1
|
Zhou M, Jiang Q, Wang Q, Pan S, Chen B, Li L, Wang L, Zhou X. Exosome-transmitted circ_0004664 suppresses the migration and invasion of cadmium-transformed human bronchial epithelial cells by regulating PTEN expression via miR-942-5p. Chem Biol Interact 2024; 403:111221. [PMID: 39233264 DOI: 10.1016/j.cbi.2024.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Exosomes play a crucial role in regulating extracellular communication between normal and cancer cells within the tumor microenvironment, thereby affecting tumor progression through their cargo molecules. However, the specific impact of exosomal circular RNAs (circRNAs) on the development of cadmium-induced carcinogenesis remains unclear. To address this, we investigated whether exosomes derived from normal human bronchial epithelial BEAS-2B (N-B2B) cells could transmit circRNA to cadmium-transformed BEAS-2B (Cd-B2B) cells and the potential effects on Cd-B2B cells. Our findings demonstrated a significant downregulation of circ_0004664 in Cd-B2B cells compared to N-B2B cells (P < 0.01). Overexpression of circ_0004664 in Cd-B2B cells led to a significant inhibition of cell migration and invasion (P < 0.01 or P < 0.05). Furthermore, N-B2B cells could transfer circ_0004664 into recipient Cd-B2B cells via exosomes, subsequently inhibiting cell migration and invasion (P < 0.05 or P < 0.01). Mechanistic investigations revealed that exosomal circ_0004664 functioned as a competitive endogenous RNA for miR-942-5p, resulting in an upregulation of PTEN (P < 0.05). Our study highlights the involvement of exosomal circ_0004664 in cell-cell communication during cadmium carcinogenesis, providing a novel insight into the role of exosomal circRNA in this process.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qi Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Biyun Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lujiao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
2
|
Wan W, Zhang C, Zhang Q, Hua Z, Li N, Ma M, Shen H, Wang Z. Exploring the Mechanisms of Yishen Tongluo Decoction on Repairing DNA Damage in Mouse Spermatogonia Cells Based on Whole Transcriptome Sequencing. Am J Mens Health 2024; 18:15579883241246908. [PMID: 38725193 PMCID: PMC11084988 DOI: 10.1177/15579883241246908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
The aim of this study was to investigate the potential mechanism through which Yishen Tongluo decoction (YSTL) repairs DNA damage caused by benzo(a)pyrene diol epoxide (BPDE) in mouse spermatocytes (GC-2). The GC-2 cells were divided randomly into the control group, BPDE group, and low-, medium-, and high-dose YSTL groups of YSTL decoction. A comet assay was used to detect the DNA fragment index (DFI) of cells in each group. Based on the DFI results, whole transcriptome sequencing was conducted, followed by trend analysis, gene ontology (GO) enrichment analysis, kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and ceRNA network analysis. Compared with the control group, the BPDE group reported a significant increase in the DNA fragmentation index (DFI) (p < .05). Compared with the BPDE group, the low-, high- and medium-dose YSTL groups had a significantly reduced DFI (p < .05). Whole-transcriptome sequencing revealed seven differentially expressed circRNAs, 203 differentially expressed miRNAs, and 3,662 differentially expressed mRNAs between the control group and the BPDE group. There was a total of 12 differentially expressed circRNAs, 204 miRNAs, and 2150 mRNAs between the BPDE group and the traditional Chinese medicine group. The pathways involved include DNA repair pathway, nucleotide excision repair pathway, base excision repair pathway, etc. The ceRNA network reported that Hmga2 was the core protein involved, novel_cir_000117 and mmu-miR-466c-3p were located upstream of Hmga2, and they were regulatory factors associated with Hmga2. Finally, we conclude that YSTL decoction may repair sperm DNA damage caused by BPDE through the novel_cir_000117-mmu-miR-466c-3p-Hmga2 pathway.
