1
|
Begum R, Das A, Alam MJ, Sultana GNN. Insights Into Genetic Variations of the OCT1 Gene in Metformin Poor Responders Among Bangladeshi Type 2 Diabetic Patients. Adv Pharmacol Pharm Sci 2025; 2025:8568658. [PMID: 39949862 PMCID: PMC11824854 DOI: 10.1155/adpp/8568658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025] Open
Abstract
Metformin is the most widely prescribed drug for the treatment of Type 2 diabetes mellitus (T2DM), but its response varies from person to person. This study aims to analyze the complete mutation spectrum of the OCT1 gene in metformin poor responders and to explore the potential pathogenic effects of the identified mutations. Clinical features of 56 Bangladeshi T2DM patients (who showed altered response to metformin) were analyzed, and genomic DNA was extracted from their blood samples. Subsequently, the entire exons (1-11), along with flanking introns of the OCT1 gene were amplified and sequenced. Molecular consequences of the identified mutations on OCT1 protein activity were determined through in silico analyses. In this study, 29 mutations of the OCT1 gene were identified; among which 5 mutations (c.412-86G>T, c.970G>C, c.1386-3088_1386-3083delGAATCA, c.1498+66G>T, and c.1653C>A) were novel. It was found that nsSNPs c.181C>T, c.1022C>T, c.493G>T, c.1207A>G, and c.970G>C (novel) as well as frameshift deletions have potential deleterious effects on OCT1 protein stability and function. Some of these mutations also cause alternative splicing, as per the HSF tool. In addition, alteration of interatomic bonding in the OCT1 protein due to two high-risk mutations (c.181C>T and c.1022C>T) was found from web-based analysis. The mutations, as mentioned earlier, are the most probable causative factor of decreased metformin effectiveness and adverse side effects in T2DM patients who are poor responders. Understanding the OCT1 gene variations of patients can help tailor treatment strategies for optimal metformin response or identify alternative medications.
Collapse
Affiliation(s)
- Rokeya Begum
- Genetic Engineering and Biotechnology Research Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Arindita Das
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Jahangir Alam
- Department of Biochemistry, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Gazi Nurun Nahar Sultana
- Genetic Engineering and Biotechnology Research Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
2
|
Palmen R, Walton M, Wagner J. Pediatric flecainide pharmacogenomics: a roadmap to delivering precision-based care to pediatrics arrhythmias. Front Pharmacol 2024; 15:1477485. [PMID: 39741635 PMCID: PMC11686437 DOI: 10.3389/fphar.2024.1477485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Flecainide acetate is a Class 1c anti-arrhythmic with a potent sodium voltage gated channel blockade which is utilized for the second-line treatment of tachyarrhythmias in children and adults. Given its narrow therapeutic index, the individualization of drug therapy is of utmost importance for clinicians. Despite efforts to improve anti-arrhythmic drug therapy, there remain knowledge gaps regarding the impact of variation in the genes relevant to flecainide's disposition and response. This variability is compounded in developing children whose drug disposition and response pathways may remain immature. The purpose of this comprehensive review is to outline flecainide's disposition and response pathways while simultaneously highlighting opportunities for prospective investigation in the pediatric population.
Collapse
Affiliation(s)
- Ronald Palmen
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Mollie Walton
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Division of Cardiology, Kansas City, MO, United States
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, Kansas City, MO, United States
| | - Jonathan Wagner
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Division of Cardiology, Kansas City, MO, United States
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, Kansas City, MO, United States
| |
Collapse
|
3
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
4
|
Walton M, Wagner JB. Pediatric Beta Blocker Therapy: A Comprehensive Review of Development and Genetic Variation to Guide Precision-Based Therapy in Children, Adolescents, and Young Adults. Genes (Basel) 2024; 15:379. [PMID: 38540438 PMCID: PMC10969836 DOI: 10.3390/genes15030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 06/14/2024] Open
Abstract
Beta adrenergic receptor antagonists, known as beta blockers, are one of the most prescribed medications in both pediatric and adult cardiology. Unfortunately, most of these agents utilized in the pediatric clinical setting are prescribed off-label. Despite regulatory efforts aimed at increasing pediatric drug labeling, a majority of pediatric cardiovascular drug agents continue to lack pediatric-specific data to inform precision dosing for children, adolescents, and young adults. Adding to this complexity is the contribution of development (ontogeny) and genetic variation towards the variability in drug disposition and response. In the absence of current prospective trials, the purpose of this comprehensive review is to illustrate the current knowledge gaps regarding the key drivers of variability in beta blocker drug disposition and response and the opportunities for investigations that will lead to changes in pediatric drug labeling.
Collapse
Affiliation(s)
- Mollie Walton
- Ward Family Heart Center, Kansas City, MO 64108, USA
| | - Jonathan B. Wagner
- Ward Family Heart Center, Kansas City, MO 64108, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy, 2401 Gillham Road, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
5
|
Stanisławiak-Rudowicz J, Karbownik A, Szkutnik-Fiedler D, Otto F, Grabowski T, Wolc A, Grześkowiak E, Szałek E. Bidirectional pharmacokinetic drug interactions between olaparib and metformin. Cancer Chemother Pharmacol 2024; 93:79-88. [PMID: 37815561 PMCID: PMC10796410 DOI: 10.1007/s00280-023-04591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/10/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Olaparib is a PARP (poly-ADP-ribose polymerase) inhibitor used for maintenance therapy in BRCA-mutated cancers. Metformin is a first-choice drug used in the treatment of type 2 diabetes. Both drugs are commonly co-administered to oncologic patients with add-on type 2 diabetes mellitus. Olaparib is metabolized by the CYP3A4 enzyme, which may be inhibited by metformin through the Pregnane X Receptor. In vitro studies have shown that olaparib inhibits the following metformin transporters: OCT1, MATE1, and MATE2K. The aim of the study was to assess the influence of 'the perpetrator drug' on the pharmacokinetic (PK) parameters of 'the victim drug' after a single dose. To evaluate the effect, the AUC0→∞ (area under the curve) ratio was determined (the ratio between AUC0→∞ in the presence of the perpetrator and AUC0→∞ without the presence of the perpetrator). METHODS Male Wistar rats were assigned to three groups (eight animals in each group), which were orally administered: metformin and olaparib (IMET+OLA), vehiculum with metformin (IIMET), and vehiculum with olaparib (IIIOLA). Blood samples were collected after 24 h. HPLC was applied to measure the concentrations of olaparib and metformin. The PK parameters were calculated in a non-compartmental model. RESULTS Metformin did not affect the olaparib PK parameters. The AUC0→∞ IMET+OLA/IIIOLA ratio was 0.99. Olaparib significantly increased the metformin Cmax (by 177.8%), AUC0→t (by 159.8%), and AUC0→∞ (by 74.1%). The AUC0→∞ IMET+OLA/IIMET ratio was 1.74. CONCLUSIONS A single dose of metformin did not affect the PK parameters of olaparib, nor did it inhibit the olaparib metabolism, but olaparib significantly changed the metformin pharmacokinetics, which may be of clinical importance.
Collapse
Affiliation(s)
- Joanna Stanisławiak-Rudowicz
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
- Poznań University Clinical Hospital, Szamarzewskiego 84/86, 60-569, Poznań, Poland.
| | - Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Danuta Szkutnik-Fiedler
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Filip Otto
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Tomasz Grabowski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, M. Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Wolc
- Department of Animal Science, Iowa State University, 239E Kildee Hall, Ames, IA, 50011, USA
- Hy-Line International, 2583 240th Street, Dallas Center, IA, 50063, USA
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| |
Collapse
|
6
|
Degaga A, Sirgu S, Huri HZ, Sim MS, Kebede T, Tegene B, Loganadan NK, Engidawork E, Shibeshi W. Association of Met420del Variant of Metformin Transporter Gene SLC22A1 with Metformin Treatment Response in Ethiopian Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2023; 16:2523-2535. [PMID: 37641646 PMCID: PMC10460611 DOI: 10.2147/dmso.s426632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Objective This study aimed to evaluate whether the M420del variants of SLC22A1 (rs72552763) is associated with metformin treatment response in Ethiopian patients with type 2 diabetes mellitus (T2DM). Patients and Methods A prospective observational cohort study was conducted on 86 patients with T2DM who had been receiving metformin monotherapy for <1 year. Patients showing ≥0.5% reduction in HbA1c levels from baseline within 3 months and remained low for at least another 3 months were defined as responders while those patients with <0.5% reduction in HbA1c levels and/or those whom started a new class of glucose-lowering drug(s) because of unsatisfactory reduction were defined as non-responders. In addition, good glycemic control was observed when HbA1c ≤7.0%, and the above values were regarded as poor. Genotyping of rs72552763 SNP was performed using TaqMan® Drug Metabolism Enzyme Genotyping Assay and its association with metformin response and glycemic control were assessed by measuring the change in HbA1c and fasting blood glucose levels using Chi-square, logistic regression and Mann-Whitney U-test. Statistical significance was set at p <0.05. Results The minor allele frequency of the rs72552763 SNP of SLC22A1 was 9.3%. Metformin response was significantly higher in deletion_GAT (del_G) genotypes as compared to the wild-type GAT_GAT (G_G) genotypes. Furthermore, a significantly lower median treatment HbA1 level was found in del_G genotypes as compared to G_G genotypes. However, the association of rs72552763 with metformin response was not replicated at the allele level. In contrast, the minor del_allele was significantly associated with good glycemic control compared to the G_allele, though not replicated at del_G genotypes level. Conclusion This study demonstrated that metformin response was significantly higher in study participants with a heterozygous carrier of M420del variants of SLC22A1 as compared to the wild-type G_G genotypes after 3 months of treatment.
