1
|
Peruhova M, Stoyanova D, Miteva DG, Kitanova M, Mirchev MB, Velikova T. Genetic factors that predict response and failure of biologic therapy in inflammatory bowel disease. World J Exp Med 2025; 15:97404. [PMID: 40115750 PMCID: PMC11718585 DOI: 10.5493/wjem.v15.i1.97404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a significant disease burden marked by chronic inflammation and complications that adversely affect patients' quality of life. Effective diagnostic strategies involve clinical assessments, endoscopic evaluations, imaging studies, and biomarker testing, where early diagnosis is essential for effective management and prevention of long-term complications, highlighting the need for continual advancements in diagnostic methods. The intricate interplay between genetic factors and the outcomes of biological therapy is of critical importance. Unraveling the genetic determinants that influence responses and failures to biological therapy holds significant promise for optimizing treatment strategies for patients with IBD on biologics. Through an in-depth examination of current literature, this review article synthesizes critical genetic markers associated with therapeutic efficacy and resistance in IBD. Understanding these genetic actors paves the way for personalized approaches, informing clinicians on predicting, tailoring, and enhancing the effectiveness of biological therapies for improved outcomes in patients with IBD.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Heart and Brain, Burgas 1000, Bulgaria
| | - Daniela Stoyanova
- Department of Gastroenterology, Military Medical Academy, Sofia 1606, Bulgaria
| | | | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | | - Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
2
|
Ma J, Chong J, Qiu Z, Wang Y, Chen T, Chen Y. Efficacy of different dietary therapy strategies in active pediatric Crohn's disease: a systematic review and network meta-analysis. PeerJ 2024; 12:e18692. [PMID: 39686992 PMCID: PMC11648686 DOI: 10.7717/peerj.18692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Dietary therapy strategies play an important role in the treatment of pediatric patients with Crohn's disease (CD), but the relative efficacy of different dietary therapy strategies for Crohn's remission is unknown. This study aims to compare the effectiveness and tolerance of these dietary therapy strategies for active pediatric CD. METHODS We searched the medical literature up to August 30, 2024 to identify randomized controlled trials (RCTs) of dietary therapy strategies for pediatric CD. The primary outcomes were clinical remission rate and tolerance, secondary outcomes included differences between pre- and post-treatment levels of albumin, C-reactive protein (CRP), and fecal calprotectin levels. A network meta-analysis (NMA) was performed by using the frequentist model. For binary outcome variables and continuous outcome variables, odds ratios (OR) and mean differences (MD) with corresponding 95% confidence intervals (CI) were utilized, respectively. The ranking of dietary therapy strategies was determined based on the surface under the cumulative ranking area (SUCRA) for each comparison analyzed. RESULTS Overall, 14 studies involving 564 participants were included. In terms of clinical remission rate, the partial enteral nutrition (PEN) plus Crohn's disease exclusion diet (PEN+CDED) (OR = 7.86, 95% CI [1.85-33.40]) and exclusive enteral nutrition (EEN) (OR = 3.74, 95% CI [1.30-10.76]) exhibited significant superiority over PEN alone. The tolerance of PEN+CDED was significantly higher than that of EEN (OR = 0.07, 95% CI [0.01-0.61]). According to the surface under the cumulative ranking area (SUCRA) values, the PEN+CDED intervention (90.5%) achieved the highest ranking in clinical remission rate. In terms of tolerance, PEN+CDED ranked first (88.0%), while EEN ranked last (16.3%). CONCLUSIONS In conclusion, PEN+CDED was associated with the highest clinical remission rate and tolerance among the various dietary therapy strategies evaluated. Despite limitations in the studies, this systematic review provides evidence that PEN+CDED can be used as an alternative treatment to exclusive enteral nutrition and is more suitable for long-term management in children.