Collapse
Affiliation(s)
- Wenxi Wan
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenming Zhang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Zhang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong Hua
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ninghua Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Miaomiao Ma
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huiyuan Shen
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- Department of Andrology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Letelier P, Saldías R, Loren P, Riquelme I, Guzmán N. MicroRNAs as Potential Biomarkers of Environmental Exposure to Polycyclic Aromatic Hydrocarbons and Their Link with Inflammation and Lung Cancer. Int J Mol Sci 2023; 24:16984. [PMID: 38069307 PMCID: PMC10707120 DOI: 10.3390/ijms242316984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to atmospheric air pollution containing volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) has been shown to be a risk factor in the induction of lung inflammation and the initiation and progression of lung cancer. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules of ~20-22 nucleotides that regulate different physiological processes, and their altered expression is implicated in various pathophysiological conditions. Recent studies have shown that the regulation of gene expression of miRNAs can be affected in diseases associated with outdoor air pollution, meaning they could also be useful as biomarkers of exposure to environmental pollution. In this article, we review the published evidence on miRNAs in relation to exposure to PAH pollution and discuss the possible mechanisms that may link these compounds with the expression of miRNAs.
Collapse
Affiliation(s)
- Pablo Letelier
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Rolando Saldías
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Neftalí Guzmán
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| |
Collapse
|
4
|
Qiu M, Zhang N, Yao S, Zhou H, Chen X, Jia Y, Zhang H, Li X, Jiang Y. DNMT3A-mediated high expression of circ_0057504 promotes benzo[a]pyrene-induced DNA damage via the NONO-SFPQ complex in human bronchial epithelial cells. ENVIRONMENT INTERNATIONAL 2022; 170:107627. [PMID: 36399942 DOI: 10.1016/j.envint.2022.107627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Benzo[a]pyrene (B[a]P) is a class I carcinogen and hazardous environmental pollutant with genetic toxicity. Understanding the molecular mechanisms underlying genetic deterioration and epigenetic alterations induced by environmental contaminants may contribute to the early detection and prevention of cancer. However, the role and regulatory mechanisms of circular RNAs (circRNAs) in the B[a]P-induced DNA damage response (DDR) have not been elucidated. In this study, human bronchial epithelial cell lines (16HBE and BEAS-2B) were exposed to various concentrations of B[a]P, and BALB/c mice were treated with B[a]P intranasally. B[a]P exposure was found to induce DNA damage and upregulate circular RNA hsa_circ_0057504 (circ_0057504) expression in vitro and in vivo. In addition, B[a]P upregulated TMEM194B mRNA and circ_0057504 expression through inhibition of DNA methyltransferase 3 alpha (DNMT3A) expression in vitro. Modulation (overexpression or knockdown) of circ_0057504 expression levels using a lentiviral system in human bronchial epithelial cells revealed that circ_0057504 promoted B[a]P-induced DNA damage. RNA pull-down and western blot assays showed that circ_0057504 interacted with non-POU domain-containing octamer-binding (NONO) and splicing factor proline and glutamine rich (SFPQ) proteins and regulated formation of the NONO-SFPQ protein complex. Thus, our findings indicate that circ_0057504 acts as a novel regulator of DNA damage in human bronchial epithelial cells exposed to B[a]P. The current study reveals novel insights into the role of circRNAs in the regulation of genetic damage, and describes the effect and regulatory mechanisms of circ_0057504 on B[a]P genotoxicity.