Collapse
Affiliation(s)
- Abraham Degaga
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Sisay Sirgu
- Department of Internal Medicine, Diabetes and Endocrinology Unit, Saint Paul Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Hasniza Zaman Huri
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Tedla Kebede
- Department of Internal Medicine, Diabetes and Endocrinology Unit, Addis Ababa University, Addis Ababa, Ethiopia
| | - Birhanemeskel Tegene
- Department of Microbiology, Saint Paul Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Di Magno L, Di Pastena F, Bordone R, Coni S, Canettieri G. The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers (Basel) 2022; 14:cancers14133220. [PMID: 35804992 PMCID: PMC9265089 DOI: 10.3390/cancers14133220] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biguanides are a family of antidiabetic drugs with documented anticancer properties in preclinical and clinical settings. Despite intensive investigation, how they exert their therapeutic effects is still debated. Many studies support the hypothesis that biguanides inhibit mitochondrial complex I, inducing energy stress and activating compensatory responses mediated by energy sensors. However, a major concern related to this “complex” model is that the therapeutic concentrations of biguanides found in the blood and tissues are much lower than the doses required to inhibit complex I, suggesting the involvement of additional mechanisms. This comprehensive review illustrates the current knowledge of pharmacokinetics, receptors, sensors, intracellular alterations, and the mechanism of action of biguanides in diabetes and cancer. The conditions of usage and variables affecting the response to these drugs, the effect on the immune system and microbiota, as well as the results from the most relevant clinical trials in cancer are also discussed.
Collapse
Affiliation(s)
- Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Fiorella Di Pastena
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Rosa Bordone
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (L.D.M.); (F.D.P.); (R.B.); (S.C.)
- Istituto Pasteur—Fondazione Cenci—Bolognetti, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
8
|
Abstract
Medications are a common cause of AKI especially for patients admitted to hospital wards and the intensive care unit. Although drug-related kidney injury occurs through different mechanisms, this review will focus on three specific types of tubulointerstitial injury. Direct acute tubular injury develops from several medications, which are toxic to various cellular functions. Their excretory pathways through the proximal tubules contribute further to AKI. Drug-induced AKI may also develop through induction of inflammation within the tubulointerstitium. Medications can elicit a T cell-mediated immune response that promotes the development of acute interstitial nephritis leading to AKI. Although less common, a third pathway to kidney injury results from the insolubility of drugs in the urine leading to their precipitation as crystals within distal tubular lumens, causing a crystalline-related AKI. Intratubular obstruction, direct tubular injury, and localized inflammation lead to AKI. Clinicians should be familiar with the pathogenesis and clinical-pathologic manifestations of these forms of kidney injury. Prevention and treatment of AKI relies on understanding the pathogenesis and judiciously using these agents in settings where AKI risk is high.
Collapse
Affiliation(s)
- Mark A Perazella
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut .,Veteran's Affairs Medical Center, West Haven, Connecticut
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
9
|
Rizvi AA, Abbas M, Verma S, Verma S, Khan A, Raza ST, Mahdi F. Determinants in Tailoring Antidiabetic Therapies: A Personalized Approach. Glob Med Genet 2022; 9:63-71. [PMID: 35707783 PMCID: PMC9192178 DOI: 10.1055/s-0041-1741109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 11/02/2022] Open
Abstract
AbstractDiabetes has become a pandemic as the number of diabetic people continues to rise globally. Being a heterogeneous disease, it has different manifestations and associated complications in different individuals like diabetic nephropathy, neuropathy, retinopathy, and others. With the advent of science and technology, this era desperately requires increasing the pace of embracing precision medicine and tailoring of drug treatment based on the genetic composition of individuals. It has been previously established that response to antidiabetic drugs, like biguanides, sulfonylureas, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide 1 (GLP-1) agonists, and others, depending on variations in their transporter genes, metabolizing genes, genes involved in their action, etc. Responsiveness of these drugs also relies on epigenetic factors, including histone modifications, miRNAs, and DNA methylation, as well as environmental factors and the lifestyle of an individual. For precision medicine to make its way into clinical procedures and come into execution, all these factors must be reckoned with. This review provides an insight into several factors oscillating around the idea of precision medicine in type-2 diabetes mellitus.
Collapse
Affiliation(s)
- Aliya A. Rizvi
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Mohammad Abbas
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Sushma Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Shrikant Verma
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Almas Khan
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| | - Syed T. Raza
- Department of Biochemistry, Era University, Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Farzana Mahdi
- Department of Personalized and Molecular Medicine, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
11
|
Abstract
Genome-wide association studies and candidate gene findings suggest that genetic approaches may help in choosing the most appropriate drug and dosage, while preventing adverse drug reactions. This is the field that addresses precision medicine: to evaluate variations in the DNA sequence that could be responsible for different individual analgesic response. We review potential gene biomarkers with best overall convergent functional evidence, for opioid use, in pain management. Polymorphisms can modify pharmacodynamics (i.e., mu opioid receptor, OPRM1) and pharmacokinetics (i.e., CYP2D6 phenotypes) pathways altering opioid effectiveness, consumption, side effects or additionally, prescription opioid use dependence vulnerability. This review provides a summary of these candidate variants for the translation of genotype into clinically useful information in pain medicine.
Collapse
Affiliation(s)
- Mongi Benjeddou
- Department of Biotechnology, University of The Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, Western Cape, South Africa
| | - Ana M Peiró
- Neuropharmacology on Pain & Functional Diversity (NED), Alicante Institute for Health & Biomedical Research (ISABIAL), Alicante, Spain
| |
Collapse
|
12
|
Chen M, You G, Xie C, Yang R, Hu W, Zheng Z, Liu S, Ye L. Pharmacokinetics of metformin in collagen-induced arthritis rats. Biochem Pharmacol 2021; 185:114413. [PMID: 33434538 DOI: 10.1016/j.bcp.2021.114413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
Due to the elevated presence of cytokines, the expressions of metabolic enzymes and drug transporters are altered in rheumatoid arthritis (RA). Given the high incidence of diabetes in patients with RA, the aim of the present study was to investigate the metformin pharmacokinetics of a single oral dose in rats with collagen-induced arthritis (CIA). Blood and urine samples were collected at different timepoints, and analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Tissue samples were also collected to investigate the expression of metabolic enzymes and drug transporters by quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blot. The results indicated that the bioavailability of metformin was markedly decreased in the CIA rats. Moreover, metformin was not metabolized by enzymes of rat liver microsomes, suggesting that the decreased bioavailability of metformin was independent of the liver metabolism. In addition, the mRNA, protein expression level and activity of the renal organic cation transporter 2 (OCT2) was markedly increased, suggesting that the enhanced renal clearance of metformin in CIA rats may be due to the up-regulated activity of OCT2. In conclusion, our study suggested that the reduced bioavailability of metformin in CIA rats is possibly related to the up-regulated function of the renal protein OCT2.
Collapse
Affiliation(s)
- Minghao Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, The First Affiliated Hospital of Jinan University (Guangzhou Overseas Chinese Hospital), Guangzhou 510630, China
| | - Guoquan You
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cong Xie
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyu Hu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhijie Zheng
- Clinical Pharmacology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| | - Ling Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Kwon M, Jeon JH, Choi MK, Song IS. The Development and Validation of a Novel "Dual Cocktail" Probe for Cytochrome P450s and Transporter Functions to Evaluate Pharmacokinetic Drug-Drug and Herb-Drug Interactions. Pharmaceutics 2020; 12:E938. [PMID: 33007943 PMCID: PMC7600799 DOI: 10.3390/pharmaceutics12100938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
This study was designed to develop and validate a 10 probe drug cocktail named "Dual Cocktail", composed of caffeine (Cyp1a2 in rat and CYP1A2 in human, 1 mg/kg), diclofenac (Cyp2c11 in rat and CYP2C9 in human, 2 mg/kg), omeprazole (Cyp2c11 in rat and CYP2C19 in human, 2 mg/kg), dextromethorphan (Cyp2d2 in rat and CYP2D6 in human, 10 mg/kg), nifedipine (Cyp3a1 in rat and CYP3A4 in human, 0.5 mg/kg), metformin (Oct1/2 in rat and OCT1/2 in human, 0.5 mg/kg), furosemide (Oat1/3 in rat and OAT1/3 in human, 0.1 mg/kg), valsartan (Oatp2 in rat and OATP1B1/1B3 in human, 0.2 mg/kg), digoxin (P-gp in rat and human, 2 mg/kg), and methotrexate (Mrp2 in rat and MRP2 in human, 0.5 mg/kg), for the evaluation of pharmacokinetic drug-drug and herb-drug interactions through the modulation of a representative panel of CYP enzymes or transporters in rats. To ensure no interaction among the ten probe substrates, we developed a 2-step evaluation protocol. In the first step, the pharmacokinetic properties of five individual CYP probe substrates and five individual transporter substrates were compared with the pharmacokinetics of five CYP cocktail or five transporters cocktails in two groups of randomly assigned rats. Next, a pharmacokinetic comparison was conducted between the CYP or transporter cocktail group and the dual cocktail group, respectively. None of the ten comparison groups was found to be statistically significant, indicating the CYP and transporter substrate sets or dual cocktail set could be concomitantly administered in rats. The "Dual Cocktail" was further validated by assessing the metabolism of nifedipine and omeprazole, which was significantly reduced by a single oral dose of ketoconazole (10 mg/kg); however, no changes were observed in the pharmacokinetic parameters of other probe substrates. Additionally, multiple oral doses of rifampin (20 mg/kg) reduced the plasma concentrations of nifedipine and digoxin, although not any of the other substrates. In conclusion, the dual cocktail can be used to characterize potential pharmacokinetic drug-drug interactions by simultaneously monitoring the activity of multiple CYP isoforms and transporters.
