1
|
Abbas Q, Yousaf B, Ali MU, Munir MAM, El-Naggar A, Rinklebe J, Naushad M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. ENVIRONMENT INTERNATIONAL 2020; 138:105646. [PMID: 32179325 DOI: 10.1016/j.envint.2020.105646] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/24/2023]
Abstract
The ever increasing production and use of nano-enabled commercial products release the massive amount of engineered nanoparticles (ENPs) in the environment. An increasing number of recent studies have shown the toxic effects of ENPs on different organisms, raising concerns over the nano-pollutants behavior and fate in the various environmental compartments. After the release of ENPs in the environment, ENPs interact with various components of the environment and undergoes dynamic transformation processes. This review focus on ENPs transformations in the various environmental compartments. The transformation processes of ENPs are interrelated to multiple environmental aspects. Physical, chemical and biological processes such as the homo- or hetero-agglomeration, dissolution/sedimentation, adsorption, oxidation, reduction, sulfidation, photochemically and biologically mediated reactions mainly occur in the environment consequently changes the mobility and bioavailability of ENPs. Physico-chemical characteristics of ENPs (particle size, surface area, zeta potential/surface charge, colloidal stability, and core-shell composition) and environmental conditions (pH, ionic strength, organic and inorganic colloids, temperature, etc.) are the most important parameters which regulated the ENPs environmental transformations. Meanwhile, in the environment, organisms encountered multiple transformed ENPs rather than the pristine nanomaterials due to their interactions with various environmental materials and other pollutants. Thus it is the utmost importance to study the behavior of transformed ENPs to understand their environmental fate, bioavailability, and mode of toxicity.
Collapse
Affiliation(s)
- Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, Ankara 06800, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Muhammad Ubaid Ali
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Mehr Ahmed Mujtaba Munir
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea
| | - Mu Naushad
- Department of Chemistry, College of Science, Bld#5, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Jiang H, Xie Y, Ge Y, He H, Liu Y. Effects of ultrasonic treatment on dithiothreitol (DTT) assay measurements for carbon materials. J Environ Sci (China) 2019; 84:51-58. [PMID: 31284916 DOI: 10.1016/j.jes.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
The dithiothreitol (DTT) assay is the most commonly used method to quantify the oxidative potential of fine particles. However, the reported DTT decay rates of carbon black (CB) materials vary greatly among different researchers. This might have resulted from either the intrinsic toxicity of CB or the unsuitability of the DTT assay protocol for CB particles. In the current study, the protocol of the DTT assay for CB materials has been carefully evaluated. It was found that the dispersion degree of CB particles in water has a great influence on the DTT decay rate of CB materials. For CB particles (special black 4A (SB4A) and Printex U) and single-walled carbon nanotube tube (SWCNT), the DTT decay rate after sonication for 10 min became 4.2, 4.6 and 1.7 times higher than that without sonication. The rate continued to grow as a function of ultrasound time up to 30 min of sonication. Although the concentration of soluble transition metals and surface oxygen-containing species such as carbonyls increased slightly with sonication, they had no significant effects on the measured DTT activity, while the increase in the dispersion degree of aggregates was found to play a vital role in the observed enhancement of the DTT decay rates for different CB materials. Based on our results, 30 min of sonication is recommended for sample dispersion when measuring the DTT decay rate of CB materials.
Collapse
Affiliation(s)
- Haotian Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Xie
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanli Ge
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yongchun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Jiang H, Liu Y, Xie Y, Liu J, Chen T, Ma Q, He H. Oxidation Potential Reduction of Carbon Nanomaterials during Atmospheric-Relevant Aging: Role of Surface Coating. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10454-10461. [PMID: 31403290 DOI: 10.1021/acs.est.9b02062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials from various sources are the important component of PM2.5 and have many adverse effects on human health. They are prone to interact with other pollutants and subsequently age, defined here as changes in chemical properties. In this work, we investigated the aging process of various carbon nanoparticle samples such as Special Black 4A, Printex U, single-walled carbon nanotubes, and hexane flame soot by ambient air and studied the evolution of their oxidation potential. We found that coatings of inorganic and organic species dominated the aging process of carbonaceous particles by ambient air. The amounts of disordered carbon and C-H functional groups of aged carbonaceous particles decreased during the aging process; meanwhile, the contents of sulfate and nitrate showed significant increases. In addition, the oxidation potential measured by the dithiothreitol assay remarkably declined as a function of aging time with ambient air evidently because of heterogeneous reactions between SO2 and NO2, as well as the coating with organic vapors. This work is important for understanding the oxidation potential changes of carbonaceous particles during atmospheric transport.
