1
|
Wang C, Wagner A, Fessler J, DeTomaso D, Zaghouani S, Zhou Y, Pierce K, Sobel RA, Clish C, Yosef N, Kuchroo VK. The glycolytic reaction PGAM unexpectedly restrains Th17 pathogenicity and Th17-dependent autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.607992. [PMID: 39229227 PMCID: PMC11370342 DOI: 10.1101/2024.08.18.607992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Glucose metabolism is a critical regulator of T cell function, largely thought to support their activation and effector differentiation. Here, we investigate the relevance of individual glycolytic reactions in determining the pathogenicity of T helper 17 (Th17) cells using single-cell RNA-seq and Compass, an algorithm we previously developed for estimating metabolic flux from single-cell transcriptomes. Surprisingly, Compass predicted that the metabolic shunt between 3-phosphoglycerate (3PG) and 2-phosphoglycerate (2PG) is inversely correlated with pathogenicity in these cells, whereas both its upstream and downstream reactions were positively correlated. Perturbation of phosphoglycerate mutase (PGAM), an enzyme required for 3PG to 2PG conversion, resulted in an increase in protein expression of IL2, IL17, and TNFa, as well as induction of a pathogenic gene expression program. Consistent with PGAM playing a pro-regulatory role, inhibiting PGAM in Th17 cells resulted in exacerbated autoimmune responses in the adoptive transfer model of experimental autoimmune encephalomyelitis (EAE). Finally, we further investigated the effects of modulating glucose concentration on Th17 cells in culture. Th17 cells differentiated under high- and low-glucose conditions substantially differed in their metabolic and effector transcriptomic programs, both central to Th17 function. Importantly, the PGAM-dependent gene module marks the least pathogenic state of Th17 cells irrespective of glucose concentration. Overall, our study identifies PGAM, contrary to other glycolytic enzymes, as a negative regulator of Th17 pathogenicity.
Collapse
|
2
|
Majumder M, Janakiraman H, Chakraborty P, Vijayakumar A, Mayhue S, Yu H, Dincman T, Martin R, O’Quinn E, Mehrotra S, Palanisamy V. RNA-binding protein HuR reprograms immune T cells and promotes oral squamous cell carcinoma. ORAL ONCOLOGY REPORTS 2024; 10:100296. [PMID: 38681116 PMCID: PMC11044901 DOI: 10.1016/j.oor.2024.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Hu Antigen R, also known as ELAVL1 (HuR), is a key posttranscriptional regulator in eukaryotic cells. HuR overexpression promotes several malignancies, including head and neck squamous cell carcinoma (HNSCC). However, its immune dysfunction-associated tumorigenesis pathways remain unknown. We examined HuR's effects on oral malignancies and immune cell function in vitro and in vivo using oral carcinoma cells and transgenic HuR knockout (KO) mice. CRISPR/Cas9-mediated HuR deletion in mice syngeneic oral cancer cells eliminated colony formation and tumor development. HuR-KO tumors had a lower tumor volume, fewer CD4+CD25+FoxP3+ regulatory T cells, and more CD8+ T cells, suggesting that HuR may suppress the immune response during oral cancer progression. In contrast, HuR KO oral epithelial tissues are resistant to 4NQO-induced oral malignancies compared to control tumor-bearing mice. HuR KO mice showed fewer Tregs and greater IFN levels than WT tumor-bearing mice, suggesting anticancer activity. Finally, the HuR inhibitor pyrvinium pamoate lowers tumor burden by enhancing CD8+ infiltration at the expense of CD4+, suggesting anticancer benefits. Thus, HuR-dependent oral neoplasia relies on immunological dysfunction, suggesting that decreasing HuR may boost antitumor potential and offer a novel HNSCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sari Mayhue
- Department of Biochemistry and Molecular Biology, USA
| | - Hong Yu
- Oral Health Sciences, College of Dental Medicine, USA
| | - Toros Dincman
- Department of Haematology and Oncology, College of Medicine, USA
| | - Romeo Martin
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Elizabeth O’Quinn
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Viswanathan Palanisamy
- Department of Biochemistry and Molecular Biology, USA
- Division of Molecular Medicine, Department of Internal Medicine, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Piersma SJ, Bangru S, Yoon J, Liu TW, Yang L, Hsieh CS, Plougastel-Douglas B, Kalsotra A, Yokoyama WM. NK cell expansion requires HuR and mediates control of solid tumors and long-term virus infection. J Exp Med 2023; 220:e20231154. [PMID: 37698554 PMCID: PMC10497399 DOI: 10.1084/jem.20231154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes capable of controlling tumors and virus infections through direct lysis and cytokine production. While both T and NK cells expand and accumulate in affected tissues, the role of NK cell expansion in tumor and viral control is not well understood. Here, we show that posttranscriptional regulation by the RNA-binding protein HuR is essential for NK cell expansion without negatively affecting effector functions. HuR-deficient NK cells displayed defects in the metaphase of the cell cycle, including decreased expression and alternative splicing of Ska2, a component of the spindle and kinetochore complex. HuR-dependent NK cell expansion contributed to long-term cytomegalovirus control and facilitated control of subcutaneous tumors but not tumor metastases in two independent tumor models. These results show that posttranscriptional regulation by HuR specifically affects NK cell expansion, which is required for the control of long-term virus infection and solid tumors, but not acute infection or tumor metastases, highlighting fundamental differences with antigen-specific T cell control.