Collapse
Affiliation(s)
- Jiaze Ma
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinchen Chong
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengxi Qiu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuji Wang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tuo Chen
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Kumar M, Murugesan S, Ibrahim N, Elawad M, Al Khodor S. Predictive biomarkers for anti-TNF alpha therapy in IBD patients. J Transl Med 2024; 22:284. [PMID: 38493113 PMCID: PMC10943853 DOI: 10.1186/s12967-024-05058-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal condition characterized by severe gut inflammation, commonly presenting as Crohn's disease, ulcerative colitis or categorized as IBD- unclassified. While various treatments have demonstrated efficacy in adult IBD patients, the advent of anti-TNF therapies has significantly revolutionized treatment outcomes and clinical management. These therapies have played a pivotal role in achieving clinical and endoscopic remission, promoting mucosal healing, averting disease progression, and diminishing the necessity for surgery. Nevertheless, not all patients exhibit positive responses to these therapies, and some may experience a loss of responsiveness over time. This review aims to present a comprehensive examination of predictive biomarkers for monitoring the therapeutic response to anti-TNF therapy in IBD patients. It will explore their limitations and clinical utilities, paving the way for a more personalized and effective therapeutic approach.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Nazira Ibrahim
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | - Mamoun Elawad
- Division of Gastroenterology, Hepatology and Nutrition, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
4
|
Meade S, Liu Chen Kiow J, Massaro C, Kaur G, Squirell E, Bressler B, Lunken G. Gut microbiome-associated predictors as biomarkers of response to advanced therapies in inflammatory bowel disease: a systematic review. Gut Microbes 2023; 15:2287073. [PMID: 38044504 PMCID: PMC10730146 DOI: 10.1080/19490976.2023.2287073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023] Open
Abstract
Loss of response to therapy in inflammatory bowel disease (IBD) has led to a surge in research focusing on precision medicine. Three systematic reviews have been published investigating the associations between gut microbiota and disease activity or IBD therapy. We performed a systematic review to investigate the microbiome predictors of response to advanced therapy in IBD. Unlike previous studies, our review focused on predictors of response to therapy; so the included studies assessed microbiome predictors before the proposed time of response or remission. We also provide an update of the available data on mycobiomes and viromes. We highlight key themes in the literature that may serve as future biomarkers of treatment response: the abundance of fecal SCFA-producing bacteria and opportunistic bacteria, metabolic pathways related to butyrate synthesis, and non-butyrate metabolomic predictors, including bile acids (BAs), amino acids, and lipids, as well as mycobiome predictors of response.
Collapse
Affiliation(s)
- Susanna Meade
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Jeremy Liu Chen Kiow
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Cristian Massaro
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Gurpreet Kaur
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
| | - Elizabeth Squirell
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Brian Bressler
- Department of Medicine, University of British Columbia, Vancouver, Canada
- IBD Centre of BC, Vancouver, Canada
| | - Genelle Lunken
- IBD Centre of BC, Vancouver, Canada
- Department of Pediatrics, Univerisity of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
5
|
Krawczyk A, Gosiewski T, Zapała B, Kowalska-Duplaga K, Salamon D. Alterations in intestinal Archaea composition in pediatric patients with Crohn's disease based on next-generation sequencing - a pilot study. Gut Microbes 2023; 15:2276806. [PMID: 37955638 PMCID: PMC10653639 DOI: 10.1080/19490976.2023.2276806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn's disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn's disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient's parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn's disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn's disease.
Collapse
Affiliation(s)
- A. Krawczyk
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - T. Gosiewski
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| | - B. Zapała
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Krakow, Poland
- Jagiellonian University Hospital in Krakow, Krakow, Poland
| | - K. Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition,Jagiellonian University Medical College, Krakow, Poland
| | - D. Salamon
- Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Li F, Gao Y, Cheng W, Su X, Yang R. Gut fungal mycobiome: A significant factor of tumor occurrence and development. Cancer Lett 2023; 569:216302. [PMID: 37451425 DOI: 10.1016/j.canlet.2023.216302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A variety of bacteria, viruses, fungi, protists, archaea and protozoa coexists within the mammalian gastrointestinal (GI) tract such as that fungi are detectable in all intestinal and colon segments in almost all healthy adults. Although fungi can cause infectious diseases, they are also related to gut and systemic homeostasis. Importantly, through transformation of different forms such as from yeast to hyphae, interaction among gut microbiota such as fungal and bacterial interaction, host factors such as immune and host derived factors, and fungus genetic and epigenetic factors, fungi can be transformed from commensal into pathogenic lifestyles. Recent studies have shown that fungi play a significant role in the occurrence and development of tumors such as colorectal cancer. Indeed, evidences have shown that multiple species of different fungi exist in different tumors. Studies have also demonstrated that fungi are related to the occurrence and development of tumors, and also survival of patients. Here we summarize recent advances in the transformation of fungi from commensal into pathogenic lifestyles, and the effects of gut pathogenic fungi on the occurrence and development of tumors such as colorectal and pancreatic cancers.