Collapse
Affiliation(s)
- Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
- Vessel-Organ Interaction Research Center (VOICE), Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Costa ACC, Yamamoto PA, Lauretti GR, Benzi JR, Zanelli CF, Barz V, Ciarimboli G, Moraes NV. Cetirizine Reduces Gabapentin Plasma Concentrations and Effect: Role of Renal Drug Transporters for Organic Cations. J Clin Pharmacol 2020; 60:1076-1086. [DOI: 10.1002/jcph.1603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Carolina Conchon Costa
- School of Pharmaceutical Sciences of Ribeirão PretoUSP–São Paulo University Ribeirão Preto SP Brazil
- Experimental Nephrology, Medicine Clinic DUniversity Hospital Münster Münster Germany
| | | | | | - Jhohann Richard Benzi
- School of Pharmaceutical Sciences of Ribeirão PretoUSP–São Paulo University Ribeirão Preto SP Brazil
| | | | - Vivien Barz
- Experimental Nephrology, Medicine Clinic DUniversity Hospital Münster Münster Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Medicine Clinic DUniversity Hospital Münster Münster Germany
| | | |
Collapse
|
15
|
Enhanced Intestinal Permeability and Plasma Concentration of Metformin in Rats by the Repeated Administration of Red Ginseng Extract. Pharmaceutics 2019; 11:pharmaceutics11040189. [PMID: 31003498 PMCID: PMC6523382 DOI: 10.3390/pharmaceutics11040189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
We aimed to assess the potential herb-drug interactions between Korean red ginseng extract (RGE) and metformin in rats in terms of the modulation of metformin transporters, such as organic cation transporter (Oct), multiple toxin and extrusion protein (Mate), and plasma membrane monoamine transporter (Pmat). Single treatment of RGE did not inhibit the in vitro transport activity of OCT1/2 up to 500 µg/mL and inhibited MATE1/2-K with high IC50 value (more than 147.8 µg/mL), suggesting that concomitant used of RGE did not directly inhibit OCT- and MATE-mediated metformin uptake. However, 1-week repeated administration of RGE (1.5 g/kg/day) (1WRA) to rats showed different alterations in mRNA levels of Oct1 depending on the tissue type. RGE increased intestinal Oct1 but decreased hepatic Oct1. However, neither renal Oct1/Oct2 nor Mate1/Pmat expression in duodenum, jejunum, ileum, liver, and kidney were changed in 1WRA rats. RGE repeated dose also increased the intestinal permeability of metformin; however, the permeability of 3-O-methyl-d-glucose and Lucifer yellow was not changed in 1WRA rats, suggesting that the increased permeability of metformin by multiple doses of RGE is substrate-specific. On pharmacokinetic analysis, plasma metformin concentrations following intravenous injection were not changed in 1WRA, consistent with no significant change in renal Oct1, Oct2, and mate1. Repeated doses of RGE for 1 week significantly increased the plasma concentration of metformin, with increased half-life and urinary excretion of metformin following oral administration of metformin (50 mg/kg), which could be attributed to the increased absorption of metformin. In conclusion, repeated administration of RGE showed in vivo pharmacokinetic herb-drug interaction with metformin, with regard to its plasma exposure and increased absorption in rats. These results were consistent with increased intestinal Oct1 and its functional consequence, therefore, the combined therapeutic efficacy needs further evaluation before the combination and repeated administration of RGE and metformin, an Oct1 substrate drug.
Collapse
|
16
|
Barton CD, Pizer B, Jones C, Oni L, Pirmohamed M, Hawcutt DB. Identifying cisplatin-induced kidney damage in paediatric oncology patients. Pediatr Nephrol 2018; 33:1467-1474. [PMID: 28821959 PMCID: PMC6061670 DOI: 10.1007/s00467-017-3765-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/06/2022]
Abstract
Cisplatin is one chemotherapeutic agent used to treat childhood cancer in numerous treatment protocols, including as a single agent. It is likely to remain in clinical use over the long term. However, cisplatin-related toxicities, including neurotoxicity and nephrotoxicity, are common, affecting treatment, day-to-day life and survival of such children. With one in 700 young adults having survived childhood cancer, patients who have completed chemotherapy that includes cisplatin can experience long-term morbidity due to treatment-related adverse reactions. A better understanding of these toxicities is essential to facilitate prevention, surveillance and management. This review article discusses the effect of cisplatin-induced nephrotoxicity (Cis-N) in children and considers the underlying mechanisms. We focus on clinical features and identification of Cis-N (e.g. investigations and biomarkers) and the importance of magnesium homeostasis and supplementation.
Collapse
Affiliation(s)
- Chris D Barton
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Paediatric Oncology, Alder Hey Children's Hospital, Liverpool, UK
| | - Barry Pizer
- Department of Paediatric Oncology, Alder Hey Children's Hospital, Liverpool, UK
| | - Caroline Jones
- Department of Paediatric Nephrology, Alder Hey Children's Hospital, Liverpool, UK
| | - Louise Oni
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Paediatric Nephrology, Alder Hey Children's Hospital, Liverpool, UK
| | - Munir Pirmohamed
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Daniel B Hawcutt
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
- NIHR Alder Hey Clinical Research Facility, University of Liverpool, Liverpool, UK.
| |
Collapse
|
17
|
Zhou T, Xu X, Du M, Zhao T, Wang J. A preclinical overview of metformin for the treatment of type 2 diabetes. Biomed Pharmacother 2018; 106:1227-1235. [PMID: 30119191 DOI: 10.1016/j.biopha.2018.07.085] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes (T2D) is the most common type of diabetes mellitus and is mainly characterized by insulin resistance, β-cell dysfunction, and elevated hepatic glucose output. Metformin is a first-line antihyperglycemic agent that works mainly by regulating hepatic glucose production and peripheral insulin sensitivity. Metformin has been clinically applied for more than half a century, although the underlying pharmacological mechanisms remain elusive. This current review mainly focused on the development history of metformin and related preclinical studies on structural modification, pharmacological mechanisms for treatment of T2D, toxicology, pharmacokinetics, and pharmaceutics. The pharmacological function of metformin in lowering hyperglycemia suggests that multi-targeting could be an effective strategy for the discovery of new anti-diabetic drugs. A number of discoveries have revealed the pharmacologic mechanisms of metformin; however, precise mechanisms remain unclear. Deeper investigations on the biological features of metformin are expected to provide more rational applications and indications of this evergreen anti-T2D agent, which will in turn help to better understand the complicated pathogenesis of T2D.