Collapse
Affiliation(s)
- Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeesang Yoon
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tom W. Liu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Beatrice Plougastel-Douglas
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Guo YL, Chen ZC, Li N, Tian CJ, Cheng DJ, Tang XY, Zhang LX, Zhang XY. SRSF1 promotes ASMC proliferation in asthma by competitively binding CCND2 with miRNA-135a. Pulm Pharmacol Ther 2022; 77:102173. [PMID: 36280202 DOI: 10.1016/j.pupt.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Asthma is an inflammatory syndrome characterized by airway hyperresponsiveness, bronchial inflammation, and airway remodeling. Abnormal proliferation of airway smooth muscle cells (ASMCs) is the main pathological feature of asthma. This study investigated the function and mechanism of serine arginine-rich splicing factor 1 (SRSF1) in ASMC proliferation in asthma. METHODS SRSF1 expressions in the bronchi of ovalbumin-induced asthmatic mice and IgE-treated mouse ASMCs (mASMCs) were evaluated using quantitative real-time PCR and Western blot. The localization and expression of SRSF1 in the bronchi of asthmatic mice were assessed by immunohistochemistry. Functionally, gain- and loss-of-function assays, flow cytometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays were conducted. Mechanistically, RNA degradation assay, RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays were carried out. RESULTS SRSF1 was highly expressed in the bronchi of ovalbumin-induced asthma mice and IgE-treated mASMCs and was mainly located in the nucleus. Experiments on the function of SRSF1 showed that the silencing of SRSF1 induced the cell cycle of mASMC arrest and restrained mASMC proliferation. Investigations into the mechanism of SRSF1 revealed that SRSF1 and miR-135a are competitively bound to the 3'UTR region of Cyclin D2 (CCND2). SRSF1 overexpression repressed the degradation of CCND2 mRNA, and miR-135a negatively regulated CCND2 expression. Furthermore, SRSF1 knockdown inhibited ASMC proliferation in asthma mouse models by regulating the levels of miR-135a and CCND2. CONCLUSION SRSF1 knockdown repressed ASMC proliferation in asthma by regulating miR-135a/CCND2 levels.
Collapse
Affiliation(s)
- Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Luo-Xian Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China
| | - Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital, People's Republic of China; Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University, People's Republic of China.
| |
Collapse
|
5
|
Choi JO, Ham JH, Hwang SS. RNA Metabolism in T Lymphocytes. Immune Netw 2022; 22:e39. [PMID: 36381959 PMCID: PMC9634142 DOI: 10.4110/in.2022.22.e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.
Collapse
Affiliation(s)
- Jin Ouk Choi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Hyeon Ham
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.,Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
6
|
Majumder M, Chakraborty P, Mohan S, Mehrotra S, Palanisamy V. HuR as a molecular target for cancer therapeutics and immune-related disorders. Adv Drug Deliv Rev 2022; 188:114442. [PMID: 35817212 DOI: 10.1016/j.addr.2022.114442] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
The control of eukaryotic gene expression occurs at multiple levels, from transcription to messenger RNA processing, transport, localization, turnover, and translation. RNA-binding proteins control gene expression and are involved in different stages of mRNA processing, including splicing, maturation, turnover, and translation. A ubiquitously expressed RBP Human antigen R is engaged in the RNA processes mentioned above but, most importantly, controls mRNA stability and turnover. Dysregulation of HuR is linked to many diseases, including cancer and other immune-related disorders. HuR targets mRNAs containing AU-rich elements at their 3'untranslated region, which encodes proteins involved in cell growth, proliferation, tumor formation, angiogenesis, immune evasion, inflammation, invasion, and metastasis. HuR overexpression has been reported in many tumor types, which led to a poor prognosis for patients. Hence, HuR is considered an appealing drug target for cancer treatment. Therefore, multiple attempts have been made to identify small molecule inhibitors for blocking HuR functions. This article reviews the current prospects of drugs that target HuR in numerous cancer types, their mode of action, and off-target effects. Furthermore, we will summarize drugs that interfered with HuR-RNA interactions and established themselves as novel therapeutics. We will also highlight the significance of HuR overexpression in multiple cancers and discuss its role in immune functions. This review provides evidence of a new era of HuR-targeted small molecules that can be used for cancer therapeutics either as a monotherapy or in combination with other cancer treatment modalities.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sarumathi Mohan
- Department of Biochemistry and Molecular Biology, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
7
|
Fattahi F, Ellis JS, Sylvester M, Bahleda K, Hietanen S, Correa L, Lugogo NL, Atasoy U. HuR-Targeted Inhibition Impairs Th2 Proinflammatory Responses in Asthmatic CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:38-48. [PMID: 34862257 DOI: 10.4049/jimmunol.2100635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
RNA-binding protein HuR (ELAVL1) is a master regulator of gene expression in human pathophysiology. Its dysregulation plays an important role in many diseases. We hypothesized that HuR plays an important role in Th2 inflammation in asthma in both mouse and human. To address this, we used a model of airway inflammation in a T cell-specific knockout mouse model, distal lck-Cre HuRfl/fl, as well as small molecule inhibitors in human peripheral blood-derived CD4+ T cells. Peripheral CD4+ T cells were isolated from 26 healthy control subjects and 45 asthmatics (36 type 2 high and 9 non-type 2 high, determined by blood eosinophil levels and fraction of exhaled NO). Our mouse data showed conditional ablation of HuR in T cell-abrogated Th2 differentiation, cytokine production, and lung inflammation. Studies using human T cells showed that HuR protein levels in CD4+ T cells were significantly higher in asthmatics compared with healthy control subjects. The expression and secretion of Th2 cytokines were significantly higher in asthmatics compared with control subjects. AMP-activated protein kinase activator treatment reduced the expression of several cytokines in both type 2 high and non-type 2 high asthma groups. However, the effects of CMLD-2 (a HuR-specific inhibitor) were more specific to endotype-defining cytokines in type 2 high asthmatics. Taken together, these data suggest that HuR plays a permissive role in both allergen and non-allergen-driven airway inflammation by regulating key genes, and that interfering with its function may be a novel method of asthma treatment.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Jason S Ellis