Collapse
Affiliation(s)
- Fan Li
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Krawczyk A, Salamon D, Kowalska-Duplaga K, Zapała B, Książek T, Drażniuk-Warchoł M, Gosiewski T. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn's disease. World J Gastroenterol 2023; 29:2172-2187. [PMID: 37122605 PMCID: PMC10130967 DOI: 10.3748/wjg.v29.i14.2172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Numerous studies have shown that in Crohn’s disease (CD), the gut microbiota is of great importance in the induction and maintenance of inflammation in the gastrointestinal tract. Until recently, studies have focused almost exclusively on bacteria in the gut. Lately, more attention has been paid to the role of intestinal fungi.
AIM To study the gut mycobiome analysis of pediatric patients with CD (in different stages of disease activity) compared to healthy children.
METHODS Fecal samples were collected from patients: With active, newly diagnosed CD (n = 50); active but previously diagnosed and treated CD (n = 16); non-active CD and who were in clinical remission (n = 39) and from healthy volunteers (n = 40). Fungal DNA was isolated from the samples. Next, next generation sequencing (MiSeq, Illumina) was performed. The composition of mycobiota was correlated with clinical and blood parameters.
RESULTS Candida spp. were overrepresented in CD patients, while in the control group, the most abundant genus was Saccharomyces. In CD patients, the percentage of Malassezia was almost twice that of the control (P < 0.05). In active CD patients, we documented a higher abundance of Debaryomyces hansenii (D. hansenii) compared to the non-active CD and control (P < 0.05) groups. Moreover, statistically significant changes in the abundance of Mycosphaerella, Rhodotorula, and Microidium were observed. The analyses at the species level and linear discriminant analysis showed that in each group it was possible to distinguish a specific species characteristic of a given patient population. Moreover, we have documented statistically significant correlations between: D. hansenii and patient age (negative); C. zeylanoides and patient age (positive); C. dubliniensis and calprotectin (positive); C. sake and calprotectin (positive); and C. tropicalis and pediatric CD activity index (PCDAI) (positive).
CONCLUSION Mycobiome changes in CD patients, and the positive correlation of some species with calprotectin or PCDAI, give strong evidence that fungi may be of key importance in the development of CD.
Collapse
Affiliation(s)
- Agnieszka Krawczyk
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Dominika Salamon
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| | - Kinga Kowalska-Duplaga
- Department of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Cracow 31-066, Poland
| | - Teofila Książek
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow 30-663, Poland
| | - Marta Drażniuk-Warchoł
- Department of Pediatrics, Gastroenterology and Nutrition, University Children's Hospital, Cracow 30-663, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Division of Molecular Medical Microbiology, Jagiellonian University Medical College, Cracow 31-121, Poland
| |
Collapse
|
8
|
Synergistic Effects of Licorice Root and Walnut Leaf Extracts on Gastrointestinal Candidiasis, Inflammation and Gut Microbiota Composition in Mice. Microbiol Spectr 2022; 10:e0235521. [PMID: 35262409 PMCID: PMC9045305 DOI: 10.1128/spectrum.02355-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes gastrointestinal (GI) candidiasis closely associated with intestinal inflammation and dysbiosis. Drug resistance, side effects of available antifungal agents, and the high recurrence of candidiasis highlight the need for new treatments. We investigated the effects of hydroethanolic extracts of licorice root (LRE) and walnut leaf (WLE) on GI colonization by C. albicans, colon inflammation, and gut microbiota composition in C57BL/6 female mice. Oral administration of LRE and WLE alone or in combination once daily for 12 days before C. albicans infection and then for 5 days after infection significantly reduced the level of C. albicans in the feces of gastrointestinal infected mice as well as colonization of the GI tract, both extracts showing robust antifungal activity. Although total bacterial content was unaffected by the extracts (individually or