Collapse
Affiliation(s)
- Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Shanghai Institute of Material Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xin Xu
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mengfan Du
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tong Zhao
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jiaying Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
18
|
Ankathil R, Azlan H, Dzarr AA, Baba AA. Pharmacogenetics and the treatment of chronic myeloid leukemia: how relevant clinically? An update. Pharmacogenomics 2018; 19:475-393. [PMID: 29569526 DOI: 10.2217/pgs-2017-0193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the excellent efficacy and improved clinical responses obtained with imatinib mesylate (IM), development of resistance in a significant proportion of chronic myeloid leukemia (CML) patients on IM therapy have emerged as a challenging problem in clinical practice. Resistance to imatinib can be due to heterogeneous array of factors involving BCR/ABL-dependent and BCR/ABL-independent pathways. Although BCR/ABL mutation is the major contributory factor for IM resistance, reduced bio-availability of IM in leukemic cells is also an important pharmacokinetic factor that contributes to development of resistance to IM in CML patients. The contribution of polymorphisms of the pharmacogenes in relation to IM disposition and treatment outcomes have been studied by various research groups in numerous population cohorts. However, the conclusions arising from these studies have been highly inconsistent. This review encompasses an updated insight into the impact of pharmacogenetic variability on treatment response of IM in CML patients.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Husin Azlan
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abu Abdullah Dzarr
- Haemato-Oncology Unit & Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Abdul Aziz Baba
- Department of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Ikhlas S, Ahmad M. Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sci 2017; 185:53-62. [PMID: 28755883 DOI: 10.1016/j.lfs.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
|
20
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
21
|
Yajima Y, Kawaguchi M, Yoshikawa M, Okubo M, Tsukagoshi E, Sato K, Katakura A. The effects of 2,3-dimercapto-1-propanesulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the nephrotoxicity in the mouse during repeated cisplatin (CDDP) treatments. J Pharmacol Sci 2017. [PMID: 28648300 DOI: 10.1016/j.jphs.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Previously, we reported that specific lower dose of sodium 2,3-dimercapto-1-propanesulfonic acid (DMPS) which is an antidote to heavy metal intoxication, inversely enhanced cisplatin (CDDP)-induced antitumor activity to S-180 cell-bearing mouse. This activity was only weak with meso-2,3-dimercaptosuccinic acid (DMSA), however. This study investigated the effects of lower doses of DMPS or DMSA on the nephrotoxicity and kinetics of CDDP. Kidney and blood isolated from female mice which received CDDP with or without DMPS or DMSA once daily for 4 days were provided for measuring levels of blood urea nitrogen (BUN) and transporter proteins (OCT2: organic cation transporter; MATE1: multidrug and toxin extrusion) mRNA, and CDDP-originated platinum, and TUNEL staining of renal tubular cells. DMPS or DMSA reduced effectively CDDP-induced BUN, and caused a moderate reduction of platinum in kidney. Additionally, both dimercapto-compounds restored the CDDP-reduced mRNA levels of transporter proteins (OCT2 and MATE1), and apparently suppressed the CDDP-induced apoptosis. These results suggest that DMPS, as well as DMSA, at approximate 17-fold dose (μmol/kg) of CDDP, has an enough potential to reverse the CDDP nephrotoxicity, and concomitant use of DMPS considering both dose and timing for administration is potentially useful for preventing nephrotoxicity and enhancing antitumor activity during CDDP chemotherapy.
Collapse
Affiliation(s)
- Yuka Yajima
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Mitsuru Kawaguchi
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan.
| | - Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Migiwa Okubo
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Eri Tsukagoshi
- Department of Pharmacology, Tokyo Dental College, 2-1-14 Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazumichi Sato
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| | - Akira Katakura
- Department of Oral Medicine, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan
| |
Collapse
|
22
|
Fattah S, Shinde AB, Matic M, Baes M, van Schaik RHN, Allegaert K, Parmentier C, Richert L, Augustijns P, Annaert P. Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharm Res 2017; 34:1309-1319. [PMID: 28364304 DOI: 10.1007/s11095-017-2148-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE OCT1/3 (Organic Cation Transporter-1 and -3; SLC22A1/3) are transmembrane proteins localized at the basolateral membrane of hepatocytes. They mediate the uptake of cationic endogenous compounds and/or xenobiotics. The present study was set up to verify whether the previously observed variability in OCT activity in hepatocytes may be explained by inter-individual differences in OCT1/3 mRNA levels or OCT1 genotype. METHODS Twenty-seven batches of cryopreserved human hepatocytes (male and female, age 24-88 y) were characterized for OCT activity, normalized OCT1/3 mRNA expression, and OCT1 genetic mutation. ASP+ (4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide) was used as probe substrate. RESULTS ASP+ uptake ranged between 75 ± 61 and 2531 ± 202 pmol/(min × million cells). The relative OCT1 and OCT3 mRNA expression ranged between 0.007-0.46 and 0.0002-0.005, respectively. The presence of one or two nonfunctional SLC22A1 alleles was observed in 13 batches and these exhibited significant (p = 0.04) association with OCT1 and OCT3 mRNA expression. However, direct association between genotype and OCT activity could not be established. CONCLUSION mRNA levels and genotype of OCT only partially explain inter-individual variability in OCT-mediated transport. Our findings illustrate the necessity of in vitro transporter activity profiling for better understanding of inter-individual drug disposition behavior.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maja Matic
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands.,Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Karel Allegaert
- Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Lysiane Richert
- KaLy-Cell, Plobsheim, France.,Université de Franche-Comté, 4267, Besançon, EA, France
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium.
| |
Collapse
|
23
|
Soodvilai S, Soodvilai S, Chatsudthipong V, Ngawhirunpat T, Rojanarata T, Opanasopit P. Interaction of pharmaceutical excipients with organic cation transporters. Int J Pharm 2017; 520:14-20. [DOI: 10.1016/j.ijpharm.2017.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/06/2017] [Accepted: 01/20/2017] [Indexed: 01/11/2023]
|
24
|
Pearce B, Jacobs C, Hoosain N, Benjeddou M. SLC22A2 - mapping genomic variations within South African indigenous and admixed populations. Drug Metab Pers Ther 2016; 31:213-220. [PMID: 27828777 DOI: 10.1515/dmpt-2016-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND The SLC22A2 gene is a polyspecific transporter that mediates the electrogenic transport of small organic cations with different molecular structures. Furthermore, single-nucleotide polymorphisms (SNPs) of SLC22A2 are clinically significant because they can alter the transport of substrate drugs and may, thus, influence the efficacy and toxicity thereof. Additionally, further studies have reported that SLC22A2 is responsible for 80% of the total metformin clearance. Therefore, loss-of-function variants of SLC22A2 could affect the pharmacokinetic and pharmacodynamic characteristics of metformin. Although it is widely accepted that African populations harbor a greater amount of genomic diversity compared to other populations, limited information is available regarding genetic polymorphisms in SLC genes among African populations, specifically those related to impaired functional activity of hOCT2. Therefore, the aim of this study was to map known impaired function variants in the SLC22A2 gene. METHODS Development of multiplex SNaPshot™ genotyping assay for 20 previously reported SLC22A2 nonsynonymous SNPs and the assessment of baseline allele frequencies of these variants in 140 Cape Admixed, 148 Xhosa and 152 Zulu individuals residing in Cape Town, South Africa. RESULTS We identified three nonsynonymous SNPs, namely, A270S, R400C and K432Q in the population studied at minor allele frequencies of 6.1%, 3.4% and 0.7%, respectively. The most frequently observed haplotypes across all three populations were CATAATGCGTACGCGCGACG (~85%), CATAATGATTACGCGCGACG (~7%) and CATAATGAGTACGCGCGACG (~4.5%). CONCLUSIONS In addition to SNPs, the haplotypes identified in this study can in future also aid in identifying associations between causative genetic variants and drug response. This study contributes in filling the gap that exists with regards to genetic information about important variations in organic cation transporter genes for the indigenous populations of South Africa.
Collapse
|
25
|
Xiao D, Guo Y, Li X, Yin JY, Zheng W, Qiu XW, Xiao L, Liu RR, Wang SY, Gong WJ, Zhou HH, Liu ZQ. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients. Int J Endocrinol 2016; 2016:4350712. [PMID: 26977146 PMCID: PMC4764723 DOI: 10.1155/2016/4350712] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/02/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022] Open
Abstract
Background. We aimed to investigate the distributive characteristics of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms and their influence on metformin efficacy in Chinese T2DM patients. Methods. The distributions of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms were determined in 267 T2DM patients and 182 healthy subjects. Subsequently, 53 newly diagnosed patients who received metformin monotherapy were recruited to evaluate metformin efficacy. Results. No significant difference was found between T2DM patients and healthy subjects in SLC22A1 rs594709 and SLC47A1 rs2289669 allele frequencies and genotype frequencies. After metformin treatment, SLC22A1 rs594709 GG genotype patients showed a higher increase in FINS (p = 0.015) and decrease in HOMA-IS (p = 0.001) and QUICKI (p = 0.002) than A allele carriers. SLC47A1 rs2289669 GG genotype patients had a higher decrease in TChol (p = 0.030) and LDL-C (p = 0.049) than A allele carriers. Among SLC22A1 rs594709 AA genotype, patients with SLC47A1 rs2289669 AA genotype showed a higher decrease in FBG (p = 0.015), PINS (p = 0.041), and HOMA-IR (p = 0.014) than G allele carriers. However, among SLC22A1 rs594709 G allele carriers, SLC47A1 rs2289669 AA genotype patients showed a higher decrease in TChol (p = 0.013) than G allele carriers. Conclusion. Our data suggest that SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms may influence metformin efficacy together in Chinese T2DM patients.
