1
|
Sharma S, Kaur V, Duhan P, Singh R, Agnihotri N. Evaluation of Anticancer Activity of Novel and Tumor-Targeted Glutamine-Conjugated Organotin(IV) Compounds in Colorectal Cancer─An In Vitro and In Vivo Study. J Med Chem 2025; 68:2593-2607. [PMID: 39834112 DOI: 10.1021/acs.jmedchem.4c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Over the years, numerous ligand-based organotin(IV) Schiff base compounds have shown remarkable cytotoxicity and anticancer activities, but their clinical use is restricted by systemic toxicity, prompting the search for targeted therapies. Targeted delivery can be enhanced by exploiting the inherent characteristics of cancer cells such as glutamine addiction, which is essential to support cellular biosynthesis and cell growth to sustain aberrant proliferation. Our previous study revealed glutamine-conjugated organotin(IV) compounds have strong DNA/protein affinities, favorable in silico ADME profiles, and significant antiproliferative activity. In this study, these compounds demonstrated significant cytotoxicity against human colon carcinoma and adenocarcinoma cell lines via the induction of cell cycle arrest and apoptosis. In DMH/DSS-induced experimental colon carcinogenesis, these compounds reduced tumor burden and volume and inhibited cell proliferation and induced apoptosis, with minimal toxicity. Tissue distribution studies revealed selective accumulation in the colon. These findings support their potential as chemotherapeutic candidates for colon cancer.
Collapse
Affiliation(s)
- Shagun Sharma
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pratibha Duhan
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
2
|
Chen P, Chen J, Zhang W, Tang L, Cheng G, Li H, Fan T, Wang J, Zhong W, Song Y. Biochemical mechanisms of tributyltin chloride-induced cell toxicity in Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114725. [PMID: 36924558 DOI: 10.1016/j.ecoenv.2023.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Tributyltin chloride (TBTCL) is a widely used fungicide and heat stabilizer in compositions of PVC. TBTCL has been detected in human bodies and potentially causes harmful effects on humans' thyroid, cardiovascular and other organs. As one of the first examples of endocrine disruptors, the toxicity effects of TBTCL on the male reproduction system have aroused concerns. However, the potential cellular mechanisms are not fully explored. In the current study, by using Sertoli cells, a critical regulator of spermatogenesis as a cell model, we showed that with 200 nM exposure for 24 h, TBTCL causes apoptosis and cell cycle arrest. RNA sequencing analyses suggested that TBTCL probably activates endoplasmic reticulum (ER) stress, and disrupts autophagy. Biochemical analysis showed that TBTCL indeed induces ER stress and the dysregulation of autophagy. Interestingly, activation of ER stress and inhibition of autophagy is responsible for TBTCL-induced apoptosis and cell cycle arrest. Our results thus uncovered a novel insight into the cellular mechanisms for TBTCL-induced toxicology in Sertoli cells.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Junhui Chen
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Wei Zhang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Guangqing Cheng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huiying Li
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Tianyun Fan
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenbin Zhong
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China.
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523125, Guangdong, China.