combined), the abundance of protective bacteria, such as Bifidobacterium spp. and Faecalibacterium prausnitzii, increased with the combination, in contrast to that of certain pathobiont bacteria, which decreased. Interestingly, the combination induced a more robust decrease in the expression of proinflammatory genes than either extract alone. The anti-inflammatory activity of the combination was further supported by the reciprocal increase in the expression of anti-inflammatory cytokines and the significant decrease in enzymes involved in the synthesis of proinflammatory eicosanoids and oxidative stress. These findings suggest that LRE and WLE have synergistic effects and that the LRE/WLE combination could be a good candidate for limiting GI candidiasis and associated inflammation, likely by modulating the composition of the gut microbiota. IMPORTANCE The adverse effects and emergence of resistance of currently available antifungals and the high recurrence of candidiasis prompt the need for alternative and complementary strategies. We demonstrated that oral administration of hydroethanolic extracts of licorice root (LRE) and walnut leaf (WLE) separately or in combination significantly reduced the colonization of the gastrointestinal (GI) tract by C. albicans, highlighting a robust antifungal activity of these plant extracts. Interestingly, our data indicate a correlation between LRE and WLE consumption, in particular the combination, and a shift within the gut microbiome toward a protective profile, a decrease in colonic inflammation and prooxidant enzymes, suggesting a synergistic effect. This study highlights the significant prebiotic potential of the LRE/WLE combination and suggests that the health benefits are due, at least in part, to their ability to modulate the gut microbiota, reduce inflammation and oxidative stress, and protect against opportunistic infection.
Collapse
|
9
|
Houshyar Y, Massimino L, Lamparelli LA, Danese S, Ungaro F. Going Beyond Bacteria: Uncovering the Role of Archaeome and Mycobiome in Inflammatory Bowel Disease. Front Physiol 2021; 12:783295. [PMID: 34938203 PMCID: PMC8685520 DOI: 10.3389/fphys.2021.783295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifaceted class of relapsing-remitting chronic inflammatory conditions where microbiota dysbiosis plays a key role during its onset and progression. The human microbiota is a rich community of bacteria, viruses, fungi, protists, and archaea, and is an integral part of the body influencing its overall homeostasis. Emerging evidence highlights dysbiosis of the archaeome and mycobiome to influence the overall intestinal microbiota composition in health and disease, including IBD, although they remain some of the least understood components of the gut microbiota. Nonetheless, their ability to directly impact the other commensals, or the host, reasonably makes them important contributors to either the maintenance of the mucosal tissue physiology or to chronic intestinal inflammation development. Therefore, the full understanding of the archaeome and mycobiome dysbiosis during IBD pathogenesis may pave the way to the discovery of novel mechanisms, finally providing innovative therapeutic targets that can soon implement the currently available treatments for IBD patients.
Collapse
Affiliation(s)
| | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Association of Fungi and Archaea of the Gut Microbiota with Crohn's Disease in Pediatric Patients-Pilot Study. Pathogens 2021; 10:pathogens10091119. [PMID: 34578152 PMCID: PMC8468012 DOI: 10.3390/pathogens10091119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 01/10/2023] Open
Abstract
The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida tropicalis was significantly increased in active CD compared to non-active CD and the control group (p = 0.011 and p = 0.036, respectively). The number of Malassezia spp. cells was significantly lower in patients with active CD compared to the control group, but in non-active CD, a significant increase was observed (p = 0.005 and p = 0.020, respectively). There were no statistically significant differences in the colonization by archaea. The obtained results indicate possible correlations with the course of the CD; however, further studies of the entire archeobiome and the mycobiome are necessary in order to receive a complete picture.