Collapse
Affiliation(s)
- Di Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yu Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Xin-Wen Qiu
- Changsha Medical University Teaching Hospital, The People's Hospital of Liuyang, Liuyang 410300, China
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Rang-Ru Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Sai-Ying Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Wei-Jing Gong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
- *Zhao-Qian Liu:
| |
Collapse
|
26
|
Jaiyen C, Jutabha P, Anzai N, Lungkaphin A, Soodvilai S, Srimaroeng C. Interaction of green tea catechins with renal organic cation transporter 2. Xenobiotica 2015; 46:641-650. [PMID: 26576923 DOI: 10.3109/00498254.2015.1107785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Green tea extract (GTE) and EGCG have previously shown to increase the uptake of MPP+ into Caco-2 cells. However, whether GTE and its derivatives interact with renal basolateral organic cation transporter 2 (Oct2) which plays a crucial role for cationic clearance remains unknown. Thus, this study assessed the potential of drug-green tea (GT) catechins and its derivatives interactions with rat Oct2 using renal cortical slices and S2 stably expressing rat Oct2 (S2rOct2). 2. Both GTE and ECG inhibited MPP+ uptake in renal slices in a concentration-dependent manner (IC50 = 2.71 ± 0.360 mg/ml and 0.87 ± 0.151 mM), and this inhibitory effect was reversible. Inhibition of [3H]MPP+ transport in S2rOct2 by either GTE or ECG (IC50 = 1.90 ± 0.087 mg/ml and 1.67 ± 0.088 mM) was also observed. 3. The weak and reversible interactions of GTE and ECG with rOct2 indicate that consumption of GT beverages could not interfere with cationic drugs secreted via renal OCT2 in humans. However, the rise of therapeutic use of GTE and ECG might have to take into account the significant possibility of adverse drug-green tea catechins interactions which could alter renal organic cation drug clearance.
Collapse
Affiliation(s)
- Chaliya Jaiyen
- a Department of Physiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand.,b Department of Pharmacology and Toxicology , Dokkyo Medical University, School of Medicine , Tochigi , Japan , and
| | - Promsuk Jutabha
- b Department of Pharmacology and Toxicology , Dokkyo Medical University, School of Medicine , Tochigi , Japan , and
| | - Naohiko Anzai
- b Department of Pharmacology and Toxicology , Dokkyo Medical University, School of Medicine , Tochigi , Japan , and
| | - Anusorn Lungkaphin
- a Department of Physiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| | - Sunhapas Soodvilai
- c Department of Physiology , Faculty of Science, Mahidol University , Bangkok , Thailand
| | - Chutima Srimaroeng
- a Department of Physiology , Faculty of Medicine, Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
27
|
Li DC, Nichols CG, Sala-Rabanal M. Role of a Hydrophobic Pocket in Polyamine Interactions with the Polyspecific Organic Cation Transporter OCT3. J Biol Chem 2015; 290:27633-43. [PMID: 26405039 DOI: 10.1074/jbc.m115.668913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporter 3 (OCT3, SLC22A3) is a polyspecific, facilitative transporter expressed in astrocytes and in placental, intestinal, and blood-brain barrier epithelia, and thus elucidating the molecular mechanisms underlying OCT3 substrate recognition is critical for the rational design of drugs targeting these tissues. The pharmacology of OCT3 is distinct from that of other OCTs, and here we investigated the role of a hydrophobic cavity tucked within the translocation pathway in OCT3 transport properties. Replacement of an absolutely conserved Asp by charge reversal (D478E), neutralization (D478N), or even exchange (D478E) abolished MPP(+) uptake, demonstrating this residue to be obligatory for OCT3-mediated transport. Mutations at non-conserved residues lining the putative binding pocket of OCT3 to the corresponding residue in OCT1 (L166F, F450L, and E451Q) reduced the rate of MPP(+) transport, but recapitulated the higher sensitivity pharmacological profile of OCT1. Thus, interactions of natural polyamines (putrescine, spermidine, spermine) and polyamine-like potent OCT1 blockers (1,10-diaminodecane, decamethonium, bistriethylaminodecane, and 1,10-bisquinuclidinedecane) with wild-type OCT3 were weak, but were significantly potentiated in the mutant OCT3s. Conversely, a reciprocal mutation in OCT1 (F161L) shifted the polyamine-sensitivity phenotype toward that of OCT3. Further analysis indicated that OCT1 and OCT3 can recognize essentially the same substrates, but the strength of substrate-transporter interactions is weaker in OCT3, as informed by the distinct makeup of the hydrophobic cleft. The residues identified here are key contributors to both the observed differences between OCT3 and OCT1 and to the mechanisms of substrate recognition by OCTs in general.
Collapse
Affiliation(s)
- Dan C Li
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| | - Monica Sala-Rabanal
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
28
|
Li L, Sun S, Weng Y, Song F, Zhou S, Bai M, Zhou H, Zeng S, Jiang H. Interaction of six protoberberine alkaloids with human organic cation transporters 1, 2 and 3. Xenobiotica 2015; 46:175-83. [PMID: 26134304 DOI: 10.3109/00498254.2015.1056283] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Organic cation transporters (OCTs) play an important role in drug safety and efficacy. Protoberberine alkaloids are ubiquitous organic cations or weak bases with remarkable biological actives. This study was to elucidate the potential interaction of alkaloids (coptisine, jatrorrhizine, epiberberine, berberrubine, palmatine and corydaline) with OCTs using Madin-Darby canine kidney (MDCK) cells stably expressing human OCT1, OCT2 and OCT3. 2. All the tested alkaloids significantly inhibited the uptake of MPP(+), a model OCT substrate, in MDCK-hOCTs cells with the IC50 of 0.931-9.65 μM. Additionally, coptisine, jatrorrhizine and epiberberine were substrates of all the hOCTs with the Km of 0.273-5.80 μM, whereas berberrubine was a substrate for hOCT1 and hOCT2, but not for hOCT3, the Km values were 1.27 and 1.66 μM, respectively. The transport capacity of coptisine in MDCK cells expressing the variants of hOCT1-P341L or hOCT2-A270S was significantly higher than that in wild-type (WT) cells with the Clint (Vmax/Km) of 379 ± 7.4 and 433 ± 5.7 μl/mg protein/min, respectively. 3. The above data indicate that the tested alkaloids are potent inhibitors, and coptisine, jatrorrhizine, epiberberine and berberrubine are substrates of hOCT1, hOCT2 and/or hOCT3 with high affinity. In addition, the variants (OCT1-P341L and OCT2-A270S) possess higher transport capacity to coptisine than WT hOCTs.
Collapse
Affiliation(s)
- Liping Li
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Siyuan Sun
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yayun Weng
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Feifeng Song
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Sisi Zhou
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Mengru Bai
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Hui Zhou
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Su Zeng
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Huidi Jiang
- a Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| |
Collapse
|
29
|
Baek SH, Kim SH, Kim JW, Kim YJ, Lee KW, Na KY. Effects of a DPP4 inhibitor on cisplatin-induced acute kidney injury: study protocol for a randomized controlled trial. Trials 2015; 16:239. [PMID: 26021829 PMCID: PMC4449575 DOI: 10.1186/s13063-015-0772-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Cisplatin is a potent chemotherapeutic agent, but its nephrotoxicity, which results in acute kidney injury (AKI), often limits its clinical application. Although many studies have attempted to target the mechanism responsible for its nephrotoxicity, no such method has been demonstrated to be effective in clinical trials. Recently, a dipeptidyl peptidase-4 (DPP4) inhibitor has been reported to have a renoprotective effect in a mouse model of cisplatin-induced AKI. Therefore, we will evaluate whether a DPP4 inhibitor protects the kidney from cisplatin-induced injury in humans. Methods/Design This is a single-center, prospective, randomized, double-blind, placebo-controlled trial. A total of 182 participants who are scheduled for cisplatin treatment will be enrolled and randomly assigned to receive either a DPP4 inhibitor (gemigliptin) or a placebo. Participants will take the study drugs for 8 days starting 1 day before cisplatin treatment. The primary outcome of interest is the incidence of AKI at 7 days after finishing treatment with cisplatin. The secondary outcomes include changes in serum creatinine levels and estimated glomerular filtration rates from baseline to 7 days after cisplatin treatment. Discussion This is the first clinical trial to investigate the effect of a DPP4 inhibitor on cisplatin-induced AKI. Trial registration ClinicalTrials.gov number NCT02250872, December 26, 2014.
Collapse
Affiliation(s)
- Seon Ha Baek
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Se Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Jin Won Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Keun-Wook Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| | - Ki Young Na
- Division of Nephrology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 463-707, South Korea.
| |
Collapse
|
30
|
Organic cation transporter-mediated drug–drug interaction potential between berberine and metformin. Arch Pharm Res 2014; 38:849-56. [DOI: 10.1007/s12272-014-0510-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/23/2014] [Indexed: 01/08/2023]
|
31
|
Jacobs C, Pearce B, Du Plessis M, Hoosain N, Benjeddou M. Genetic polymorphisms and haplotypes of the organic cation transporter 1 gene (SLC22A1) in the Xhosa population of South Africa. Genet Mol Biol 2014; 37:350-359. [PMID: 25071399 PMCID: PMC4094614 DOI: 10.1590/s1415-47572014005000002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
Human organic cation transporter 1 is primarily expressed in hepatocytes and mediates the electrogenic transport of various endogenous and exogenous compounds, including clinically important drugs. Genetic polymorphisms in the gene coding for human organic cation transporter 1, SLC22A1, are increasingly being recognized as a possible mechanism explaining the variable response to clinical drugs, which are substrates for this transporter. The genotypic and allelic distributions of 19 nonsynonymous and one intronic SLC22A1 single nucleotide polymorphisms were determined in 148 healthy Xhosa participants from South Africa, using a SNAPshot(®) multiplex assay. In addition, haplotype structure for SLC22A1 was inferred from the genotypic data. The minor allele frequencies for S14F (rs34447885), P341L (rs2282143), V519F (rs78899680), and the intronic variant rs622342 were 1.7%, 8.4%, 3.0%, and 21.6%, respectively. None of the participants carried the variant allele for R61C (rs12208357), C88R (rs55918055), S189L (rs34104736), G220V (rs36103319), P283L (rs4646277), R287G (rs4646278), G401S (rs34130495), M440I (rs35956182), or G465R (rs34059508). In addition, no variant alleles were observed for A306T (COSM164365), A413V (rs144322387), M420V (rs142448543), I421F (rs139512541), C436F (rs139512541), V501E (rs143175763), or I542V (rs137928512) in the population. Eight haplotypes were inferred from the genotypic data. This study reports important genetic data that could be useful for future pharmacogenetic studies of drug transporters in the indigenous Sub-Saharan African populations.
