1
|
Cheng Y, Fei Y, Xu Z, Huang R, Jiang Y, Sun L, Wang X, Yu S, Luo Y, Mao X, Zhao X. Associations Between Brominated Flame Retardant Exposure and Depression in Adults: A Cross-Sectional Study. TOXICS 2024; 12:918. [PMID: 39771133 PMCID: PMC11728815 DOI: 10.3390/toxics12120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there is limited research on the link between exposure to mixtures of BFRs and depression in the general population. METHODS To analyze the association between exposure to BFRs and depression in the population, nationally representative data from the National Health and Nutrition Examination Survey (NHANES; 2005-2016) were used. In the final analysis, a total of 8138 adults aged 20 years and older were included. To investigate the potential relationship between BFRs and outcomes, we used binary logistic regression, restricted cubic spline (RCS), quantile-based g computation (QGC), and weighted quantile sum (WQS) regression. RESULTS The findings showed that serum BFR concentrations were associated with depressive symptoms over a broad spectrum. Binary logistic regression and RCS analysis showed that certain BFRs, particularly PBB153, were significantly and positively associated with the incidence of depression, even after adjustment for various confounders (p < 0.05). Mixed exposure to BFRs was also found to be associated with depression in the population, with a stronger association in men. The two most influential BFRs, PBB153 and PBDE85, were identified in both mixed exposure models and are potential risk factors of concern. CONCLUSION Our study identified new insights into the relationship between BFRs and depression, but sizable population-based cohort studies and toxicology mechanism studies will be needed to establish causality.
Collapse
Affiliation(s)
- Yulan Cheng
- Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong 226019, China;
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Yue Fei
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Zemin Xu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China;
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Lihan Sun
- School of Medicine, Nantong University, Nantong 226001, China;
| | - Xuehai Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Shali Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Yonghua Luo
- Nantong Fourth People’s Hospital, Nantong 226019, China;
| | - Xiaobo Mao
- Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong 226019, China;
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| |
Collapse
|
2
|
Tabęcka-Łonczyńska A, Koszła O, Sołek P. Unraveling the anti-androgenic mechanism of tris(2,3-dibromopropyl) isocyanurate (TBC) via the non-classical testosterone pathway and steroidogenesis: Potential human reproductive health implications. CHEMOSPHERE 2024; 363:142802. [PMID: 38996977 DOI: 10.1016/j.chemosphere.2024.142802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
The decline in male reproductive health, characterized by diminishing sperm count and testosterone levels, has raised concerns about environmental influences, particularly endocrine-disrupting chemicals (EDCs). Tris(2,3-dibromopropyl)isocyanurate (TBC), a novel brominated flame retardant widely used in electronics, textiles, and furniture, has emerged as a significant environmental contaminant with potential reproductive health implications. In this study, we investigated the molecular mechanisms underlying TBC-induced reproductive toxicity, particularly focusing on its impact on steroidogenesis and androgen signaling pathways using the GC-1 spg cell line as an in vitro model. Exposure of GC-1 spg cells to TBC, alone or in combination with testosterone or the anti-androgen flutamide resulted in decreased metabolic activity and increased lactate dehydrogenase release, indicating cytotoxic effects. Furthermore, TBC exposure led to a reduction in progesterone synthesis, while testosterone production remained unaffected. Interestingly, estradiol synthesis was diminished after TBC exposure, suggesting a disruption in steroid hormone balance critical for spermatogenesis. Mechanistic investigations revealed alterations in key proteins involved in the non-classical testosterone pathway and steroidogenesis. TBC exposure downregulated epidermal growth factor receptor (EGFR), protein kinase B (AKT), and phosphorylated cyclic AMP response element-binding protein (p-CREB), indicating suppression of non-classical androgen signaling. Additionally, decreased levels of steroidogenic acute regulatory protein (StAR) and 3-beta-hydroxysteroid dehydrogenase (HSD3β1) suggest impaired steroidogenesis. Here we uncover the intricate molecular mechanisms underlying TBC-induced reproductive toxicity, highlighting its potential to disrupt steroid hormone synthesis and androgen signaling pathways. Understanding the adverse effects of TBC on male reproductive health is crucial for developing strategies to mitigate its environmental impact and safeguard human fertility.