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Michael Sylvester
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI.,Department of Otolaryngology, Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Kristin Bahleda
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Samuel Hietanen
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Luis Correa
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI; and
| | - Ulus Atasoy
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI; .,Division of Allergy-Immunology, Ann Arbor VA Health System, Ann Arbor, MI
| |
Collapse
|
8
|
Nicolet BP, Zandhuis ND, Lattanzio VM, Wolkers MC. Sequence determinants as key regulators in gene expression of T cells. Immunol Rev 2021; 304:10-29. [PMID: 34486113 PMCID: PMC9292449 DOI: 10.1111/imr.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the constant fine-tuning of gene expression. To alter the T cell state, substantial remodeling of the proteome is required. This remodeling depends on the intricate interplay of regulatory mechanisms, including post-transcriptional gene regulation. In this review, we discuss how the sequence of a transcript influences these post-transcriptional events. In particular, we review how sequence determinants such as sequence conservation, GC content, and chemical modifications define the levels of the mRNA and the protein in a T cell. We describe the effect of different forms of alternative splicing on mRNA expression and protein production, and their effect on subcellular localization. In addition, we discuss the role of sequences and structures as binding hubs for miRNAs and RNA-binding proteins in T cells. The review thus highlights how the intimate interplay of post-transcriptional mechanisms dictate cellular fate decisions in T cells.
Collapse
Affiliation(s)
- Benoit P. Nicolet
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Nordin D. Zandhuis
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - V. Maria Lattanzio
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
9
|
HuR Plays a Positive Role to Strengthen the Signaling Pathways of CD4 + T Cell Activation and Th17 Cell Differentiation. J Immunol Res 2021; 2021:9937243. [PMID: 34395636 PMCID: PMC8357502 DOI: 10.1155/2021/9937243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/09/2023] Open
Abstract
After antigen and/or different cytokine stimulation, CD4+ T cells activated and differentiated into distinct T helper (Th) cells via differential T cell signaling pathways. Transcriptional regulation of the activation and differentiation of naïve CD4+ T cells into distinct lineage Th cells such as Th17 cells has been fully studied. However, the role of RNA-binding protein HuR in the signaling pathways of their activation and differentiation has not been well characterized. Here, we used HuR conditional knockout (HuR KO) CD4+ T cells to study mechanisms underlying HuR regulation of T cell activation and differentiation through distinct signaling pathways. Our work showed that, mechanistically, HuR positively promoted CD3g expression by binding its mRNA and enhanced the expression of downstream adaptor Zap70 and Malt1 in activated CD4+ T cells. Compared to WT Th0 cells, HuR KO Th0 cells with reduced Bcl-2 expression are much more susceptible to apoptosis than WT Th0 cells. We also found that HuR stabilized IL-6Rα mRNA and promoted IL-6Rα protein expression, thereby upregulating its downstream phosphorylation of Jak1 and Stat3 and increased level of phosphorylation of IκBα to facilitate Th17 cell differentiation. However, knockout of HuR increased IL-22 production in Th17 cells, which was due to HuR deficiency in reducing IL-22 transcription repressor c-Maf expression. These results highlight the importance of HuR in TCR signaling and IL-6/IL-6R axis driving naïve CD4+ T cell activation and differentiation into Th17 cells.
Collapse
|
10
|
Freen-van Heeren JJ. Post-transcriptional control of T-cell cytokine production: Implications for cancer therapy. Immunology 2021; 164:57-72. [PMID: 33884612 DOI: 10.1111/imm.13339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/05/2023] Open
Abstract
As part of the adaptive immune system, T cells are vital for the eradication of infected and malignantly transformed cells. To perform their protective function, T cells produce effector molecules that are either directly cytotoxic, such as granzymes, perforin, interferon-γ and tumour necrosis factor α, or attract and stimulate (immune) cells, such as interleukin-2. As these molecules can also induce immunopathology, tight control of their production is required. Indeed, inflammatory cytokine production is regulated on multiple levels. Firstly, locus accessibility and transcription factor availability and activity determine the amount of mRNA produced. Secondly, post-transcriptional mechanisms, influencing mRNA splicing/codon usage, stability, decay, localization and translation rate subsequently determine the amount of protein that is produced. In the immune suppressive environments of tumours, T cells gradually lose the capacity to produce effector molecules, resulting in tumour immune escape. Recently, the role of post-transcriptional regulation in fine-tuning T-cell effector function has become more appreciated. Furthermore, several groups have shown that exhausted or dysfunctional T cells from cancer patients or murine models possess mRNA for inflammatory mediators, but fail to produce effector molecules, hinting that post-transcriptional events also play a role in hampering tumour-infiltrating lymphocyte effector function. Here, the post-transcriptional regulatory events governing T-cell cytokine production are reviewed, with a specific focus on the importance of post-transcriptional regulation in anti-tumour responses. Furthermore, potential approaches to circumvent tumour-mediated dampening of T-cell effector function through the (dis)engagement of post-transcriptional events are explored, such as CRISPR/Cas9-mediated genome editing or chimeric antigen receptors.