Collapse
Affiliation(s)
- Clifford Jacobs
- Department of Biotechnology,
University of the Western Cape,
Cape Town,
South Africa
| | - Brendon Pearce
- Department of Biotechnology,
University of the Western Cape,
Cape Town,
South Africa
| | - Mornè Du Plessis
- Department of Biotechnology,
University of the Western Cape,
Cape Town,
South Africa
| | - Nisreen Hoosain
- Department of Biotechnology,
University of the Western Cape,
Cape Town,
South Africa
| | - Mongi Benjeddou
- Department of Biotechnology,
University of the Western Cape,
Cape Town,
South Africa
| |
Collapse
|
32
|
Evaluation of drug--drug interaction potential between DA-9801 and metformin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis 2014; 5:e1209. [PMID: 24810045 PMCID: PMC4047877 DOI: 10.1038/cddis.2014.175] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Phospho-Ser129 α-synuclein is the modified form of α-synuclein that occurs most frequently within Parkinson's disease pathological inclusions. Here we demonstrate that the antidiabetic drug metformin significantly reduces levels of phospho-Ser129 α-synuclein and the ratio of phospho-Ser129 α-synuclein to total α-synuclein. This effect was documented in vitro in SH-SY5Y and HeLa cells as well as in primary cultures of hippocampal neurons. In vitro work also elucidated the mechanisms underlying metformin's action. Following metformin exposure, decreased phospho-Ser129 α-synuclein was not strictly dependent on induction of AMP-activated protein kinase, a primary target of the drug. On the other hand, metformin-induced phospho-Ser129 α-synuclein reduction was consistently associated with inhibition of mammalian target of rapamycin (mTOR) and activation of protein phosphatase 2A (PP2A). Evidence supporting a key role of mTOR/PP2A signaling included the finding that, similar to metformin, the canonical mTOR inhibitor rapamycin was capable of lowering the ratio of phospho-Ser129 α-synuclein to total α-synuclein. Furthermore, no decrease in phosphorylated α-synuclein occurred with either metformin or rapamycin when phosphatase activity was inhibited, supporting a direct relationship between mTOR inhibition, PP2A activation and protein dephosphorylation. A final set of experiments confirmed the effectiveness of metformin in vivo in wild-type C57BL/6 mice. Addition of the drug to food or drinking water lowered levels of phospho-Ser129 α-synuclein in the brain of treated animals. These data reveal a new mechanism leading to α-synuclein dephosphorylation that could be targeted for therapeutic intervention by drugs like metformin and rapamycin.
Collapse
|
34
|
Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumour Biol 2014; 35:5101-10. [PMID: 24504677 DOI: 10.1007/s13277-014-1676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
After sitting many years on the shelves of drug stores as a harmless antidiabetic drug, metformin comes back in the spotlight of the scientific community as a surprisingly effective antineoplastic drug. Metformin targets multiple pathways that play pivotal roles in cancer progression, impacting various cellular processes, such as proliferation, cell death, metabolism, and even the cancer stemness features. The biomolecular characteristics of tumors, such as appropriate expression of organic cation transporters or genetic alterations including p53, K-ras, LKB1, and PI3K may impact metformin's anticancer efficiency. This could indicate a need for tumor genetic profiling in order to identify patients most likely to benefit from metformin treatment. Considering that the majority of experimental models suggest that higher, supra-clinical doses of metformin should be used in order to obtain an antineoplastic effect, new ways of drug delivery could be developed, such as metformin-loaded nanoparticles or incorporation of metformin into microparticles used in transarterial chemoembolization, with the aim of obtaining higher intratumoral drug concentrations and a targeted therapy which will ultimately maximize metformin's efficacy.
Collapse
|
35
|
Döring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev 2014; 46:261-82. [PMID: 24483608 DOI: 10.3109/03602532.2014.882353] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.
Collapse
Affiliation(s)
- Barbara Döring
- Institute of Pharmacology and Toxicology, Biomedical Research Center Seltersberg, Justus-Liebig-University Giessen , Giessen , Germany
| | | |
Collapse
|
36
|
Abstract
Metformin is the first-line treatment for type 2 diabetes. Results from several clinical studies have indicated that type 2 diabetic patients treated with metformin might have a lower cancer risk. One of the primary metabolic changes observed in malignant cell transformation is an increased catabolic glucose metabolism. In this context, once it has entered the cell through organic cation transporters, metformin decreases mitochondrial respiration chain activity and ATP production that, in turn, activates AMP-activated protein kinase, which regulates energy homeostasis. In addition, metformin reduces cellular energy availability and glucose entrapment by inhibiting hexokinase-II, which catalyses the glucose phosphorylation reaction. In this review, we discuss recent findings on molecular mechanisms that sustain the anticancer effect of metformin through regulation of glucose metabolism. In particular, we have focused on the emerging action of metformin on glycolysis in normal and cancer cells, with a drug discovery perspective.
Collapse
Affiliation(s)
- Barbara Salani
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Alberto Del Rio
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Cecilia Marini
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Gianmario Sambuceti
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Renzo Cordera
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| | - Davide Maggi
- Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy Department of Internal Medicine (DIMI)University of Genova, Viale Benedetto XV/6, 16132 Genova, ItalyIRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro16132 Genova, ItalyDepartment of ExperimentalDiagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, ItalyCNR Institute of Organic Synthesis and Photoreactivity (ISOF)40129 Bologna, ItalyCNR Institute of Molecular Bioimaging and Physiology (IBFM)16132 Genova, ItalyDepartment of Health Science (DISSAL)University of Genova, 16132 Genova, Italy
| |
Collapse
|
37
|
Drug resistance: as complex and diverse as the disease itself. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Cheah IK, Ong RLS, Gruber J, Yew TSK, Ng LF, Chen CB, Halliwell B. Knockout of a putative ergothioneine transporter inCaenorhabditis elegansdecreases lifespan and increases susceptibility to oxidative damage. Free Radic Res 2013; 47:1036-45. [DOI: 10.3109/10715762.2013.848354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Nirmal J, Singh SB, Biswas NR, Thavaraj V, Azad RV, Velpandian T. Potential pharmacokinetic role of organic cation transporters in modulating the transcorneal penetration of its substrates administered topically. Eye (Lond) 2013; 27:1196-203. [PMID: 23846373 DOI: 10.1038/eye.2013.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/24/2013] [Indexed: 01/11/2023] Open
Abstract
PURPOSE We hypothesize organic cation transporters (OCT) may have a potential role in determining the pharmacokinetics and toxicity of organic cation drugs applied topically. Hence, in the present in vivo study, we attempted to evaluate the role of OCT in modulating the transport of its substrates after topical application. METHODS New Zealand albino rabbits of either sex were used. Transcorneal penetration of OCT substrates tetraethylammonium and metformin after single instillation was evaluated in the absence and presence of OCT blockers (quinidine and atropine). Aqueous humor (AH) samples were collected through paracentesis amounting to 70-100 μl under topical anesthesia at various time intervals. The samples were subjected for estimation of both substrate as well as blocker concentrations using liquid chromatography mass spectrometry. RESULTS Topical pre-treatment (30 min before substrate) of OCT blockers significantly decreased the transcorneal penetration of OCT substrates after single topical administration. The levels of blockers reaching AH in the presence of substrates were also modulated at 60 min after its administration as compared with its control. CONCLUSION OCT are functionally active in the uptake of their substrates from tear to AH. Therefore, OCT in the corneal epithelium may be positioned from apical to basolateral. When administering their substrates/blockers topically, both may be competing for OCT for their uptake across the cornea, thereby decreasing the corneal penetration. Hence OCT can have a potential pharmacokinetic role in modulating the ocular bioavailability of their substrates administered topically, which are used as ocular therapeutics.