| |
Collapse
|
3
|
Triphenyltin(IV) dithiocarbamate compound induces genotoxicity and cytotoxicity in K562 human erythroleukemia cells primarily via mitochondria-mediated apoptosis. Food Chem Toxicol 2022; 168:113336. [PMID: 35963475 DOI: 10.1016/j.fct.2022.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
The novel di-and triphenyltin(IV) dithiocarbamate compounds represented as RnSnL2 (where R = C4H9, C6H5; n = 2,3; L = N,N-dithiocarbamate), Ph2Sn(N,N-diisopropyldithiocarbamate) (OC1), Ph3Sn(N,N-diisopropyldithiocarbamate) (OC2), Ph2Sn(N,N-diallyldithiocarbamate) (OC3), Ph3Sn(N,N-diallyldithiocarbamate) (OC4), and Ph2Sn(N,N-diethyldithiocarbamate) (OC5) were assessed for their cytotoxicity in K562 human erythroleukemia cells. All compounds inhibited the growth of cells at low micromolar concentrations (<10 μM), and the mechanism underlying their antiproliferative effects on K562 cells was apoptosis, as corroborated by the exposure of plasma membrane phosphatidylserine. OC2, which showed the most promising antiproliferative activity, was selected for further analyses. The results demonstrated that OC2 induced apoptosis in K562 cells via an intrinsic mitochondrial pathway triggered upon DNA damage, an early apoptotic signal. Subsequently, OC2 produced excessive intracellular reactive oxygen species. The role of oxidative stress was corroborated by the significant reduction in GSH levels and percentage of apoptosis in NAC-pretreated cells. OC2 could arrest the cell cycle progression in the S phase. These new findings elucidate the antiproliferative potential of OC2 in the K562 human erythroleukemia cells and warrant further investigation, specifically to determine the exact signaling pathway underlying its antileukemic efficacy.
Collapse
|
4
|
Jorgensen A, Svingen T, Miles H, Chetty T, Stukenborg JB, Mitchell RT. Environmental Impacts on Male Reproductive Development: Lessons from Experimental Models. Horm Res Paediatr 2021; 96:190-206. [PMID: 34607330 DOI: 10.1159/000519964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Male reproductive development in mammals can be divided into a gonadal formation phase followed by a hormone-driven differentiation phase. Failure of these processes may result in Differences in Sex Development (DSD), which may include abnormalities of the male reproductive tract, including cryptorchidism, hypospadias, infertility, and testicular germ cell cancer (TGCC). These disorders are also considered to be part of a testicular dysgenesis syndrome (TDS) in males. Whilst DSDs are considered to result primarily from genetic abnormalities, the development of TDS disorders is frequently associated with environmental factors. SUMMARY In this review, we will discuss the development of the male reproductive system in relation to DSD and TDS. We will also describe the experimental systems, including studies involving animals and human tissues or cells that can be used to investigate the role of environmental factors in inducing male reproductive disorders. We will discuss recent studies investigating the impact of environmental chemicals (e.g., phthalates and bisphenols), lifestyle factors (e.g., smoking) and pharmaceuticals (e.g., analgesics) on foetal testis development. Finally, we will describe the evidence, involving experimental and epidemiologic approaches, for a role of environmental factors in the development of specific male reproductive disorders, including cryptorchidism, hypospadias, and TGCC. KEY MESSAGES Environmental exposures can impact the development and function of the male reproductive system in humans. Epidemiology studies and experimental approaches using human tissues are important to translate findings from animal studies and account for species differences in response to environmental exposures.
Collapse
Affiliation(s)
- Anne Jorgensen
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harriet Miles
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Tarini Chetty
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Rod T Mitchell
- Royal Hospital for Children and Young People, Edinburgh, UK
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Syed Annuar SN, Kamaludin NF, Awang N, Chan KM. Cellular Basis of Organotin(IV) Derivatives as Anticancer Metallodrugs: A Review. Front Chem 2021; 9:657599. [PMID: 34368075 PMCID: PMC8342812 DOI: 10.3389/fchem.2021.657599] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Organotin(IV) compounds have wide applications in industrial and agricultural fields owing to their ability to act as poly(vinyl chloride) stabilizers and catalytic agents as well as their medicinal properties. Moreover, organotin(IV) compounds may have applications as antitumor, anti-inflammatory, antifungal, or antimicrobial agents based on the observation of synergistic effects following the binding of their respective ligands, resulting in the enhancement of their biological activities. In this review, we describe the antiproliferative activities of organotin(IV) compounds in various human cancer cell lines based on different types of ligands. We also discuss the molecular mechanisms through which organotin(IV) compounds induce cell death via apoptosis through the mitochondrial intrinsic pathway. Finally, we present the mechanisms of cell cycle arrest induced by organotin(IV) compounds. Our report provides a basis for studies of the antitumor activities of organotin(IV) compounds and highlights the potential applications of these compounds as anticancer metallodrugs with low toxicity and few side effects.