Collapse
Affiliation(s)
- Miaoyun Qiu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Nan Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Shuwei Yao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xintong Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
5
|
Du T, Yi S, Wang Y, Zhao Q, Ma P, Jiang W. Circular RNA_0120376 regulates microRNA-148b-3 and centrosomal protein 55 to promote non-small cell lung cancer development. Bioengineered 2022; 13:11844-11855. [PMID: 35549631 PMCID: PMC9275942 DOI: 10.1080/21655979.2022.2052647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures that are vital in regulating diverse pathological processes. This work is aimed to investigate the role of circ_0120376 in non-small cell lung cancer (NSCLC). Circ_0120376, microRNA (miR)-148b-3p, and centrosomal protein 55 (CEP55) mRNA expression in NSCLC tissues and cells were determined using qRT-PCR. The influences of circ_0120376 and miR-148b-3p on the proliferation of NSCLC cell lines were analyzed by CCK-8 and colony formation assays. Apoptosis was analyzed by flow cytometry. Cell migration and invasion were analyzed using the Transwell experiment. Binding relationships between circ_0120376 and miR-148b-3p and between miR-148b-3p and CEP55 3'UTR were investigated using the dual-luciferase reporter experiment and the RIP experiment. Western blot was conducted to analyze the regulatory effect of circ_0120376 and miR-148b-3p on CEP55 expression. We found that circ_0120376 was markedly overexpressed in NSCLC, and its overexpression was positively associated with increased T stage and lymph node metastasis of the patients. Functional experiments unveiled that circ_0120376 enhanced the proliferation, migration and invasion of NSCLC cells and impeded apoptosis, while knocking down circ_0120376 remarkably suppressed the malignant features of NSCLC cells mentioned above. Circ_0120376 could adsorb miR-148b-3p to reduce miR-148b-3p expression, and circ_0120376 could increase CEP55 expression via adsorbing miR-148b-3p. In summary, circ_0120376 contributes to the malignancy of NSCLC cells through a ceRNA mechanism via regulating miR-148b-3p/CEP55 axis. Circ_0120376 is likely to be a potential diagnostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Tiantian Du
- Department of Respiratory and Critical Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Shenni Yi
- Department of Respiratory and Critical Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuanyuan Wang
- Department of Respiratory and Critical Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Qiang Zhao
- Chinese Academy of Sciences, Beijing, China
| | - Ping Ma
- Department of Respiratory and Critical Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Wei Jiang
- Department of Respiratory and Critical Medicine, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
6
|
The Preventive Effect of Cardiac Sympathetic Denervation Induced by 6-OHDA on Myocardial Ischemia-Reperfusion Injury: The Changes of lncRNA/circRNAs-miRNA-mRNA Network of the Upper Thoracic Spinal Cord in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2492286. [PMID: 34880964 PMCID: PMC8648479 DOI: 10.1155/2021/2492286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation (SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia–reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI. Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs, 165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11 downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism, mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides new targets for MIRI.
Collapse
|
7
|
Zhou M, Li L, Chen B, Pan S, Tu W, Hou Y, Chen P, Hernández RR, Zhou X. Circ-SHPRH suppresses cadmium-induced transformation of human bronchial epithelial cells by regulating QKI expression via miR-224-5p. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112378. [PMID: 34082244 DOI: 10.1016/j.ecoenv.2021.112378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Circular RNAs (circRNAs) have been demonstrated to play critical roles in the pathogenesis of human cancers and carcinogenesis of several environmental pollutants. Nevertheless, the function of circRNAs in cadmium carcinogenesis is unclear. circ-SHPRH is down-regulated in many cancers including non-small cell lung cancer. In our present study, during cadmium-induced transformation of human bronchial epithelial BEAS-2B cells, epithelial-mesenchymal transition (EMT) was induced. Meanwhile, at the middle and late stages of cell transformation, cadmium down-regulated the expression of circ-SHPRH, as well as QKI, a tumor suppressor protein known to prevent the proliferation and EMT during progression of human cancers, compared with passage-matched control BEAS-2B cells. Overexpression of circ-SHPRH in cadmium-transformed BEAS-2B cells promoted the expression of QKI and significantly inhibited proliferation, EMT, invasion, migration and anchorage-independent growth in soft agar of the cells. Mechanistic studies showed that circ-SHPRH functioned as a sponge of miR-224-5p to regulate QKI expression. Interestingly, QKI and circ-SHPRH could form a positive-feedback loop that perpetuated circ-SHPRH/miR-224-5p/QKI axis. Collectively, our results demonstrated that circ-SHPRH inhibited cadmium-induced transformation of BEAS-2B cells through sponging miR-224-5p to regulate QKI expression under cadmium treatment. Our study uncovered a novel molecular mechanism involved in circRNAs in the development of lung cancer due to cadmium exposure.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Biyun Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Wei Tu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Yaxuan Hou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Panpan Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Rodolfo Rochín Hernández