Collapse
|
11
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
12
|
Chen J, Martindale JL, Abdelmohsen K, Kumar G, Fortina PM, Gorospe M, Rostami A, Yu S. RNA-Binding Protein HuR Promotes Th17 Cell Differentiation and Can Be Targeted to Reduce Autoimmune Neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2020; 204:2076-2087. [PMID: 32169842 DOI: 10.4049/jimmunol.1900769] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated Th17 cell differentiation is associated with autoimmune diseases such as multiple sclerosis, which has no curative treatment. Understanding the molecular mechanisms of regulating Th17 cell differentiation will help find a novel therapeutic target for treating Th17 cell-mediated diseases. In this study, we investigated the cell-intrinsic processes by which RNA-binding protein HuR orchestrates Th17 cell fate decisions by posttranscriptionally regulating transcription factors Irf4 and Runx1 and receptor Il12rb1 expression, in turn promoting Th17 cell and Th1-like Th17 cell differentiation in C57BL/6J mice. Knockout of HuR altered the transcriptome of Th17 cells characterized by reducing the levels of RORγt, IRF4, RUNX1, and T-bet, thereby reducing the number of pathogenic IL-17+IFN-γ+CD4+ T cells in the spleen during experimental autoimmune encephalomyelitis. In keeping with the fact that HuR increased the abundance of adhesion molecule VLA-4 on Th17 cells, knockout of HuR impaired splenic Th17 cell migration to the CNS and abolished the disease. Accordingly, targeting HuR by its inhibitor DHTS inhibited splenic Th17 cell differentiation and reduced experimental autoimmune encephalomyelitis severity. In sum, we uncovered the molecular mechanism of HuR regulating Th17 cell functions, underscoring the therapeutic value of HuR for treatment of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107;
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Paolo M Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | | | - Shiguang Yu
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
13
|
Pistono C, Monti MC, Marchesi N, Boiocchi C, Campagnoli LIM, Morlotti D, Cuccia M, Govoni S, Montomoli C, Mallucci G, Bergamaschi R, Pascale A. Unraveling a new player in multiple sclerosis pathogenesis: The RNA-binding protein HuR. Mult Scler Relat Disord 2020; 41:102048. [PMID: 32200342 DOI: 10.1016/j.msard.2020.102048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND ELAV-like proteins are a small family of RNA-binding proteins that are fundamental players in post-transcriptional mechanisms and are involved in the pathogenesis of neurologic and psychiatric disorders. HuR, the ubiquitously expressed member of the family, is also implicated in sustaining inflammation and inflammatory diseases, supporting the production of pro-inflammatory cytokines. Inflammation plays a central role in Multiple Sclerosis (MS), which represents the most common cause of permanent physical disability in young adults. MS is a chronic autoimmune disease affecting the Central Nervous System, with a complex aetiology involving genetic, environmental and epigenetic factors. No data are available on the potential entanglement of HuR in MS pathogenesis in patients. In the present work, we aimed at exploring HuR protein levels in peripheral blood mononuclear cells (PBMCs) from MS patients, compared to healthy controls. To further elucidate the possible involvement of HuR in MS, we also investigated the relationship between this specific RNA-binding protein and HSP70-2 protein, also considering the HSP70-2 rs1061581 polymorphism, given that HSP70-2 mRNA has been reported as a HuR target and this specific polymorphism to be associated with MS risk. METHODS Alleles and genotypes for HSP70-2 rs1061581 polymorphism were assessed, by using a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, followed by digestion with restriction enzyme, in MS patients and healthy controls. PBMCs from a subgroup of patients and controls were used to evaluate HuR and HSP70-2 protein content by Western blot. RESULTS PBMCs from 52 MS patients had a lower HuR and higher HSP70-2 protein content compared to 43 healthy controls. An increase of 100 units of HuR significantly decreased the risk of developing MS by 9.8% (OR: 0.902, 95% CI: 0.83-0.98), controlling for HSP70-2 protein expression, HSP70-2 rs1061581 genotype, age and sex. Moreover, holding HuR levels, an increase of 100 units of HSP70-2 protein significantly increased the MS risk by 18.1% (OR: 1.181, 95% CI: 1.03-1.36) and the genetic susceptibility of developing MS for HSP70-2 rs1061581 GG carriers is confirmed. Of interest, MS patients with a moderate to severe form of MS (MSSS ≥ 3) showed a trend towards a reduction of HuR protein levels compared to patients with mild disease severity (MSSS < 3). CONCLUSIONS HuR protein levels are reduced in MS patients compared to healthy subjects, and the protein amount may continue to decline with disease progression, suggesting a putative role of this RNA-binding protein. Moreover, our results suggest that MS pathology may have disrupted the link between HuR and its target transcript HSP70-2. It will be important to further explore the exact role of HuR in MS, considering the complex interplay with other RNA-binding factors and target mRNAs.