Collapse
Affiliation(s)
- Anna Tabęcka-Łonczyńska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszów, Poland.
| | - Oliwia Koszła
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | - Przemysław Sołek
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950, Lublin, Poland.
| |
Collapse
|
3
|
Szychowski KA, Skóra B. Disruption of neurosteroid synthesis and release by tris(2,3-dibromopropyl)isocyanurate in primary mouse cortical astrocytes in vitro. J Appl Toxicol 2023; 43:1604-1612. [PMID: 37254606 DOI: 10.1002/jat.4498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Neurosteroidogenesis in astrocytes is crucial for the proper development and functioning of the brain. During this process, key neurohormones such as progesterone (P4 ), testosterone (T), and estradiol (E2 ) are produced. Proper production and release of neurosteroids can be affected by substances referred to as endocrine-disrupting compounds (EDCs). Tris-(2,3-dibromopropyl)isocyanurate (TBC) is a representative of novel brominated flame retardants used to stop ignition or reduce fire-related property damage to plastics, polyolefin, polyphenyl alkene, unsaturated polyester, synthetic rubber, and fibers. Interestingly, previous studies have shown that TBC can enhance the proliferation of estradiol-sensitive breast cancers in vitro, which suggests that TBC has EDC properties. Therefore, given the suspected endocrine-disrupting properties of TBC, the aim of the present study was to determine the impact of TBC on the neurosteroid (P4 , T, and E2 ) production and secretion as well as the mRNA expression of key enzymes involved in its production in mouse astrocytes in vitro. Our paper shows that TBC increases P4 production with a strong decrease in T production, which is accompanied by a decrease in Cyp17a1 mRNA expression, that is, the main enzyme metabolizing P4 to T. Moreover, TBC in both studied concentrations increases P4 secretion in the culture medium. Finally, our studies have demonstrated an increase in the expression of Cyp19a1 mRNA, an enzyme metabolizing T to E2 , with a simultaneous increase in the amount of E2 in cells. Our data clearly show that TBC in an in vitro environment acts as EDCs, which may lead to serious consequences for the proper development and functioning of the brain.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
4
|
Bajard L, Vespalcová H, Negi CK, Kohoutek J, Bláha L, Sovadinová I. Anti-androgenic activity of novel flame retardants in mixtures: Newly identified contribution from tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO). CHEMOSPHERE 2023; 341:140004. [PMID: 37652251 DOI: 10.1016/j.chemosphere.2023.140004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
In recent decades, male infertility has been on the rise, largely attributed to exposure to chemicals with endocrine-disrupting properties. The adverse effects of disrupting androgen actions on the development and reproductive health of children and adolescents have been extensively studied. Flame retardants (FRs), used in consumer products to delay flammability, have been identified as antagonists of the androgen receptor (AR), potentially leading to adverse outcomes in male reproductive health later in life. This study examined the interaction of eight novel FRs with the AR, employing an in vitro AR-dependent luciferase reporter gene assay utilizing MDA-kb2 cells. The investigation revealed the anti-androgenic activity of tris(2,3-dibromopropyl) isocyanurate (TDBP-TAZTO), a frequently detected FR in the environment. Furthermore, TDBP-TAZTO contributed to anti-androgenic activity when combined with six other anti-androgenic FRs. The mixture effects were predicted by three commonly employed models: concentration addition (CA), generalized CA, and independent action, with the CA model showcasing the highest accuracy. This suggests that all FRs act through a similar mechanism, as further confirmed by in silico molecular docking, indicating limited synergy or antagonism. Importantly, in the mixtures, each FR contributed to the induction of anti-androgenic effects at concentrations below their individual effective concentrations in single exposures. This raises concern for public health, especially considering the co-detection of these FRs and their potential co-occurrence with other anti-androgenic chemicals like bisphenols. Therefore, our findings, along with previous research, strongly support the incorporation of combined effects of mixtures in risk assessment to efficiently safeguard population health.