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
8
|
Zeng H, Li M, Hua Q, Liu Y, Shao Y, Diao Q, Ling Y, Zhang H, Qiu M, Zhu J, Li X, Zhang R, Jiang Y. Circular RNA circ_Cabin1 promotes DNA damage in multiple mouse organs via inhibition of non-homologous end-joining repair upon PM 2.5 exposure. Arch Toxicol 2021; 95:3235-3251. [PMID: 34402960 DOI: 10.1007/s00204-021-03138-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022]
Abstract
Fine particulate matter (PM2.5) has been shown to induce DNA damage. Circular RNAs (circRNAs) have been implicated in various disease processes related to environmental chemical exposure. However, the role of circRNAs in the regulation of DNA damage response (DDR) after PM2.5 exposure remains unclear. In this study, male ICR mice were exposed to PM2.5 at a daily mean concentration of 382.18 μg/m3 for 3 months in an enriched-ambient PM2.5 exposure system in Shijiazhuang, China, and PM2.5 collected form Shijiazhuang was applied to RAW264.7 cells at 100 µg/mL for 48 h. The results indicated that exposure to PM2.5 induced histopathological changes and DNA damage in the lung, kidney and spleen of male ICR mice, and led to decreased cell viability, increased LDH activity and DNA damage in RAW264.7 cells. Furthermore, circ_Cabin1 expression was significantly upregulated in multiple mouse organs as well as in RAW264.7 cells upon exposure to PM2.5. PM2.5 exposure also resulted in impairment of non-homologous end joining (NHEJ) repair via the downregulation of Lig4 or Dclre1c expression in vivo and in vitro. Importantly, circ_Cabin1 promoted PM2.5-induced DNA damage via inhibiting of NHEJ repair. Moreover, the expression of circ_Cabin1 and Lig4 or Dclre1c was strongly correlated in multiple mouse organs, as well as in the blood. In summary, our study provides a new perspective on circRNAs in the regulation of DDR after environmental chemical exposure.
Collapse
Affiliation(s)
- Huixian Zeng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Qiuhan Hua
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Qinqin Diao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Xun Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
9
|
Xiao M, Cui S, Zhang L, Yu T, Zhang G, Li L, Cai Y, Jin C, Yang J, Wu S, Li Q, Lu X. Benzo[a]pyrene diol epoxide-induced transformed cells identify the significance of hsa_circ_0051488, a ERCC1-derived circular RNA in pulmonary squamous cell carcinoma. Mol Carcinog 2021; 60:684-701. [PMID: 34320692 DOI: 10.1002/mc.23335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 07/14/2021] [Indexed: 11/07/2022]
Abstract
ERCC1 is a gene for repairing DNA damage whose function is related to carcinogenic-induced tumorigenesis and the effectiveness of platinum therapies. Circular RNAs (circRNAs) are products of posttranscriptional regulation with pleiotropic effects on the pathogenesis of lung cancer. We aim to identify that specific circRNAs derived from ERCC1 can regulate key biological processes involved in the development of lung cancer. We performed bioinformatics analysis, in vitro experiments, and analyzed clinical samples, to determine the biological features of a certain ERCC1-derived circRNA termed as hsa_circ_0051488 in benzo[a]pyrene diol epoxide-induced malignant transformed cell and lung cancer cell. The well-established model of transformed cells provided an ideal platform for analyzing the molecular characteristics of this circRNA in the malignant transformation of lung epithelial cell, which supports that hsa_circ_0051488 functions in the onset and growth of lung squamous cell carcinoma (LUSC). Further analysis indicates that the absence of hsa_circ_0051488 promoted the proliferation of cells with the malignant phenotype. Extensive experiments confirm that hsa_circ_0051488 is present in the cytoplasm and functioned as a competing endogenous RNA. In particular, hsa_circ_0051488 binds to mir-6717-5p, thereby modulating the expression of SATB2 gene, a lung cancer suppressor. Furthermore, our in silico experiments indicate that SATB2 can inhibit multiple tumor pathways and its expression positively correlated with the tumor suppressor gene CRMP1. These findings suggest a possible regulatory mechanism of hsa_circ_0051488 in LUSC, and that the newly discovered hsa_circ_0051488/miR-6717-5p/SATB2 axis may be a potential route for therapeutic intervention of LUSC.