Collapse
|
6
|
Uddin N, Rashid F, Haider A, Tirmizi SA, Raheel A, Imran M, Zaib S, Diaconescu PL, Iqbal J, Ali S. Triorganotin (IV) carboxylates as potential anticancer agents: Their synthesis, physiochemical characterization, and cytotoxic activity against HeLa and MCF‐7 cancer cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Noor Uddin
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Ali Haider
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Syed Ahmed Tirmizi
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Ahmad Raheel
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Muhammad Imran
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
- Department of Biochemistry, Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Paula L. Diaconescu
- Department of Chemistry and Biochemistry University of California Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Saqib Ali
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| |
Collapse
|
7
|
Rashid F, Uddin N, Ali S, Haider A, Tirmizi SA, Diaconescu PL, Iqbal J. New triorganotin(iv) compounds with aromatic carboxylate ligands: synthesis and evaluation of the pro-apoptotic mechanism. RSC Adv 2021; 11:4499-4514. [PMID: 35424423 PMCID: PMC8694426 DOI: 10.1039/d0ra06695h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
Three new organotin(iv) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P21/c having distorted bipyramidal geometry defined by C3SnO2. The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Noor Uddin
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Syed Ahmad Tirmizi
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California Los Angeles607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| |
Collapse
|
8
|
Anasamy T, Chee CF, Wong YF, Heh CH, Kiew LV, Lee HB, Chung LY. Triorganotin complexes in cancer chemotherapy: Mechanistic insights and future perspectives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Theebaa Anasamy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre University of Malaya Kuala Lumpur Malaysia
| | - Yuen Fei Wong
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Choon Han Heh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine University of Malaya Kuala Lumpur Malaysia
| | - Hong Boon Lee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Subang Jaya Selangor Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
9
|
Yamada S, Yamazaki D, Kanda Y. 5-Fluorouracil inhibits neural differentiation via Mfn1/2 reduction in human induced pluripotent stem cells. J Toxicol Sci 2019; 43:727-734. [PMID: 30518710 DOI: 10.2131/jts.43.727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
5-fluorouracil (5-FU) has been widely used for the treatment of tumors. Regardless of its widespread use as an anti-cancer drug, 5-FU therapy can cause several side effects, including developmental toxicity and neurotoxicity. However, the potential action of 5-FU at the early fetal stage has not yet been completely elucidated. In the present study, we investigated the effect of 5-FU exposure on neural induction, using human induced pluripotent stem cells (iPSCs) as a model of human fetal stage. 5-FU exposure reduced the expression of several neural differentiation marker genes, such as OTX2, in iPSCs. Since the neural differentiation process requires ATP as a source of energy, we next examined intracellular ATP content using iPSCs. We found that 5-FU decreased intracellular ATP levels in iPSCs. We further focused on the effects of 5-FU on mitochondrial dynamics, which plays a role of ATP production. We found that 5-FU induced mitochondrial fragmentation and reduced the level of mitochondrial fusion proteins, mitofusin 1 and 2 (Mfn1/2). Double knockdown of Mfn1/2 genes in iPSCs downregulated the gene expression of OTX2, suggesting that Mfn mediates neural differentiation in iPSCs. Taken together, these results indicate that 5-FU has a neurotoxicity via Mfn-mediated mitochondria dynamics in iPSCs. Thus, mitochondrial dysfunction in iPSCs could be used as a possible marker for cytotoxic effects of drugs.