Collapse
Affiliation(s)
- Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Hana Vespalcová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Luděk Bláha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
5
|
Szychowski KA, Skóra B. Tris(2,3-dibromopropyl)Isocyanurate has an Effect on Inflammation Markers in Mouse Primary Astrocytes In vitro. Inflammation 2023; 46:1739-1748. [PMID: 37226028 PMCID: PMC10567914 DOI: 10.1007/s10753-023-01837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Tris(2,3-dibromopropyl)isocyanurate (TBC or TDBP-TAZTO) is a new brominated flame retardant (BFR) used as a replacement of classic BFR, such as tetrabromobisphenol A. TBC is supposed to be safer than classic BFRs, but reports show that it may induce a similar toxic effect. Therefore, the aim of the present study was to determine the impact of TBC on the inflammation and activation of the apoptosis process in mouse cortical astrocytes in vitro. Our results have shown that TBC increases caspase-1 and caspase-3 activity in mouse astrocytes in vitro, which suggests inflammation-induced apoptosis. Further analyses have revealed that TBC indeed increases the level of inflammation markers, e.g. Cat, IL-1β and IL-1βR1 proteins, but decreases the level of proliferation marker protein Ki67. However, our study has demonstrated that TBC does not change the morphology of astrocytes and does not increase the number of apoptotic bodies - a well-established marker of late apoptosis. Moreover, the concentration of 50 µM TBC also increases caspase-3 activity with no formation of apoptotic bodies. However, since 10 and 50 µM TBC have never been detected in living organisms, we can assume that the compound is safe at the low concentrations that are detected.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
6
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
7
|
Esplugas R, Linares V, Bellés M, Domingo JL, Schuhmacher M. In vitro neurotoxic potential of emerging flame retardants on neuroblastoma cells in an acute exposure scenario. Toxicol In Vitro 2023; 87:105523. [PMID: 36427757 DOI: 10.1016/j.tiv.2022.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Since 2004, some legacy flame retardants (FRs) were restricted or removed from the European markets due to their concern on human health. Both organophosphorus FRs (OPFRs) and novel brominated FRs (NBFRs) have replaced them because they are presumably safer and less persistent emerging FRs (EFRs) and their exposure is currently occurring in indoor environments at high levels. Little is known about the neurotoxic potential risk of these EFRs in humans. The present study was aimed at assessing the acute neurotoxicity potential of Tris(1, 3-dichloro-2-propyl)phosphate (TDCPP), triphenyl phosphate (TPhP), Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) on human neuroblastoma cells (SH-SY5Y). SH-SY5Y were exposed to these EFRs at low concentrations -ranging 2.5-20 μM. during 2-24 h. We investigated viability, mitochondrial function, oxidative stress, inflammatory response, as well as neural plasticity and development. The results have demonstrated that selected EFRs (TDCPP, TPhP, EH-TBB and BEH-TBP) did not impair neural function on SH-SY5Y as acute response. To the best of our knowledge, this has been the first study focused on evaluating the neural affection of TPhP on SH-SY5Y cells and of EH-TBB and BEH-TBP on neural cells. We also assessed for the first time almost all endpoints after FR exposure on neural cell lines.
Collapse
Affiliation(s)
- Roser Esplugas
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Montserrat Bellés
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Schuhmacher
- Environmental Analysis and Management Group, Chemical Engineering Department, Universitat Rovira I Virgili, Tarragona, Spain
| |
Collapse
|
8
|
Li Y, Cao Q, Hou Z, Tang B, Shen Y. Transcranial Sonography as a Diagnostic Tool for Depressive Disorders. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:687-699. [PMID: 36047031 DOI: 10.1002/jum.16081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Transcranial sonography (TCS) is an available and noninvasive neuroimaging method that has been found to reduce the echogenicity of the brainstem raphe (BR) in patients with depression. Applying the criteria of the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV), we performed a meta-analysis of the diagnostic accuracy of TCS. METHODS A systematic search was conducted in PubMed, EMBASE, The Cochrane Library, and Web of Science. The databases were searched from inception to December 2021. The quality of the included literature was assessed using the QUADAS-2. Heterogeneity analysis was performed. A summary receiver operating characteristic (SROC) curve was generated to evaluate the diagnostic accuracy of TCS. RESULTS We included 12 studies with 809 patients. The pooled sensitivity was 0.66 (95% confidence interval [CI]: 0.61-0.71), and the specificity was 0.84 (95% CI: 0.80-0.87). The combined positive likelihood ratio (LR) was 3.84 (95% CI: 2.68-5.51), the negative LR was 0.41 (95% CI: 0.29-0.57), and the diagnostic odds ratio (DOR) was 11.45 (95% CI: 5.57-23.02). The area under the curve (AUC) of the plotted SROC curve was 0.86 (95% CI: 0.83-0.89). The meta-regression and subgroup analyses found no source of heterogeneity. CONCLUSION TCS has high potential and efficacy in diagnosing depression and may be a reasonable test to perform clinically for the assessment of depression.