Collapse
Affiliation(s)
- Cristiana Pistono
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Maria Cristina Monti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Chiara Boiocchi
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Danila Morlotti
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Mariaclara Cuccia
- Laboratory of Immunogenetics, Department of Biology & Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cristina Montomoli
- Department of Public Health Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Giulia Mallucci
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Bergamaschi
- Inter-Department Multiple Sclerosis Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Lourou N, Gavriilidis M, Kontoyiannis DL. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J Autoimmun 2019; 104:102334. [PMID: 31604649 DOI: 10.1016/j.jaut.2019.102334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
AU-rich elements (AREs) comprise one of the most widely studied families of regulatory RNA structures met in RNAs engaged in complex immunological reactions. A multitude of genetic, molecular, holistic and functional studies have been utilized for the analyses of the AREs and their interactions to proteins that bind to them. Data stemming from these studies brought forth a world of RNA-related check-points against infection, chronic inflammation, tumor associated immunity, and autoimmunity; and the interest to capitalize the interactions of AREs for clinical management and therapy. They also provided lessons on the cellular capabilities of post-transcriptional control. Originally thought as transcript-restricted regulators of turnover and translation, ARE-binding proteins do in fact harbor great versatility and interactivity across nuclear and cytoplasmic compartments; and act as functional coordinators of immune-cellular programs. Harnessing these deterministic functions requires extensive knowledge of their synergies or antagonisms at a cell-specific level; but holds great promise since it can provide the efficacy of combinatorial therapies with single agents.
Collapse
Affiliation(s)
- Niki Lourou
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece
| | - Maxim Gavriilidis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece
| | - Dimitris L Kontoyiannis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece.
| |
Collapse
|
15
|
Karginov FV. HuR controls apoptosis and activation response without effects on cytokine 3' UTRs. RNA Biol 2019; 16:686-695. [PMID: 30777501 DOI: 10.1080/15476286.2019.1582954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
RNA binding proteins regulate gene expression through several post-transcriptional mechanisms. The broadly expressed HuR/ELAVL1 is important for proper function of multiple immune cell types, and has been proposed to regulate cytokine and other mRNA 3' UTRs upon activation. However, this mechanism has not been previously dissected in stable cellular settings. In this study, HuR demonstrated strong anti-apoptotic and activation roles in Jurkat T cells. Detailed transcriptomic analysis of HuR knockout cells revealed a substantial negative impact on the activation program, coordinately preventing the expression of immune response gene categories, including all cytokines. Knockout cells showed a significant defect in IL-2 production, which was rescued upon reintroduction of HuR. Interestingly, the mechanism of HuR regulation did not involve control of the cytokine 3' UTRs: HuR knockout did not affect the activity of 3' UTR reporters in 293 cells, and had no effect on IL-2 and TNF 3' UTRs in resting or activated Jurkats. Instead, impaired cytokine production corresponded with defective induction of the IL-2 promoter upon activation. Accordingly, upregulation of NFATC1 was also impaired, without 3' UTR effects. Together, these results indicate that HuR controls cytokine production through coordinated upstream pathways, and that additional mechanisms must be considered in investigating its function.
Collapse
Affiliation(s)
- Fedor V Karginov
- a Department of Molecular, Cell, and Systems Biology , Institute for Integrative Genome Biology, University of California , Riverside , CA , USA
| |
Collapse
|
16
|
D'Agostino VG, Sighel D, Zucal C, Bonomo I, Micaelli M, Lolli G, Provenzani A, Quattrone A, Adami V. Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery. SLAS DISCOVERY 2019; 24:314-331. [PMID: 30616427 DOI: 10.1177/2472555218818065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts.
Collapse
Affiliation(s)
- Vito Giuseppe D'Agostino
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Denise Sighel
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Chiara Zucal
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Isabelle Bonomo
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Mariachiara Micaelli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Graziano Lolli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Provenzani
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Valentina Adami
- 2 University of Trento, HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| |
Collapse
|
17
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
18
|
Hoefig KP, Heissmeyer V. Posttranscriptional regulation of T helper cell fate decisions. J Cell Biol 2018; 217:2615-2631. [PMID: 29685903 PMCID: PMC6080923 DOI: 10.1083/jcb.201708075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Hoefig and Heissmeyer review how microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate T helper cell differentiation downstream of transcription. T helper cell subsets orchestrate context- and pathogen-specific responses of the immune system. They mostly do so by secreting specific cytokines that attract or induce activation and differentiation of other immune or nonimmune cells. The differentiation of T helper 1 (Th1), Th2, T follicular helper, Th17, and induced regulatory T cell subsets from naive T cells depends on the activation of intracellular signal transduction cascades. These cascades originate from T cell receptor and costimulatory receptor engagement and also receive critical input from cytokine receptors that sample the cytokine milieu within secondary lymphoid organs. Signal transduction then leads to the expression of subset-specifying transcription factors that, in concert with other transcription factors, up-regulate downstream signature genes. Although regulation of transcription is important, recent research has shown that posttranscriptional and posttranslational regulation can critically shape or even determine the outcome of Th cell differentiation. In this review, we describe how specific microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate their targets to skew cell fate decisions.
Collapse
Affiliation(s)
- Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany .,Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
19
|
RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol 2018; 19:120-129. [PMID: 29348497 DOI: 10.1038/s41590-017-0028-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RBPs) are essential for the development and function of the immune system. They interact dynamically with RNA to control its biogenesis and turnover by transcription-dependent and transcription-independent mechanisms. In this Review, we discuss the molecular mechanisms by which RBPs allow gene expression changes to occur at different speeds and to varying degrees, and which RBPs regulate the diversity of the transcriptome and proteome. These proteins are nodes for integration of transcriptional and signaling networks and are intimately linked to intermediary metabolism. They are essential components of regulatory feedback mechanisms that maintain immune tolerance and limit inflammation. The role of RBPs in malignancy and autoimmunity has led to their emergence as targets for the development of new therapeutic modalities.