Collapse
|
12
|
Musumeci S, Coen M, Leidi A, Schrenzel J. The human gut mycobiome and the specific role of Candida albicans: where do we stand, as clinicians? Clin Microbiol Infect 2021; 28:58-63. [PMID: 34363944 DOI: 10.1016/j.cmi.2021.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The so-called 'mycobiome' has progressively acquired interest and increased the complexity of our understanding of the human gut microbiota. Several questions are arising concerning the role of fungi (and in particular of Candida albicans), the so-called 'mycobiome', that has been neglected for a long time and only recently gained interest within the scientific community. There is no consensus on mycobiome normobiosis because of its instability and variability. This review aims to raise awareness about this interesting topic and provide a framework to guide physicians faced with such questions. OBJECTIVES To summarize current knowledge and discuss current and potential implications of the mycobiome in clinical practice. SOURCES We performed a review of the existing literature in Medline Pubmed. CONTENT This review identifies several studies showing associations between specific mycobiome profiles and health. Fungi represent a significant biomass within the microbiota and several factors, such as diet, sex, age, co-morbidities, medications, immune status and inter-kingdom interactions, can influence its structure and population. The human gut mycobiota is indeed a key factor for several physiological processes (e.g. training of the immune system against infections) and pathological processes (e.g. immunological/inflammatory disorders, inflammatory bowel diseases, metabolic syndromes). Moreover, the mycobiome (and C. albicans in particular) could influence an even broader spectrum of conditions such as psychiatric diseases (depression, schizophrenia, bipolar disorder) or chronic viral infections (human immunodeficiency virus, hepatitis B virus); moreover, it could be implicated in tumorigenesis. IMPLICATIONS Candida albicans is a well-known opportunistic pathogen and a major component of the mycobiome but its role in the gastrointestinal tract is still poorly understood. From a potential screening biomarker to a key factor for several pathological processes, its presence could influence or even modify our clinical practice.
Collapse
Affiliation(s)
- Stefano Musumeci
- Service of Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Matteo Coen
- Service of Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland; Unit of Development and Research in Medical Education (UDREM), Faculty of Medicine, Geneva, Switzerland.
| | - Antonio Leidi
- Service of Internal Medicine, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Bacteriology Laboratory, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland; Genomic Research Laboratory, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
13
|
Ruszkowski J, Daca A, Szewczyk A, Dębska-Ślizień A, Witkowski JM. The influence of biologics on the microbiome in immune-mediated inflammatory diseases: A systematic review. Biomed Pharmacother 2021; 141:111904. [PMID: 34328113 DOI: 10.1016/j.biopha.2021.111904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Immune-mediated inflammatory diseases (IMIDs) are a group of several chronic disorders with elusive pathogenesis that results in dysregulation of the normal immune response and leads to organ-specific or systemic inflammation. There are many reports on gastrointestinal or skin dysbiosis in patients with IMIDs; however, it is not clear whether dysbiosis is a cause or a result of the observed inflammation. We aimed to determine whether treatment of IMIDs patients with biologics affects their microbiota in comparison with baseline or placebo. METHODS We searched for studies in MEDLINE, Embase, Scopus, and Web of Science. Due to both high heterogeneity and lacking data, vote-counting and structured tables were used to summarize the data. RESULTS AND LIMITATIONS A total of 25 longitudinal human studies with 816 IMIDs patients receiving biologics were included. Data on α-diversity change are inconclusive. Most evidence supports the increase in all α-diversity metrics in responding inflammatory bowel disease (IBD) patients; however, vote counting did not confirm the significance of the directional change. In case of β-diversity, treatment with biologics made patients' microbiome more similar to the microbiome of healthy controls in 5 out of 7 studies. The changes in taxa abundance and predicted functionality of microbiome were systematically summarized. Limited number and quality of the included studies highly restricted the conclusions of the study. CONCLUSIONS Local inflammation may play pivotal role in the gut microbiome disruption in IMIDs patients. The effect of the biologics on human microbiota should be evaluated in randomized controlled trials and transparently reported.