Collapse
Affiliation(s)
- Yanping Li
- Department of neuroelectrophysiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Cao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuo Hou
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Boji Tang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Shen
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Mu D, Ma Q. A Review of Antidepressant Effects and Mechanisms of Three Common Herbal Medicines: Panax ginseng, Bupleurum chinense, and Gastrodia elata. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1164-1175. [PMID: 36397625 DOI: 10.2174/1871527322666221116164836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Major depressive disorder (MDD) has been reported to affect an increasing number of individuals due to the modern lifestyle. Because of its complicated mechanisms and recurrent attacks, MDD is considered a refractory chronic disease. Although the mainstream therapy for MDD is chemical drugs, they are not a panacea for MDD because of their expensiveness, associated serious adverse reactions, and endless treatment courses. Hence, we studied three kinds of herbal medicines, namely, Panax ginseng C.A. Mey (PGM), Bupleurum chinense DC (BCD), and Gastrodia elata Blume (GEB), and reviewed the mechanisms underlying their antidepressant properties to provide a reference for the development of antidepressants and clinical medications. METHODS An extensive range of medicinal, clinical, and chemistry databases and search engines were used for our literature search. We searched the literature using certain web literature search engines, including Google Scholar, PubMed, Science Direct, CNKI (China National Knowledge Infrastructure), and Web of Science. RESULTS Experimental research found that active compounds of these three medicines exhibited good antidepressant effects in vivo and in vitro. Clinical investigations revealed that single or combined treatment of these medicines improved certain depressive symptoms. Antidepressant mechanisms are summarized based on this research. CONCLUSION The antidepressant mechanism of these three medicines includes but is not limited to ameliorating inflammation within the brain, reversing the hypothalamic-pituitary adrenal axis (HPA) system hyperfunction, inhibiting monoamine neurotransmitters reuptake, anti-neuron apoptosis and preventing neurotoxicity, and regulating depressive-related pathways such as the BDNF pathway and the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Dan Mu
- Substance Dependence Department, The Fourth People's Hospital of Chengdu, No. 8, West Yixiang, Jinniu District, Chengdu City, Sichuan Provence, China
| | - Qin Ma
- Substance Dependence Department, The Fourth People's Hospital of Chengdu, No. 8, West Yixiang, Jinniu District, Chengdu City, Sichuan Provence, China
| |
Collapse
|
10
|
Bar M, Szychowski KA. Comprehensive review of the impact of tris(2,3-dibromopropyl) isocyanurate (TBC or TDBP-TAZTO) on living organisms and the environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4203-4218. [PMID: 35103871 PMCID: PMC9675702 DOI: 10.1007/s10653-022-01206-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 05/31/2023]
Abstract
Tris(2,3-dibromopropyl) isocyanurate (TBC or TDBP-TAZTO) belongs to the group of brominated flame retardants (BFRs). The production of this compound is increasing due to the growing demand and wide application in electrical, electronic, musical instrument, and automotive component industries. The properties of TBC, e.g., the high octanol-air partition coefficient (Koa), high octanol-water partition coefficient (Kow), and high bioconcentration factor (BCF), indicate a possibility of its spread in aquatic and terrestrial ecosystems and bioaccumulation in living organisms. The presence of TBC has been confirmed in soil, sediments, river water, and such materials as microplastic, curtains, and e-waste devices. The compound has potential to bioaccumulate in the food chain of living organisms. TBC has been demonstrated to exert a harmful effect mainly on the nervous and endocrine systems, lungs, and liver. The possible mechanism of toxicity of the compound in the nervous system is based on the generation of oxidative stress by TBC leading to apoptosis of neuronal cells, while mitochondrial damage is considered to be responsible for changes in the respiratory organ. Moreover, the potential of mussels and earthworms to be bioindicators of TBC has been proven. Therefore, the literature review is focused on TBC properties and analysis of the identification and impact of the compound on the environment, living organisms, and human cell lines. Given the many toxic effects of TBC highlighted in the literature, there is a need for more profound research on the safety of TBC and methods for identification and degradation of this compound.