Collapse
|
20
|
Ezegbunam W, Foronjy R. Posttranscriptional control of airway inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29071794 DOI: 10.1002/wrna.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA-binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
21
|
Lal P, Cerofolini L, D'Agostino VG, Zucal C, Fuccio C, Bonomo I, Dassi E, Giuntini S, Di Maio D, Vishwakarma V, Preet R, Williams SN, Fairlamb MS, Munk R, Lehrmann E, Abdelmohsen K, Elezgarai SR, Luchinat C, Novellino E, Quattrone A, Biasini E, Manzoni L, Gorospe M, Dixon DA, Seneci P, Marinelli L, Fragai M, Provenzani A. Regulation of HuR structure and function by dihydrotanshinone-I. Nucleic Acids Res 2017; 45:9514-9527. [PMID: 28934484 PMCID: PMC5766160 DOI: 10.1093/nar/gkx623] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
The Human antigen R protein (HuR) is an RNA-binding protein that recognizes U/AU-rich elements in diverse RNAs through two RNA-recognition motifs, RRM1 and RRM2, and post-transcriptionally regulates the fate of target RNAs. The natural product dihydrotanshinone-I (DHTS) prevents the association of HuR and target RNAs in vitro and in cultured cells by interfering with the binding of HuR to RNA. Here, we report the structural determinants of the interaction between DHTS and HuR and the impact of DHTS on HuR binding to target mRNAs transcriptome-wide. NMR titration and Molecular Dynamics simulation identified the residues within RRM1 and RRM2 responsible for the interaction between DHTS and HuR. RNA Electromobility Shifts and Alpha Screen Assays showed that DHTS interacts with HuR through the same binding regions as target RNAs, stabilizing HuR in a locked conformation that hampers RNA binding competitively. HuR ribonucleoprotein immunoprecipitation followed by microarray (RIP-chip) analysis showed that DHTS treatment of HeLa cells paradoxically enriched HuR binding to mRNAs with longer 3′UTR and with higher density of U/AU-rich elements, suggesting that DHTS inhibits the association of HuR to weaker target mRNAs. In vivo, DHTS potently inhibited xenograft tumor growth in a HuR-dependent model without systemic toxicity.
Collapse
Affiliation(s)
- Preet Lal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Linda Cerofolini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Chiara Zucal
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Carmelo Fuccio
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Isabelle Bonomo
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Erik Dassi
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Stefano Giuntini
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Danilo Di Maio
- Scuola Normale Superiore, Pisa 56126, Italy.,Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy
| | - Vikalp Vishwakarma
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sha Neisha Williams
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Max S Fairlamb
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rachel Munk
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Claudio Luchinat
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Alessandro Quattrone
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy
| | - Emiliano Biasini
- Centre for Integrative Biology, CIBIO, University of Trento, Trento 38122, Italy.,Istituto di Ricerche Farmacologiche Mario Negri, Milan 20156, Italy
| | - Leonardo Manzoni
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Milan 20133, Italy
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pierfausto Seneci
- Dipartimento di Chimica, Università degli Studi di Milano, Milan 20133, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples 80138, Italy
| | - Marco Fragai
- Centre for Magnetic Resonance, CERM, University of Florence, Sesto Fiorentino 50019, Italy
| | | |
Collapse
|
22
|
Techasintana P, Ellis JS, Glascock J, Gubin MM, Ridenhour SE, Magee JD, Hart ML, Yao P, Zhou H, Whitney MS, Franklin CL, Martindale JL, Gorospe M, Davis WJ, Fox PL, Li X, Atasoy U. The RNA-Binding Protein HuR Posttranscriptionally Regulates IL-2 Homeostasis and CD4 + Th2 Differentiation. Immunohorizons 2017; 1:109-123. [PMID: 30035254 PMCID: PMC6052877 DOI: 10.4049/immunohorizons.1700017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Posttranscriptional gene regulation by RNA-binding proteins, such as HuR (elavl1), fine-tune gene expression in T cells, leading to powerful effects on immune responses. HuR can stabilize target mRNAs and/or promote translation by interacting with their 3' untranslated region adenylate and uridylate-rich elements. It was previously demonstrated that HuR facilitates Th2 cytokine expression by mRNA stabilization. However, its effects upon IL-2 homeostasis and CD4+ Th2 differentiation are not as well understood. We found that optimal translation of Il2ra (CD25) required interaction of its mRNA with HuR. Conditional HuR knockout in CD4+ T cells resulted in loss of IL-2 homeostasis and defects in JAK-STAT signaling, Th2 differentiation, and cytokine production. HuR-knockout CD4+ T cells from OVA-immunized mice also failed to proliferate in response to Ag. These results demonstrate that HuR plays a pivotal role in maintaining normal IL-2 homeostasis and initiating CD4+ Th2 differentiation.