Collapse
Affiliation(s)
- Jakub Ruszkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland; Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Poland.
| | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| |
Collapse
|
14
|
Analysis of the Gut Mycobiome in Adult Patients with Type 1 and Type 2 Diabetes Using Next-Generation Sequencing (NGS) with Increased Sensitivity-Pilot Study. Nutrients 2021; 13:nu13041066. [PMID: 33806027 PMCID: PMC8064496 DOI: 10.3390/nu13041066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/23/2023] Open
Abstract
The studies on microbiome in the human digestive tract indicate that fungi could also be one of the external factors affecting development of diabetes. The aim of this study was to evaluate the quantitative and qualitative mycobiome composition in the colon of the adults with type 1 (T1D), n = 26 and type 2 (T2D) diabetes, n = 24 compared to the control group, n = 26. The gut mycobiome was characterized in the stool samples using the analysis of the whole internal transcribed spacer (ITS) region of the fungal rDNA gene cluster by next-generation sequencing (NGS) with increased sensitivity. At the L2 (phylum) level, Basidiomycota fungi were predominant in all 3 study groups. Group T1D presented significantly lower number of Ascomycota compared to the T2D group, and at the L6 (genus) level, the T1D group presented significantly lower number of Saccharomyces genus compared to control and T2D groups. In the T1D group, a significant positive correlation between total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels and fungi of the genus Saccharomyces, and in the T2D group, a negative correlation between the total cholesterol level and Malassezia genus was found. The obtained results seem to be a good foundation to extend the analysis of the relationship between individual genera and species of fungi and the parameters determining the metabolism of carbohydrates and lipids in the human body.
Collapse
|
15
|
Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H, Zali MR. Gut mycobiome: The probable determinative role of fungi in IBD patients. Mycoses 2021; 64:468-476. [PMID: 33421192 DOI: 10.1111/myc.13238] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a multi-factorial autoimmune disorder that its causative agents are unknown. The gut microbiota comprises of bacteria, viruses, fungi and protozoa that its role in IBD has remained controversially. Bacteria constitute more than 99% of the gut microbiota composition, and the main core of the gut microbiota is composed from Bacteroidetes and Firmicutes. The gut microbiota plays an important role in training, development and haemostasis of the immune responses during the life. Fungi compose a very small portion of gut microbiota, but play determinative roles in homeostasis of the gut bacterial composition and the mucosal immune responses. An interkingdom correlation between bacteria and fungi has been suggested. For example, the presence of Salmonella enterica serovar Typhimurium reduces the viability and colonisation of C albicans. Alterations in the composition and function of the gut microbiota, which is known as dysbiosis, are a usual event in patients who suffer from IBD. Although the main reason for this alteration is not clear, the interaction between gut bacteria and gut fungi seems to be an important subject in IBD patients. This review covers new findings on the interaction between fungi and bacteria and the role of fungi in the pathophysiology of IBD.
Collapse
Affiliation(s)
- Alireza Beheshti-Maal
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Authier H, Salon M, Rahabi M, Bertrand B, Blondeau C, Kuylle S, Holowacz S, Coste A. Oral Administration of Lactobacillus helveticus LA401 and Lactobacillus gasseri LA806 Combination Attenuates Oesophageal and Gastrointestinal Candidiasis and Consequent Gut Inflammation in Mice. J Fungi (Basel) 2021; 7:57. [PMID: 33467443 PMCID: PMC7830595 DOI: 10.3390/jof7010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that causes mucosal gastrointestinal (GI) candidiasis tightly associated with gut inflammatory status. The emergence of drug resistance, the side effects of currently available antifungals and the high frequency of recurrent candidiasis indicate that new and improved therapeutics are needed. Probiotics have been suggested as a useful alternative for the management of candidiasis. We demonstrated that oral administration of Lactobacillus gasseri LA806 alone or combined with Lactobacillus helveticus LA401 in Candida albicans-infected mice decrease the Candida colonization of the oesophageal and GI tract, highlighting a protective role for these strains in C. albicans colonization. Interestingly, the probiotic combination significantly modulates the composition of gut microbiota towards a protective profile and consequently dampens inflammatory and oxidative status in the colon. Moreover, we showed that L. helveticus LA401 and/or L. gasseri LA806 orient macrophages towards a fungicidal phenotype characterized by a C-type lectin receptors signature composed of Dectin-1 and Mannose receptor. Our findings suggest that the use of the LA401 and LA806 combination might be a promising strategy to manage GI candidiasis and the inflammation it causes by inducing the intrinsic antifungal activities of macrophages. Thus, the probiotic combination is a good candidate for managing GI candidiasis by inducing fungicidal functions in macrophages while preserving the GI integrity by modulating the microbiota and inflammation.