Collapse
Affiliation(s)
- Monika Bar
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
11
|
In situ localization of tris(2,3-dibromopropyl) isocyanurate in mouse organs by MALDI-IMS with auxiliary matrix strategy. Talanta 2021; 235:122723. [PMID: 34517591 DOI: 10.1016/j.talanta.2021.122723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022]
Abstract
Tris(2,3-dibromopropyl) isocyanurate (TBC) is one of the novel brominated flame retardants that has been widely used in consumer goods. Humans may be exposed to TBC daily. Studies showed that TBC can induce significant toxicity. However, there is currently no report on its in situ localization in organs. In this study, we aimed to develop a reliable and reproductive method to determine the in situ localization of TBC in mouse organs by matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). As commercially available matrices were not able to detect TBC in tissue section, we then developed a novel MALDI-IMS method based on 1,5-diaminonaphthalene hydrochloride and silver trifluoromethanesulfonate (NDA/AgOTf) as the matrix for the in situ localization of TBC. AgOTf used as the auxiliary matrix in the negative-ion mode showed an excellent MS signal of TBC. The detection limit of [2AgOTf + Br]- was at the μg/mL level. The developed MALDI-IMS method was successfully employed to obtain the TBC spatial distribution in the mouse organs collected from mice exposed to 160 mg/kg/day of TBC for 30 days. High-pressure liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) was also used to evaluate the accumulation of TBC in liver, kidney, heart, and brain. The combination of MALDI-IMS and HPLC-MS/MS showed that TBC can accumulate in mice organs and it is mainly distributed in the renal parenchyma. In summary, an innovative method was developed for the analysis of TBC spatial distribution by MALDI-IMS using a novel NDA/AgOTf matrix, extending the application of MALDI-IMS in environmental pollutants.
Collapse
|
12
|
Szychowski KA, Skóra B, Mańdziuk M. Tris (2,3-Dibromopropyl) Isocyanurate (TDBP-TAZTO or TBC) Shows Different Toxicity Depending on the Degree of Differentiation of the Human Neuroblastoma (SH-SY5Y) Cell Line. Neurotox Res 2021; 39:1575-1588. [PMID: 34342853 PMCID: PMC8429403 DOI: 10.1007/s12640-021-00399-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Tris (2,3-dibromopropyl) isocyanurate (TDBP-TAZTO or TBC) is a heterocyclic hexabromated flame retardant. It is widely used during the production of many synthetic compounds. High concentrations of TDBP-TAZTO were found in river water, surface sediments, soil, earthworms, and carp tissues. Moreover, it has been shown that this compound can cross the blood–brain barrier and accumulate in the gut and brain of carp. The aryl hydrocarbon receptor (AhR) has been characterized as a multifunctional intracellular sensor and receptor. AhR is an activator of cytochrome P450 1A1 and 1A2, which metabolize various toxic compounds. The aim of the study was to explain how/whether TDBP-TAZTO increases the expression and/or activity of the CYP1A1 enzyme and the AhR and TUBB3 expression during SH-SY5Y cell differentiation. SH-SY5Y cells were differentiated for 7 and 14 days using retinoic acid. Cell viability, ethoxyresorufin-O-deethylase (EROD) activity, and mRNA expression of CYP1A1, AhR, and TUBB3 were assessed. Our experiment showed that, during the differentiation process, the ability of TDBP-TAZTO to induce EROD activity in SH-SY5Y cells subsequently decreased, which may have been an effect of cell differentiation into neurons. Moreover, the results suggest that TDBP-TAZTO can affect the differentiation process. Since no CYP2B6 mRNA expression was detected, the CAR receptor may not be involved in the TDBP-TAZTO mechanism of action. However, more research is needed in this field to elucidate this mechanism precisely.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Marzena Mańdziuk
- Department of Physiotherapy, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
13
|