Collapse
Affiliation(s)
- Patsharaporn Techasintana
- Department of Surgery, University of Missouri, Columbia, MO 65212
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Jason S. Ellis
- Department of Surgery, University of Missouri, Columbia, MO 65212
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Jacqueline Glascock
- Department of Surgery, University of Missouri, Columbia, MO 65212
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Matthew M. Gubin
- Department of Surgery, University of Missouri, Columbia, MO 65212
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Suzanne E. Ridenhour
- Department of Surgery, University of Missouri, Columbia, MO 65212
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Joseph D. Magee
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Marcia L. Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201
| | - Peng Yao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Maryln S. Whitney
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201
| | | | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224
| | - Wade J. Davis
- Department of Biostatistics, University of Missouri, Columbia, MO 65212
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ulus Atasoy
- Department of Surgery, University of Missouri, Columbia, MO 65212
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
23
|
Chen J, Martindale JL, Cramer C, Gorospe M, Atasoy U, Drew PD, Yu S. The RNA-binding protein HuR contributes to neuroinflammation by promoting C-C chemokine receptor 6 (CCR6) expression on Th17 cells. J Biol Chem 2017; 292:14532-14543. [PMID: 28684423 DOI: 10.1074/jbc.m117.782771] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/17/2017] [Indexed: 01/10/2023] Open
Abstract
In both multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), the C-C chemokine receptor 6 (CCR6) is critical for pathogenic T helper 17 (Th17) cell migration to the central nervous system (CNS). Whereas many cytokines and their receptors are potently regulated via post-transcriptional mechanisms in response to various stimuli, how CCR6 expression is post-transcriptionally regulated in Th17 cells is unknown. Here, using RNA-binding protein HuR conditional knock-out (KO) and wild-type (WT) mice, we present evidence that HuR post-transcriptionally regulates CCR6 expression by binding to and stabilizing Ccr6 mRNA and by promoting CCR6 translation. We also found that HuR down-regulates several microRNA expressions, which could target the 3'-UTR of Ccr6 mRNA for decay. Accordingly, knock-out of HuR reduced CCR6 expression on Th17 cells and impaired their migration to CNS compared with the response of WT Th17 cells and thereby ameliorated EAE. Together, these findings highlight how HuR contributes to Th17 cell-mediated autoimmune neuroinflammation and support the notion that targeting HuR might be a potential therapeutic intervention for managing autoimmune disorders of the CNS.
Collapse
Affiliation(s)
- Jing Chen
- From the Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas 72467, .,the Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,the Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211
| | - Jennifer L Martindale
- the Laboratory of Genetics, NIA-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Carole Cramer
- From the Arkansas Biosciences Institute, Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas 72467
| | - Myriam Gorospe
- the Laboratory of Genetics, NIA-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Ulus Atasoy
- the Department of Molecular Microbiology and Immunology and Department of Surgery, University of Missouri, Columbia, Missouri 65211
| | - Paul D Drew
- the Department of Neurobiology and Developmental Sciences, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, and
| | - Shiguang Yu
- the Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, .,the Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas 72467
| |
Collapse
|
24
|
Lal S, Cheung EC, Zarei M, Preet R, Chand SN, Mambelli-Lisboa NC, Romeo C, Stout MC, Londin E, Goetz A, Lowder CY, Nevler A, Yeo CJ, Campbell PM, Winter JM, Dixon DA, Brody JR. CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype. Mol Cancer Res 2017; 15:696-707. [PMID: 28242812 PMCID: PMC5466444 DOI: 10.1158/1541-7786.mcr-16-0361] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/30/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNA-binding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro, as HuR-deficient MIA PaCa-2 (MIA.HuR-KO(-/-)) cells had increased apoptosis when compared with isogenic wild-type (MIA.HuR-WT(+/+)) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a two-dimensional culture into three dimensional (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared with control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. Although not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO(-/-)) showed significantly reduced in vivo tumor growth compared with controls (HCT.HuR-WT(+/+)). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes.Implications: The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies. Mol Cancer Res; 15(6); 696-707. ©2017 AACR.
Collapse
Affiliation(s)
- Shruti Lal
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edwin C Cheung
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mahsa Zarei
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ranjan Preet
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Saswati N Chand
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole C Mambelli-Lisboa
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carmella Romeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew C Stout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Austin Goetz
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cinthya Y Lowder
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Avinoam Nevler
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paul M Campbell
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jordan M Winter
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Dan A Dixon
- Department of Cancer Biology and University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas.
| | - Jonathan R Brody
- Division of Surgical Research, Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Navratilova Z, Novosadova E, Hagemann-Jensen M, Kullberg S, Kolek V, Grunewald J, Petrek M. Expression Profile of Six RNA-Binding Proteins in Pulmonary Sarcoidosis. PLoS One 2016; 11:e0161669. [PMID: 27575817 PMCID: PMC5004853 DOI: 10.1371/journal.pone.0161669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sarcoidosis is characterised by up-regulation of cytokines and chemokine ligands/receptors and proteolytic enzymes. This pro-inflammatory profile is regulated post-transcriptionally by RNA-binding proteins (RBPs). We investigated in vivo expression of six RBPs (AUF1, HuR, NCL, TIA, TIAR, PCBP2) and two inhibitors of proteolytic enzymes (RECK, PTEN) in pulmonary sarcoidosis and compared it to the expression in four control groups of healthy individuals and patients with other respiratory diseases: chronic obstructive pulmonary disease (COPD), asthma and idiopathic interstitial pneumonias (IIPs). METHODS RT-PCR was used to quantify the mRNAs in bronchoalveolar (BA) cells obtained from 50 sarcoidosis patients, 23 healthy controls, 30 COPD, 19 asthmatic and 19 IIPs patients. Flow cytometry was used to assess intracellular protein expression of AUF1 and HuR in peripheral blood T lymphocytes (PBTLs) obtained from 9 sarcoidosis patients and 6 healthy controls. RESULTS Taking the stringent conditions for multiple comparisons into consideration, we consistently observed in the primary analysis including all patients regardless of smoking status as well as in the subsequent sub-analysis limited for never smokers that the BA mRNA expression of AUF1 (p<0.001), TIA (p<0.001), NCL (p<0.01) and RECK (p<0.05) was decreased in sarcoidosis compared to healthy controls. TIA mRNA was also decreased in sarcoidosis compared to both obstructive pulmonary diseases (COPD and asthma; p<0.001) but not compared to IIPs. There were several positive correlations between RECK mRNA and RBP mRNAs in BA cells. Also sarcoidosis CD3+, CD4+ and CD8+ PBTLs displayed lower mean fluorescence intensity of AUF1 (p≤0.02) and HuR (p≤0.03) proteins than control healthy PBTLs. CONCLUSION mRNA expressions of three RBPs (AUF1, TIA and NCL) and their potential target mRNA encoding RECK in BA cells and additionally protein expression of AUF1 and HuR in PBTLs were down-regulated in our sarcoidosis patients compared to healthy individuals. Its significance, e.g. for stability of mRNAs encoding pro-inflammatory factors, should be further explored in sarcoidosis.