Collapse
Affiliation(s)
- Hélène Authier
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Marie Salon
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Mouna Rahabi
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | - Bénédicte Bertrand
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| | | | | | | | - Agnès Coste
- UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31432 Toulouse, France; (M.S.); (M.R.); (B.B.)
| |
Collapse
|
17
|
Salamon D, Gosiewski T, Krawczyk A, Sroka-Oleksiak A, Duplaga M, Fyderek K, Kowalska-Duplaga K. Quantitative changes in selected bacteria in the stool during the treatment of Crohn's disease. Adv Med Sci 2020; 65:348-353. [PMID: 32590155 DOI: 10.1016/j.advms.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE The aim of this study was to determine quantitative changes in selected species of bacteria (Bacteroides fragilis, Lactobacillus fermentum, Lactobacillus rhamnosus, Serratia marcescens) in the stool of patients with Crohn's disease (CD) in the course of induction treatment with exclusive enteral nutrition (EEN) or anti-tumor necrosis factor alpha (Infliximab, IFX) vs. healthy controls (HC). MATERIALS/METHODS DNA was isolated from stool samples of CD (n = 122) and HC (n = 17), and quantitative real-time Polymerase Chain Reaction (qPCR) was applied. In both treatment groups, the first stool sample was taken before the start of treatment, and the second 4 weeks after its end: in EEN (n = 48; age (mean; SD) 13.35 ± 3.09 years) and IFX groups (n = 13; age (mean; SD) 13.09 ± 3.76 years). RESULTS The only species that showed a statistically significant difference between the two groups of patients before any therapeutic intervention was L. fermentum. Moreover, its number increased after completion of EEN and differed significantly when compared with the HC. In the IFX group the number of L. fermentum decreased during the therapy but was significantly higher than in the HC. The number of S. marcescens in the EEN group was significantly lower than in the controls both before and after EEN. CONCLUSION The implemented treatment (EEN or IFX) modifies the microbiome in CD patients, but does not make it become the same as in HC.
Collapse
|
18
|
Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn's disease. Sci Rep 2019; 9:18880. [PMID: 31827191 PMCID: PMC6906406 DOI: 10.1038/s41598-019-55290-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aetiology of inflammatory bowel diseases (IBD) seems to be strongly connected to changes in the enteral microbiome. The dysbiosis pattern seen in Crohn’s disease (CD) differs among published studies depending on patients’ age, disease phenotype and microbiome research methods. The aims was to investigate microbiome in treatment-naive paediatric patients to get an insight into its structure at the early stage of the disease in comparison to healthy. Stool samples were obtained from controls and newly diagnosed patients prior to any intervention. Microbiota was analysed by 16SrRNAnext-generation-sequencing (NGS). Differences in the within-sample phylotype richness and evenness (alpha diversity) were detected between controls and patients. Statistically significant dissimilarities between samples were present for all used metrics. We also found a significant increase in the abundance of OTUs of the Enterococcus genus and reduction in, among others, Bifidobacterium (B. adolescentis), Roseburia (R.faecis), Faecalibacterium (F. prausnitzii), Gemmiger (G. formicilis), Ruminococcus (R. bromii) and Veillonellaceae (Dialister). Moreover, differences in alpha and beta diversities in respect to calprotectin and PCDAI were observed: patients with calprotectin <100 µg/g and with PCDAI below 10 points vs those with calprotectin >100 µg/g and mild (10–27.7 points), moderate (27.5–40 points) or severe (>40 points) CD disease activity had higher richness and diversity of gut microbiota. The results of our study highlight reduced diversity and dysbiosis at the earliest stage of the disease. Microbial imbalance and low abundance of butyrate-producing bacteria, including Bifidobacterium adolescentis, may suggest benefits of microbial modification therapy.
Collapse
|