Collapse
Affiliation(s)
- Mingyang Xiao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Su Cui
- Department of Thoracic Surgery Ward 2, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Guopei Zhang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Liuli Li
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Pan S, Wang Q, Zhang Q, Zhou M, Li L, Zhou X. A novel circular RNA, circPUS7 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating Kirsten rat sarcoma viral oncogene homolog expression via sponging miR-770. Metallomics 2021; 13:6316787. [PMID: 34232319 DOI: 10.1093/mtomcs/mfab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022]
Abstract
Cadmium is a human carcinogen, which induces cancers by mechanisms that are not fully understood. Induction of oxidative stress, apoptosis resistance, genotoxic effects, and epigenetic modulations have been indicated to regulate cadmium-induced carcinogenesis. Circular RNAs are epigenetic regulators that have been recognized to play essential roles in carcinogenesis. Yet, the involvement of circular RNAs in cadmium carcinogenesis remains unclear. In this study, a novel circular RNA, circPUS7, was identified and described for the first time. CircPUS7 was significantly upregulated at week 12, 16, and 20 during the cadmium-induced transformation of human bronchial epithelial BEAS-2B cells. Knockdown of circPUS7 in cadmium-transformed BEAS-2B (T-BEAS-2B) cells significantly attenuated transformation markers including cell proliferation, migration, invasion, and anchorage-independent growth. Moreover, circPUS7 promoted malignant phenotypes by competitively binding with miR-770. Overexpression of miR-770 significantly inhibited the transformation properties of T-BEAS-2B cells while inhibition of miR-770 potently reversed the inhibitory effects of circPUS7 knockdown in proliferation, migration, invasion, and anchorage-independent growth of the T-BEAS-2B cells. Kirsten rat sarcoma viral oncogene homolog (KRAS), which was increased synchronically with circPUS7 during cadmium-induced cell transformation, was regulated by circPUS7 through sponging miR-770. In summary, our findings demonstrate that circPUS7 promotes cadmium-induced cell transformation through sponging miR-770 to regulate KRAS expression, providing a new perspective with the involvement of circular RNAs to further understand the mechanisms of cadmium carcinogenesis.
Collapse
Affiliation(s)
- Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| |
Collapse
|
11
|
Exosomes derived from circRNA Rtn4-modified BMSCs attenuate TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging miR-146a. Biosci Rep 2021; 40:224122. [PMID: 32400849 PMCID: PMC7251325 DOI: 10.1042/bsr20193436] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the most common and complex skeletal disorder worldwide. Exosomes secreted by bone marrow-derived mesenchymal stromal cells (BMSCs) are considered as an ideal seed source for bone tissue regeneration. However, the role of exosomes secreted by BMSCs (BMSCs-Exos) in osteoporosis and its underlying mechanisms remain unclear. In the present study, the expression of microRNA (miRNA)-146a and circular RNA (circRNA) Rtn4 (circ-Rtn4) was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), and their protein expression was determined by Western blotting. Enzyme-linked immunosorbent assay was performed to detect caspase-3 activity. Cell viability and apoptosis were assessed using 3-(4,5-Dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. Luciferase reporter assay was exploited for target validation. Results showed that tumor necrosis factor-α (TNF-α) dose-dependently increased miR-146a expression, inhibited cell viability, and promoted cell apoptosis, as indicated by increased caspase-3, cleaved caspase-3, and Bcl-2-associated X protein (Bax) expression as well as caspase-3 activity. However, miR-146a silencing or co-culture with BMSCs-Exos blocked these effects. Moreover, co-culture with exosomes-derived from circ-Rtn4-modified BMSCs (Rtn4-Exos) attenuated TNF-α-induced cytotoxicity and apoptosis in MC3T3-E1 cells, as evidenced by the decrease in caspase-3, cleaved caspase-3, and Bax protein expression and caspase-3 activity. In addition, miR-146a was identified as a target of circ-Rtn4, and Rtn4-Exos exerted their function in TNF-α-treated MC3T3-E1 cells by sponging miR-146a. Hence, our findings suggested that Rtn4-Exos attenuated TNF-α-induced cytotoxicity and apoptosis in murine MC3T3-E1 cells by sponging miR-146a, suggesting that Rtn4-Exos may serve as novel candidates for treating osteoporosis.