Collapse
Affiliation(s)
- Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Japan.,Pharmacological Evaluation Institute of Japan (PEIJ), Japan
| | - Daiju Yamazaki
- Division of Pharmacology, National Institute of Health Sciences, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Japan
| |
Collapse
|
10
|
Tributyltin Inhibits Neural Induction of Human Induced Pluripotent Stem Cells. Sci Rep 2018; 8:12155. [PMID: 30108368 PMCID: PMC6092327 DOI: 10.1038/s41598-018-30615-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Tributyltin (TBT), one of the organotin compounds, is a well-known environmental pollutant. In our recent study, we reported that TBT induces mitochondrial dysfunction, in human-induced pluripotent stem cells (iPSCs) through the degradation of mitofusin1 (Mfn1), which is a mitochondrial fusion factor. However, the effect of TBT toxicity on the developmental process of iPSCs was not clear. The present study examined the effect of TBT on the differentiation of iPSCs into the ectodermal, mesodermal, and endodermal germ layers. We found that exposure to nanomolar concentration of TBT (50 nM) selectively inhibited the induction of iPSCs into the ectoderm, which is the first step in neurogenesis. We further assessed the effect of TBT on neural differentiation and found that it reduced the expression of several neural differentiation marker genes, which were also downregulated by Mfn1 knockdown in iPSCs. Taken together, these results indicate that TBT induces developmental neurotoxicity via Mfn1-mediated mitochondrial dysfunction in iPSCs.
Collapse
|
11
|
Li G, He Y, Yao J, Huang C, Song X, Deng Y, Xie S, Ren J, Jin M, Liu H. Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol Rep 2016; 36:3504-3512. [PMID: 27748898 DOI: 10.3892/or.2016.5166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
Abstract
Angelicin is a member of a well-known class of chemical photosensitizes that have anticancer proper-ties in several cancer cell lines. However, the effects and the potential underlying mechanisms of angelicin action on human lung cancer cells remain unclear. Here, we report that angelicin has an essential role in inhibiting human lung carcinoma growth and metastasis. We found that angelicin markedly induced cell apoptosis and arrested the cell cycle in vitro. Angelicin also inhibited the migration of non-small cell lung cancer (NSCLC) A549 cells in a Transwell assay in a dose-dependent manner. In addition, after angelicin treatment, the expression levels of Bax, cleaved caspase-3 and cleaved caspase-9 were increased, and Bcl-2 expression was decreased. Moreover, our results indicate that angelicin inhibits NSCLC growth not only by downregulating cyclin B1, cyclin E1 and Cdc2, which are related to the cell cycle, but also by reducing MMP2 and MMP9 and increasing E-cadherin expression levels. Furthermore, extracellular signal-regulated kinase (ERK)1/2 and c-Jun NH2-terminal protein kinase (JNK)1/2 phosphorylation increased in parallel with the angelicin treatments. The inhibition of ERK1/2 and JNK1/2 by specific inhibitors significantly abrogated angelicin-induced cell apoptosis, cell cycle arrest and migration inhibition. We established in vivo A549 cell transplant and metastasis models and found that angelicin exerted a significant inhibitory effect on A549 cell growth and lung metastasis. Overall, our results suggested that angelicin is able to inhibit NSCLC A549 cell growth and metastasis by targeting ERK and JNK signaling, which demonstrates potential for NSCLC therapy.
Collapse
Affiliation(s)
- Guangcai Li
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yuan He
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Jun Yao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Chuying Huang
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xiusheng Song
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yan Deng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Sheng Xie
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Jie Ren
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Meng Jin
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Huiguo Liu
- Department of Respiratory Diseases, Tongji Hospital, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
12
|
Hirata N, Yamada S, Asanagi M, Sekino Y, Kanda Y. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells. Biochem Biophys Res Commun 2016; 470:300-305. [PMID: 26774337 DOI: 10.1016/j.bbrc.2016.01.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 01/01/2023]
Abstract
Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Japan
| | - Miki Asanagi
- Division of Pharmacology, National Institute of Health Sciences, Japan; Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Japan.
| |
Collapse
|