Dong L, Wang S, Qu J, You H, Liu D. New understanding of novel brominated flame retardants (NBFRs): Neuro(endocrine) toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111570. [PMID: 33396099 DOI: 10.1016/j.ecoenv.2020.111570] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Traditional brominated flame retardants (BFRs) negatively affect the environment and human health, especially in the sensitive (developing) nervous system. Considering the physicochemical similarities between novel brominated flame retardants (NBFRs) and BFRs, more and more evidence reveals the neurotoxic effects of NBFRs. We reviewed the neuro(endocrine) toxic effects of NBFRs in vivo and in vitro and discussed their action mechanisms based on the available information. The neurotoxic potential of NBFRs has been demonstrated through direct neurotoxicity and disruption of the neuroendocrine system, with adverse effects on neurobehavioral and reproductive development. Mechanistic studies have shown that the impact of NBFRs is related to the complex interaction of neural and endocrine signals. From disrupting the gender differentiation of the brain, altering serum thyroid/sex hormone levels, gene/protein expression, and so on, to interfere with the feedback effect between different levels of the HPG/HPT axis. In this paper, the mechanism of neurotoxic effects of NBFRs is explored from a new perspective-neuro and endocrine interactions. Gaps in the toxicity data of NBFRs in the neuroendocrine system are supplemented and provide a broader dataset for a complete risk assessment.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jinze Qu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Jin M, Ji X, Zhang B, Sheng W, Wang R, Liu K. Synergistic effects of Pb and repeated heat pulse on developmental neurotoxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:460-470. [PMID: 30738228 DOI: 10.1016/j.ecoenv.2019.01.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Pollutant discharges to the aquatic environment often contain multiple environmental stressors, affecting aquatic organisms. To mimic the discharges from nuclear and industry facilities, the combined effects of two independent types of stressors, heavy metal Pb and repeated heat pulse were addressed in this study. We investigated the developmental toxicity of combined treatment, especially its toxic effects on zebrafish neurodevelopment. The normal embryos at 4 hpf were exposed to 0.2 mM of Pb dissolved in the bathing medium with different temperatures (30, 32, and 34 °C) and then maintained in an incubator at 28 °C. After performing above treatment once every 24 h for 6 days, we found that combined treatment significantly affected neural development, including loss of dopaminergic (DA) neurons and brain vasculature, disruption of locomotor activity and neurodevelopmental genes expression in a temperature-dependent manner as compared to the Pb alone exposure group, indicating that repeated heat pulse enhances these negative impacts induced by Pb. In contrast, no apparent toxicity was observed in repeated heat pulse alone groups, suggesting that Pb treatment reduces thermal tolerance in zebrafish, which emphasized the importance to evaluate synergistic effects of Pb and repeated heat pulse. Moreover, repeated heat pulse aggravated Pb-induced apoptosis in the zebrafish brain. Further study of the underlying mechanism suggested that Caspase 3 regulated apoptosis was involved in this process. Taken together, our findings shed light on the full understanding of toxic effects of discharges from industrial applications on living organisms and its environmental impact.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China.
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
15
|
林 芳, 侯 德, 唐 秋. [Research progress of depression and the application of esketamine]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:567-569. [PMID: 28446416 PMCID: PMC6744095 DOI: 10.3969/j.issn.1673-4254.2017.04.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 06/07/2023]
Abstract
The pathogenesis and etiology of still remain unknown. Current evidence suggests that the occurrence of depression may be related to a reduced secretion of neurotransmitters, neuronal apoptosis, inflammation, intestinal flora and other factors. Although the commonly used antidepressants such as SSRIs, SNRIs, NaSSA, and SARIs produce some therapeutic effects, they fail to relieve the full spectrum of the symptoms of depression. In recent years, esketamine was found to produce a potent and a long-lasting antidepressant effect by acting on the NMDA receptors. Herein the authors review the progress in the study of the pathogenesis and drug therapies of depression, the efficacy of esketamine treatment and the underlying mechanism, and the prospect of esketamine treatment. Currently the mechanism of the antidepressant effect of esketamine remains indeterminate and its clinical application is limited, but its effect in rapidly alleviating the symptoms of depression suggests its bright prospect for clinical applications.
Collapse
Affiliation(s)
- 芳波 林
- 中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - 德仁 侯
- 中南大学湘雅三医院神经内科,湖南 长沙 410013Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - 秋萍 唐
- 中南大学湘雅三医院临床心理科,湖南 长沙 410013Department of Clinical Psychology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|