Collapse
|
12
|
Yang W, Zhao J, Zhao Y, Li W, Zhao L, Ren Y, Ou R, Xu Y. Hsa_circ_0048179 attenuates free fatty acid-induced steatosis via hsa_circ_0048179/miR-188-3p/GPX4 signaling. Aging (Albany NY) 2020; 12:23996-24008. [PMID: 33221744 PMCID: PMC7762518 DOI: 10.18632/aging.104081] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Although circular RNAs (circRNAs) are known to play key roles in non-alcoholic fatty liver disease, much about their targets and mechanisms remains unknown. We therefore investigated the actions and mechanisms of hsa_circ_0048179 in an in vitro model of NAFLD. HepG2 cells were exposed to oleate/palmitate (2:1 ratio) for 24 h to induce intracellular lipid accumulation. Using CCK-8 assays, flow cytometry, fluorescence microscopy, western blotting, RT-qPCR, and Oil red O staining, we found that oleate/palmitate treatment reduced cell viability while increasing apoptosis and lipid accumulation in HepG2 cells. Levels of the antioxidant enzyme GPX4 were decreased in oleate/palmitate-treated HepG2 cells, and there were corresponding increases in reactive oxygen species and damage to mitochondrial cristae. Levels of hsa_circ_0048179 expression were also suppressed by oleate/palmitate treatment, and GPX4 levels were markedly increased in HepG2 cells following transfection with hsa_circ_0048179. Analysis of its mechanism revealed that hsa_circ_0048179 upregulated GPX4 levels by acting as a competitive “sponge” of miR-188-3p and that hsa_circ_0048179 attenuated oleate/palmitate-induced lipid accumulation in HepG2 cells by sponging miR-188-3p. Collectively, our findings suggest that hsa_circ_0048179 may play a key role in the pathogenesis of steatosis and may thus be a useful target for drug development.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinduo Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenfeng Li
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - Rongying Ou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Chen X, Xie X, Zhou W. CircCFL1/MiR-107 Axis Targeting HMGB1 Promotes the Malignant Progression of Diffuse Large B-Cell Lymphoma Tumors. Cancer Manag Res 2020; 12:9351-9362. [PMID: 33061624 PMCID: PMC7533230 DOI: 10.2147/cmar.s263222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 11/23/2022] Open
Abstract
Objective The pathogenesis of diffuse large B-cell lymphoma (DLBCL) has not yet been fully elucidated. An increasing number of studies have shown that circular RNAs (circRNAs) play an important role in tumorigenesis and development. The aim of this study was to investigate the effect of CircCFL1 on the malignant progression of DLBCL. Methods RT-qPCR was used to detect the expression levels of CircCFL1 and miR-107. A dual-luciferase reporter gene experiment was conducted to verify that CircCFL1 targeted miR-107 and the miR-107 target gene HMGB1. BrdU, transwell, and MTT tests were performed to detect cell invasion and proliferation. Western blot analysis was used to detect the phosphorylation of proteins. Xenograft models were established to confirm the effect of CircCFL1 on DLBCL tumor growth in vivo. Results The expression of CircCFL1 in cells transfected with the CircCFL1 overexpression vector was higher than that in the control group. After overexpressing CircCFL1, the expression of miR-107 in cells decreased significantly, and the protein level of HMGB1 increased. The dual-luciferase reporter gene experiment showed that CircCFL1 directly bound to miR-107 and reduced the inhibition of the target gene HMGB1. After CircCFL1 was overexpressed, cell migration and proliferation were enhanced. The tumor volume and weight in the lentivirus CircCFL1 group were higher than those in the lentivirus NC group. Conclusion Results showed that the circRNA CircCFL1 could regulate the expression of HMGB1 through miR-107 to promote the proliferation and migration of DLBCL.