Collapse
Affiliation(s)
- J Nirmal
- Department of Ocular Pharmacology and Pharmacy, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | | | | | |
Collapse
|
40
|
Sala-Rabanal M, Li DC, Dake GR, Kurata HT, Inyushin M, Skatchkov SN, Nichols CG. Polyamine transport by the polyspecific organic cation transporters OCT1, OCT2, and OCT3. Mol Pharm 2013; 10:1450-8. [PMID: 23458604 DOI: 10.1021/mp400024d] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyamines are ubiquitous organic cations implicated in many physiological processes. Because they are positively charged at physiological pH, carrier-mediated systems are necessary for effective membrane permeation, but the identity of specific polyamine transporter proteins in eukaryotic cells remains unclear. Polyspecific organic cation transporters (OCTs) interact with many natural and xenobiotic monovalent cations and have been reported to transport dicationic compounds, including the short polyamine putrescine. In this study, we used Xenopus oocytes expressing mammalian OCT1 (SLC22A1), OCT2 (SLC22A2), or OCT3 (SLC22A3) to assess binding and transport of longer-chain polyvalent polyamines. In OCT-expressing oocytes, [(3)H]MPP(+) uptake rates were 15- to 35-fold higher than in noninjected oocytes, whereas those for [(3)H]spermidine increased more modestly above the background, up to 3-fold. This reflected up to 20-fold lower affinity for spermidine than for MPP(+); thus, K(0.5) for MPP(+) was ~50 μM in OCT1, ~170 μM in OCT2, and ~60 μM in OCT3, whereas for spermidine, K(0.5) was ~1 mM in OCT1, OCT2, and OCT3. J(max) values for MPP(+) and spermidine were within the same range, suggesting that both compounds are transported at a similar turnover rate. To gain further insight into OCT substrate specificity, we screened a selection of structural polyamine analogues for effect on [(3)H]MPP(+) uptake. In general, blocking potency increased with overall hydrophobic character, which indicates that, as for monovalent cations, hydrophobicity is a major requirement for recognition in polyvalent OCT substrates and inhibitors. Our results demonstrate that the natural polyamines are low affinity, but relatively high turnover, substrates for OCTs. The identification of OCTs as polyamine transport systems may contribute to further understanding of the mechanisms involved in polyamine homeostasis and aid in the design of polyamine-like OCT-targeted drugs.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Department of Cell Biology and Physiology, and Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Yoon H, Cho HY, Yoo HD, Kim SM, Lee YB. Influences of organic cation transporter polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS JOURNAL 2013; 15:571-80. [PMID: 23417334 DOI: 10.1208/s12248-013-9460-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023]
Abstract
This study investigated the effects of genetic polymorphisms in organic cation transporter (OCT) genes, such as OCT1-3, OCTN1, MATE1, and MATE2-K, on metformin pharmacokinetics. Of particular interest was the influence of genetic polymorphisms as covariates on the variability in the population pharmacokinetics (PPK) of metformin using nonlinear mixed effects modeling (NONMEM). In a retrospective data analysis, data on subjects from five independent metformin bioequivalence studies that used the same protocol were assembled and compared with 96 healthy control subjects who were administered a single oral 500 mg dose of metformin. Genetic polymorphisms of OCT2-808 G>T and OCTN1-917C>T had a significant (P<0.05) effect on metformin pharmacokinetics, yielding a higher peak concentration with a larger area under the serum time-concentration curve. The values obtained were 102±34.5 L/h for apparent oral clearance (CL/F), 447±214 L for volume of distribution (V d/F), and 3.1±0.9 h for terminal half-life (mean±SD) by non-compartmental analysis. The NONMEM method gives similar results. The metformin serum levels were obtained by setting the one-compartment model to a first-order absorption and lag time. In the PPK model, the effects of OCT2-808 G>T and OCTN1-917C>T variants on the CL/F were significant (P<0.001 and P<0.05, respectively). Thus, genetic variants of OCTN1-917C>T, along with OCT2-808 G>T genetic polymorphisms, could be useful in titrating the optimal metformin dose.
Collapse
Affiliation(s)
- Hwa Yoon
- College of Pharmacy and Institute of Bioequivalence and Bridging Study, Chonnam National University, 300 Yongbong-Dong, Gwangju, 500-757, South Korea
| | | | | | | | | |
Collapse
|
42
|
Schneider V, Krieger ML, Bendas G, Jaehde U, Kalayda GV. Contribution of intracellular ATP to cisplatin resistance of tumor cells. J Biol Inorg Chem 2013; 18:165-174. [PMID: 23183891 DOI: 10.1007/s00775-012-0960-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/05/2012] [Indexed: 01/12/2023]
Abstract
Decreased cellular accumulation of cisplatin is a frequently observed mechanism of resistance to the drug. Beside passive diffusion, several cellular proteins using ATP hydrolysis as an energy source are assumed to be involved in cisplatin transport in and out of the cell. This investigation aimed at clarifying the contribution of intracellular ATP as an indicator of energy-dependent transport to cisplatin resistance using the A2780 human ovarian adenocarcinoma cell line and its cisplatin-resistant variant A2780cis. Depletion of intracellular ATP with oligomycin significantly decreased cellular platinum accumulation (measured by flameless atomic absorption spectrometry) in sensitive but not in resistant cells, and did not affect cisplatin efflux in both cell lines. Inhibition of Na(+),K(+)-ATPase with ouabain reduced platinum accumulation in A2780 cells but to a lesser extent compared with oligomycin. Western blot analysis revealed lower expression of Na(+),K(+)-ATPase α(1) subunit in resistant cells compared with sensitive counterparts. The basal intracellular ATP level (determined using a bioluminescence-based assay) was significantly higher in A2780cis cells than in A2780 cells. Our results highlight the importance of ATP-dependent transport, among other processes mediated by Na(+),K(+)-ATPase, for cisplatin influx in sensitive cells. Cellular platinum accumulation in resistant cells is reduced and less dependent on energy sources, which may partly result from Na(+),K(+)-ATPase downregulation. Our data suggest the involvement of other ATP-dependent processes beside those regulated by Na(+),K(+)-ATPase. Higher basal ATP level in cisplatin-resistant cells, which appears to be a consequence of enhanced mitochondrial ATP production, may represent a survival mechanism established during development of resistance.
Collapse
Affiliation(s)
- Verena Schneider
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michaela L Krieger
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Gerd Bendas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Ganna V Kalayda
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
43
|
Sterner TR, Ruark CD, Covington TR, Yu KO, Gearhart JM. A physiologically based pharmacokinetic model for the oxime TMB-4: simulation of rodent and human data. Arch Toxicol 2013; 87:661-80. [PMID: 23314320 DOI: 10.1007/s00204-012-0987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/21/2012] [Indexed: 11/29/2022]
Abstract
Multiple oximes have been synthesized and evaluated for use as countermeasures against chemical warfare nerve agents. The current U.S. military and civilian oxime countermeasure, 2-[(hydroxyimino)methyl]-1-methylpyridin-1-ium chloride (2-PAM), is under consideration for replacement with a more effective acetylcholinesterase reactivator, 1,1'-methylenebis{4-hydroxyiminomethyl}pyridinium dimethanesulfonate (MMB-4). Kinetic data in the scientific literature for MMB-4 are limited; therefore, a physiologically based pharmacokinetic (PBPK) model was developed for a structurally related oxime, 1,1'-trimethylenebis{4-hydroximinomethyl}pyridinium dibromide. Based on a previous model structure for the organophosphate diisopropylfluorophosphate, the model includes key sites of acetylcholinesterase inhibition (brain and diaphragm), as well as fat, kidney, liver, rapidly perfused tissues and slowly perfused tissues. All tissue compartments are diffusion limited. Model parameters were collected from the literature, predicted using quantitative structure-property relationships or, when necessary, fit to available pharmacokinetic data from the literature. The model was parameterized using rat plasma, tissue and urine time course data from intramuscular administration, as well as human blood and urine data from intravenous and intramuscular administration; sensitivity analyses were performed. The PBPK model successfully simulates rat and human data sets and has been evaluated by predicting intravenous mouse and intramuscular human data not used in the development of the model. Monte Carlo analyses were performed to quantify human population kinetic variability in the human evaluation data set. The model identifies potential pharmacokinetic differences between rodents and humans, indicated by differences in model parameters between species. The PBPK model can be used to optimize the dosing regimen to improve oxime therapeutic efficacy in a human population.
Collapse
Affiliation(s)
- Teresa R Sterner
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Bldg 837, Wright-Patterson AFB, OH 45433-5707, USA.
| | | | | | | | | |
Collapse
|
44
|
Pharmacogenomics of phase II metabolizing enzymes and drug transporters: clinical implications. THE PHARMACOGENOMICS JOURNAL 2012; 13:105-9. [PMID: 23044602 DOI: 10.1038/tpj.2012.42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical impact of pharmacogenomics remains a hot topic of current research efforts. Although pharmacogenomics of phase I metabolizing enzymes seems to have been well studied, knowledge on the clinical impact of genetic variability of phase II metabolizing enzymes and drug transporters is more limited. This paper reviews data on the pharmacogenomics of phase II metabolizing enzymes as well as of ATP binding cassette transporters and of solute carrier transporters focusing on clinical implications for drug efficacy and drug toxicity. The clinical impact of some of these polymorphisms has been well defined i.e. the association between polymorphisms of organic anion transporter polypeptides and statin induced myopathy. However, as the same drug may be substrate for different enzymes and different transporters, it is difficult to elucidate the impact of each polymorphism. Investigating the impact of multiple polymorphisms might be more clinically meaningful, although methodologically challenging.
