PMID: 25615817 DOI: 10.1111/cge.12562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromosomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP.
Collapse
Affiliation(s)
- V Brancaleoni
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - M Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - F Granata
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - G Graziadei
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - P Missineo
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - V Fiorentino
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - S Fustinoni
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - M D Cappellini
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - H Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Di Pierro
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| |
Collapse
|