Collapse
Affiliation(s)
- Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510080, Guangdong, People's Republic of China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, People's Republic of China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510080, Guangdong, People's Republic of China
| |
Collapse
|
14
|
Circular RNA hsa_circ_0002052 promotes osteosarcoma via modulating miR-382/STX6 axis. Hum Cell 2020; 33:810-818. [PMID: 32274658 DOI: 10.1007/s13577-020-00335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) exert pivotal effects on regulating the progression of osteosarcoma (OS). It was found through microarray analysis that circ-0002052 is abnormally expressed in OS, but the role of circ-0002052 in OS remains obscure. The results of this research manifested that relative to that in non-tumor controls, circ-0002052 level was raised in OS tissues. Up-regulated circ-0002052 was associated with advanced stage, tumor size, and metastasis. Additionally, circ-0002052 elevation indicated a low survival rate in OS patients and silencing of circ-0002052 suppressed proliferation, migration, and invasion of OS cells. It was proved that circ-0002052 sponged miR-382 and stimulated STX6 expression, thus activating Wnt/β-catenin. The function of circ-0002052 reduction in OS cells was effectively reversed by miR-382 suppression. To sum up, it can be concluded that circ-0002052, functioning as a sponge for miR-382, enhances the activation of Wnt/β-catenin mediated by STX6 to stimulate the progression of OS, and circ-0002052 may be an underlying treatment target and a biomarker for prognosis of osteosarcoma.
Collapse
|
15
|
Xu Z, Xiang W, Chen W, Sun Y, Qin F, Wei J, Yuan L, Zheng L, Li S. Circ-IGF1R inhibits cell invasion and migration in non-small cell lung cancer. Thorac Cancer 2020; 11:875-887. [PMID: 32107851 PMCID: PMC7113055 DOI: 10.1111/1759-7714.13329] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA) is a novel molecular marker and target candidate that is closely associated with tumor invasion and migration. The mechanism of action of hsa_circ_0005035 (circ-IGF1R) in non-small cell lung cancer remains unclear. In this study, we aimed to study the mechanism of action of circ-IGF1R in lung cancer. METHODS We screened circ-IGF1R, one of the most notable differential expressions, from the Gene Expression Omnibus database, GSE104854, for further research. The expression level of circ-IGF1R was examined using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in five different lung cancer cell lines and 50 pairs of lung cancer and adjacent tissues. Wound-healing and Transwell assays were used for verifying the biological function of circ-IGF1R. The effect of overexpressing circ-IGF1R on the transcriptome of whole lung cancer cells was explored in lung cancer cell lines using RNA-seq. RESULTS The expression level of circ-IGF1R was notably lower in lung cancer tissues and lung cancer cell lines than in the adjacent normal tissues and cells (P < 0.0001). In addition, the expression level of circ-IGF1R was associated with larger tumors (T2/T3/T4) and lymph node metastasis (N1/ N2/N3) (P < 0.05). The overexpression of circ-IGF1R significantly inhibited the invasion and migration of the lung cancer cells. The potential network of circ-IGF1R-miR-1270-VANGL2 was preliminarily determined, and the expression patterns of miR-1270 and VANGL2 were verified in lung cancer cell lines. CONCLUSION Circ-IGF1R may inhibit lung cancer invasion and migration through a potential network of circ-IGF1R-miR-1270-VANGL2.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Xiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjie Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangbo Wei
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Department of Anesthesia Catheter Room, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Li D, Li Z, Yang Y, Zeng X, Li Y, Du X, Zhu X. Circular RNAs as biomarkers and therapeutic targets in environmental chemical exposure-related diseases. ENVIRONMENTAL RESEARCH 2020; 180:108825. [PMID: 31683121 DOI: 10.1016/j.envres.2019.108825] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Chemical contamination in the environment is known to cause abnormal circular RNA (circRNA) expression through multiple exposure routes; yet, the underlying molecular mechanisms remain unclear. Non-coding RNAs (ncRNAs), especially circRNAs, play important roles in epigenetic regulation and disease pathogenesis; however, few studies have examined the function of circRNAs in chemical contamination-induced diseases. CircRNAs are covalently closed continuous loops that do not possess 5' and 3' ends, increasing their structural stability and limiting degradation by exoribonucleases. In addition, environmental chemical exposure-related diseases are often accompanied by aberrant expression of specific circRNAs and those circRNAs are often detected in tissues and body fluids. Based on these characteristics, circRNAs may serve as candidate biomarkers for the diagnosis of diseases related to environmental chemical exposure. Here, we review the generation and function of circRNAs, and the possible molecular mechanisms underlying the regulation of environmental chemical exposure-related disorders by circRNAs. This is the first comprehensive review of the relationship between environmental chemical exposure and circRNAs in chemical exposure-induced diseases.