Collapse
|
45
|
Umamaheswaran G, Praveen RG, Arunkumar AS, Das AK, Shewade DG, Adithan C. Genetic analysis of OCT1 gene polymorphisms in an Indian population. INDIAN JOURNAL OF HUMAN GENETICS 2012; 17:164-8. [PMID: 22345987 PMCID: PMC3276984 DOI: 10.4103/0971-6866.92094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND: Genetic variants of the organic cation transporter (OCT1) gene could influence interindividual variation in clinical response to metformin therapy. The genetic basis for the single-nucleotide polymorphism (SNP) of OCT1 gene has been established in other populations, but it remains to be elucidated in the Indian population. This study is focused on OCT1 gene variants rs2282143 (P341L, 1022C>T), rs628031 (M408V, 1222A>G) and rs622342 (1386C>A) frequency distributions in the South Indian Tamilian population. MATERIALS AND METHODS: A total of 112 unrelated healthy subjects of South Indian Tamilian origin, aged 18–60 years, of either sex were recruited for the study. Genotyping was determined using the quantitative real time-polymerase chain reaction and polymerase chain reaction followed by restriction fragment length polymorphism methods. RESULTS: Allele frequencies of rs2282143, rs628031and rs622342 polymorphisms were 8.9%, 80.3% and 24.5%, respectively. Interethnic differences in the genotype and allele frequencies of OCT1 gene polymorphism were observed when compared with other major populations. The SNPs rs2282143, T allele and rs628031, G allele were more common in Asians (5.5–16.8% and 76.2–81%) and African Americans (8.2% and 73.5%) than in Caucasians (0–2% and 57.4–60%). CONCLUSION: This is the first time the frequency of OCT1 gene polymorphism was determined in the Indian population, and is similar to the frequencies observed in African-Americans and other Asian populations but different from those in Caucasians. The data observed in this study would justify further pharmacogenetic studies to potentially evaluate the role of OCT1 gene polymorphism in the therapeutic efficacy of metformin.
Collapse
Affiliation(s)
- Gurusamy Umamaheswaran
- ICMR Centre for Advance Research in Pharmacogenomics, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | | | | | | | | | | |
Collapse
|
46
|
Hirsch A, Hahn D, Kempná P, Hofer G, Nuoffer JM, Mullis PE, Flück CE. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology 2012; 153:4354-66. [PMID: 22778212 DOI: 10.1210/en.2012-1145] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.
Collapse
Affiliation(s)
- Andrea Hirsch
- Department of Pediatrics, Division of Pediatric Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
47
|
Song IS, Lee DY, Shin MH, Kim H, Ahn YG, Park I, Kim KH, Kind T, Shin JG, Fiehn O, Liu KH. Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One 2012; 7:e36637. [PMID: 22590580 PMCID: PMC3348126 DOI: 10.1371/journal.pone.0036637] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/04/2012] [Indexed: 01/11/2023] Open
Abstract
Genetic polymorphisms of the organic cation transporter 2 (OCT2), encoded by SLC22A2, have been investigated in association with metformin disposition. A functional decrease in transport function has been shown to be associated with the OCT2 variants. Using metabolomics, our study aims at a comprehensive monitoring of primary metabolite changes in order to understand biochemical alteration associated with OCT2 polymorphisms and discovery of potential endogenous metabolites related to the genetic variation of OCT2. Using GC-TOF MS based metabolite profiling, clear clustering of samples was observed in Partial Least Square Discriminant Analysis, showing that metabolic profiles were linked to the genetic variants of OCT2. Tryptophan and uridine presented the most significant alteration in SLC22A2-808TT homozygous and the SLC22A2-808G>T heterozygous variants relative to the reference. Particularly tryptophan showed gene-dose effects of transporter activity according to OCT2 genotypes and the greatest linear association with the pharmacokinetic parameters (Clrenal, Clsec, Cl/F/kg, and Vd/F/kg) of metformin. An inhibition assay demonstrated the inhibitory effect of tryptophan on the uptake of 1-methyl-4-phenyl pyrinidium in a concentration dependent manner and subsequent uptake experiment revealed differential tryptophan-uptake rate in the oocytes expressing OCT2 reference and variant (808G>T). Our results collectively indicate tryptophan can serve as one of the endogenous substrate for the OCT2 as well as a biomarker candidate indicating the variability of the transport activity of OCT2.
Collapse
Affiliation(s)
- Im-Sook Song
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Do Yup Lee
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Min-Hye Shin
- Genome Center, University of California Davis, Davis, California, United States of America
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyunmi Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
| | - Yun Gyong Ahn
- Genome Center, University of California Davis, Davis, California, United States of America
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Inmyoung Park
- Department of Land, Air and Water Resources, University of California Davis, Davis, California, United States of America
| | - Kyoung Heon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Tobias Kind
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Jae-Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
- * E-mail: (K-HL); (J-GS); (OF)
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, United States of America
- * E-mail: (K-HL); (J-GS); (OF)
| | - Kwang-Hyeon Liu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Korea
- Genome Center, University of California Davis, Davis, California, United States of America
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
- * E-mail: (K-HL); (J-GS); (OF)
| |
Collapse
|
48
|
Lai Y, Varma M, Feng B, Stephens JC, Kimoto E, El-Kattan A, Ichikawa K, Kikkawa H, Ono C, Suzuki A, Suzuki M, Yamamoto Y, Tremaine L. Impact of drug transporter pharmacogenomics on pharmacokinetic and pharmacodynamic variability - considerations for drug development. Expert Opin Drug Metab Toxicol 2012; 8:723-43. [PMID: 22509796 DOI: 10.1517/17425255.2012.678048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Drug transporter proteins are expressed on the cell membrane, regulating substrate exposure in systemic circulation and/or peripheral tissues. Genetic polymorphism of drug transporter genes encoding these proteins could alter the functional activity and/or protein expression, having effects on absorption, distribution, metabolism and excretion (ADME), efficacy and adverse effects. AREAS COVERED The authors provide the reader with an overview of the pharmacogenetics (PGx) of 12 membrane transporters. The clinical literature is summarized as to the quantitative significance on pharmacokinetics (PK) and implications on pharmacodynamics (PD) and adverse effects, due to transporter influence on intracellular drug concentrations. EXPERT OPINION Unlike polymorphisms for cytochrome P450s (CYPs) resulting in large magnitude of PK variation, genetic mutations for membrane transporters are typically less than threefold alteration in systemic PK for drugs with a few exceptions. However, substantially greater changes in intracellular drug levels may result. We are aware of 1880 exome variants in 12 of the best-studied transporters to date, and nearly 40% of these change the amino acid. However, the functional consequences of most of these variants remain to be determined, and have only been empirically evaluated for a handful. To the extent that genetic polymorphisms impact ADME, it is a variable that will contribute to ethnic differences due to substantial frequency differences for the known variants.
Collapse
Affiliation(s)
- Yurong Lai
- Pfizer Worldwide Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sprowl JA, Mikkelsen TS, Giovinazzo H, Sparreboom A. Contribution of tumoral and host solute carriers to clinical drug response. Drug Resist Updat 2012; 15:5-20. [PMID: 22459901 DOI: 10.1016/j.drup.2012.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.
Collapse
Affiliation(s)
- Jason A Sprowl
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
50
|
Choi MK, Song IS. Genetic variants of organic cation transporter 1 (OCT1) and OCT2 significantly reduce lamivudine uptake. Biopharm Drug Dispos 2012; 33:170-8. [PMID: 22415520 DOI: 10.1002/bdd.1783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study sought to investigate the effect of genetic variants of OCT1 (OCT1-P283L and -P341L) and OCT2 (OCT2-T199I, -T201M and -A270S), which were identified in a Korean population, on the transport of lamivudine in vitro and to compare the substrate dependent effects of OCT1 and OCT2 variants with 1-methyl-4-phenylpyridinium (MPP+), tetraethyl ammonium (TEA), metformin and lamivudine as substrates for these transporters. When the transport kinetics of lamivudine uptake in oocytes overexpressing OCT1 and OCT2 wild-type (WT) and variant proteins were measured, lamivudine uptake mediated by OCT1-WT was saturable, and uptake was decreased in oocytes expressing OCT1-P283L and -P341L variants compared with that in OCT1-WT. The Clint of lamivudine in oocytes expressing OCT1-P283L was decreased by 85.1% compared with OCT1-WT, whereas it was decreased by 48.7% in oocytes expressing OCT1-P341L. The Clint of lamivudine in oocytes expressing OCT2-T199I, -T201M and -A270S was decreased by 86.2%, 88.9% and 73.6%, respectively, compared with OCT2-WT. When comparing various substrates such as MPP+, TEA, metformin and lamivudine, the effects of the OCT1 genetic polymorphisms on their uptake were not identical. However, contrary to the case of OCT1, the uptake of MPP+, TEA, metformin and lamivudine in oocytes expressing OCT2-T199I, -T201M and -A270S variants was decreased significantly compared with that in oocytes expressing OCT2-WT. In conclusion, the effect of genetic variations of OCT1 and OCT2 on the uptake of MPP+, TEA, metformin and lamivudine was substrate-dependent.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an, 330-714, Korea
| | | |
Collapse
|