Collapse
Affiliation(s)
- Zdenka Navratilova
- Laboratory of Immunogenomics and Immunoproteomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Novosadova
- Laboratory of Immunogenomics and Immunoproteomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine, Solna & Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kullberg
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vitezslav Kolek
- Department of Respiratory Medicine, Palacky University, Olomouc, Czech Republic
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Petrek
- Laboratory of Immunogenomics and Immunoproteomics, Department of Pathological Physiology, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
26
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
27
|
Newman R, McHugh J, Turner M. RNA binding proteins as regulators of immune cell biology. Clin Exp Immunol 2015. [PMID: 26201441 DOI: 10.1111/cei.12684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific RNA binding proteins (RBP) are important regulators of the immune response. RBP modulate gene expression by regulating splicing, polyadenylation, localization, translation and decay of target mRNAs. Increasing evidence suggests that RBP play critical roles in the development, activation and function of lymphocyte populations in the immune system. This review will discuss the post-transcriptional regulation of gene expression by RBP during lymphocyte development, with particular focus on the Tristetraprolin family of RBP.
Collapse
Affiliation(s)
- R Newman
- Babraham Institute, Cambridge, UK
| | - J McHugh
- Babraham Institute, Cambridge, UK
| | - M Turner
- Babraham Institute, Cambridge, UK
| |
Collapse
|
28
|
Techasintana P, Davis JW, Gubin MM, Magee JD, Atasoy U. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells. PLoS One 2015; 10:e0129321. [PMID: 26162078 PMCID: PMC4498740 DOI: 10.1371/journal.pone.0129321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/07/2015] [Indexed: 11/30/2022] Open
Abstract
Due to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs) and microRNAs (miRNAs). RNA immunoprecipitation (RIP) methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1) and family members are major stabilizers of mRNA. Many labs have identified HuR mRNA targets; however, many of these analyses have been performed in cell lines and oftentimes are not independent biological replicates. Little is known about how HuR target mRNAs behave in conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using independent biological replicates, we generated a high coverage RIP-Seq data set (>160 million reads) that was analyzed using bioinformatics methods specifically designed to find direct mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological replicates were sequenced by RNA-Seq (>425 million reads) to identify indirect HuR targets. These direct and indirect targets were combined to determine canonical pathways in CD4+ T cell activation and differentiation for which HuR plays an important role. We show that HuR may regulate genes in multiple canonical pathways involved in T cell activation especially the CD28 family signaling pathway. These data provide insights into potential HuR-regulated genes during T cell activation and immune mechanisms.
Collapse
Affiliation(s)
- Patsharaporn Techasintana
- Department of Surgery, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - J. Wade Davis
- Department of Biostatistics, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew M. Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph D. Magee
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ulus Atasoy
- Department of Surgery, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
29
|
Diaz-Muñoz MD, Bell SE, Fairfax K, Monzon-Casanova E, Cunningham AF, Gonzalez-Porta M, Andrews SR, Bunik VI, Zarnack K, Curk T, Heggermont WA, Heymans S, Gibson GE, Kontoyiannis DL, Ule J, Turner M. The RNA-binding protein HuR is essential for the B cell antibody response. Nat Immunol 2015; 16:415-25. [PMID: 25706746 PMCID: PMC4479220 DOI: 10.1038/ni.3115] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
Post-transcriptional regulation of mRNA by the RNA-binding protein HuR (encoded by Elavl1) is required in B cells for the germinal center reaction and for the production of class-switched antibodies in response to thymus-independent antigens. Transcriptome-wide examination of RNA isoforms and their abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interactions, revealed that HuR-dependent splicing of mRNA affected hundreds of transcripts, including that encoding dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase (α-KGDH) complex. In the absence of HuR, defective mitochondrial metabolism resulted in large amounts of reactive oxygen species and B cell death. Our study shows how post-transcriptional processes control the balance of energy metabolism required for the proliferation and differentiation of B cells.
Collapse
Affiliation(s)
- Manuel D Diaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Kirsten Fairfax
- 1] Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK. [2] The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Elisa Monzon-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - Mar Gonzalez-Porta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Victoria I Bunik
- A. N. Belozersky Institute of PhysicoChemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Tomaž Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | | | - Stephane Heymans
- 1] Center for Molecular and Vascular Biology, KU Leuven, Belgium. [2] Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Gary E Gibson
- Weill Cornell Medical College, Brain and Mind Research Institute, Burke Medical Research Institute, White Plains, New York, USA
| | - Dimitris L Kontoyiannis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Jernej Ule
- UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, London, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|