Collapse
Affiliation(s)
- Dong Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Zeqin Li
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Yan Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Youping Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Xiaohua Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| |
Collapse
|
17
|
Jiang H, Wu F, Jiang N, Gao J, Zhang J. Reconstruction and analysis of competitive endogenous RNA network reveals regulatory role of long non‑coding RNAs in hepatic fibrosis. Mol Med Rep 2019; 20:4091-4100. [PMID: 31545470 PMCID: PMC6797987 DOI: 10.3892/mmr.2019.10682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis (HF), one of the leading global health problems, is defined as aberrant and excess production of extracellular matrix components. The pathogenesis of HF is complex and poorly understood. Long non‑coding RNAs (LncRNAs) can interact with microRNAs (miRNAs) as competing endogenous RNAs (ceRNAs) to regulate the expression of target genes, which play a significant role in the initiation and progression of HF. In the present study, the LncRNA‑associated ceRNA network was reconstructed based on LncRNA, miRNA and mRNA expression profiles that were downloaded from National Center for Biotechnology Information Gene Expression Omnibus. Bioinformatics assessments including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed with Database for Annotation, Visualization and Integration Discovery. The ceRNA network was composed of 220 LncRNA nodes, 24 miRNA nodes, 164 mRNA nodes and 1,149 edges. Functional assays identified that a total of 338 GO terms and 25 pathways, including regulation of cytokine and collagen, and the transforming growth factor‑β and Toll‑like receptor signaling pathways, were significantly enriched. In addition, 4 LncRNAs (NONMMUT036242, XR_877072, XR_378619 and XR_378418) were highly related to HF and thereby chosen as key LncRNAs. The present study uncovered a ceRNA network that could further the understanding of the mechanisms underlying HF development and provide potential novel markers for clinical diagnosis and targets for treatment.
Collapse
Affiliation(s)
- Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Furong Wu
- Department of Pharmacy, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Nannan Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jiafu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
18
|
Omar HA, El‐Serafi AT, Hersi F, Arafa EA, Zaher DM, Madkour M, Arab HH, Tolba MF. Immunomodulatory MicroRNAs in cancer: targeting immune checkpoints and the tumor microenvironment. FEBS J 2019; 286:3540-3557. [DOI: 10.1111/febs.15000] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/29/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Hany A. Omar
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Pharmacology, Faculty of Pharmacy Beni‐Suef University Egypt
| | - Ahmed T. El‐Serafi
- Sharjah Institute for Medical Research University of Sharjah UAE
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Suez Canal University Ismailia Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - El‐Shaimaa A. Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences Ajman University UAE
| | - Dana M. Zaher
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research University of Sharjah UAE
| | - Hany H. Arab
- Department of Biochemistry, Faculty of Pharmacy Cairo University Egypt
- Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy Taif University Saudi Arabia
| | - Mai F. Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Ain Shams University Cairo Egypt
- Biology Department, School of Sciences and Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|