Collapse
Affiliation(s)
- Haotian Jiang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yun Xie
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Tianzeng Chen
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qingxin Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Hong He
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| |
Collapse
|
4
|
Mohammadian Y, Rezazadeh Azari M, Peirovi H, Khodagholi F, Pourahmad J, Omidi M, Mehrabi Y, Rafieepour A. Combined toxicity of multi-walled carbon nanotubes and benzo [a] pyrene in human epithelial lung cells. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1442348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yousef Mohammadian
- School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Rezazadeh Azari
- Safety Promotion and Prevention of Injuries Research Center and School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibollah Peirovi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Omidi
- Department of Tissue Engineering and Applied Cell Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Mehrabi
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Athena Rafieepour
- School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Viswanath B, Kim S. Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 242:61-104. [PMID: 27718008 DOI: 10.1007/398_2016_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, nanotechnology revolutionizing both scientific and industrial community due to their applications in the fields of medicine, environmental protection, energy, and space exploration. Despite of the evident benefits of nanoparticles, there are still open questions about the influence of these nanoparticles on human health and environment. This is one of the critical issues that have to be addressed in the near future, before massive production of nanomaterials. Manufactured nanoparticles, which are finding ever-increasing applications in industry and consumer products fall into the category of emerging contaminants with ecological and toxicological effects on populations, communities and ecosystems. The existing experimental knowledge gave evidence that inhaled nanoparticles are less efficiently separated than larger particles by the macrophage clearance mechanisms and these nanoparticles are known to translocate through the lymphatic, circulatory and nervous systems to many tissues and organs, including the brain. In this review we highlight adverse impacts of nanoparticles on human and the environment with special emphasis on green nanoscience as a sustainable alternative.
Collapse
Affiliation(s)
- Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 461-701, Republic of Korea
| | - Sanghyo Kim
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 461-701, Republic of Korea.
- Gil Medical Center, Graduate Gachon Medical Research Institute, Incheon, 405-760, Republic of Korea.
| |
Collapse
|
6
|
Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. ATMOSPHERE 2017. [DOI: 10.3390/atmos8050084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Chapleski RC, Zhang Y, Troya D, Morris JR. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O3, NO3, and OH, on organic surfaces. Chem Soc Rev 2016; 45:3731-46. [DOI: 10.1039/c5cs00375j] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Heterogeneous chemistry of the most important atmospheric oxidants, O3, NO3, and OH, plays a central role in regulating atmospheric gas concentrations, processing aerosols, and aging materials.
Collapse
Affiliation(s)
| | - Yafen Zhang
- Department of Chemistry
- Virginia Tech
- Blacksburg
- USA
| | - Diego Troya
- Department of Chemistry
- Virginia Tech
- Blacksburg
- USA
| | | |
Collapse
|
8
|
Liu Y, Liggio J, Li SM, Breznan D, Vincent R, Thomson EM, Kumarathasan P, Das D, Abbatt J, Antiñolo M, Russell L. Chemical and toxicological evolution of carbon nanotubes during atmospherically relevant aging processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2806-14. [PMID: 25607982 DOI: 10.1021/es505298d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The toxicity of carbon nanotubes (CNTs) has received significant attention due to their usage in a wide range of commercial applications. While numerous studies exist on their impacts in water and soil ecosystems, there is a lack of information on the exposure to CNTs from the atmosphere. The transformation of CNTs in the atmosphere, resulting in their functionalization, may significantly alter their toxicity. In the current study, the chemical modification of single wall carbon nanotubes (SWCNTs) via ozone and OH radical oxidation is investigated through studies that simulate a range of expected tropospheric particulate matter (PM) lifetimes, in order to link their chemical evolution to toxicological changes. The results indicate that the oxidation favors carboxylic acid functionalization, but significantly less than other studies performed under nonatmospheric conditions. Despite evidence of functionalization, neither O3 nor OH radical oxidation resulted in a change in redox activity (potentially giving rise to oxidative stress) or in cytotoxic end points. Conversely, both the redox activity and cytotoxicity of SWCNTs significantly decreased when exposed to ambient urban air, likely due to the adsorption of organic carbon vapors. These results suggest that the effect of gas-particle partitioning of organics in the atmosphere on the toxicity of SWCNTs should be investigated further.
Collapse
Affiliation(s)
- Yongchun Liu
- Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada , 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4122-43. [PMID: 25548015 DOI: 10.1007/s11356-014-3994-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/12/2014] [Indexed: 05/13/2023]
Abstract
Nanotechnology has revolutionized the world through introduction of a unique class of materials and consumer products in many arenas. It has led to production of innovative materials and devices. Despite of their unique advantages and applications in domestic and industrial sectors, use of materials with dimensions in nanometers has raised the issue of safety for workers, consumers, and human environment. Because of their small size and other unique characteristics, nanoparticles have ability to harm human and wildlife by interacting through various mechanisms. We have reviewed the characteristics of nanoparticles which form the basis of their toxicity. This paper also reviews possible routes of exposure of nanoparticles to human body. Dermal contact, inhalation, and ingestion have been discussed in detail. As very limited data is available for long-term human exposures, there is a pressing need to develop the methods which can determine short and long-term effects of nanoparticles on human and environment. We also discuss in brief the strategies which can help to control human exposures to toxic nanoparticles. We have outlined the current status of toxicological studies dealing with nanoparticles, accomplishments, weaknesses, and future challenges.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia,
| | | | | | | | | | | | | |
Collapse
|
10
|
Meesters JAJ, Koelmans A, Quik JTK, Hendriks AJ, van de Meent D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5726-36. [PMID: 24766433 PMCID: PMC6863596 DOI: 10.1021/es500548h] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 05/25/2023]
Abstract
Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.
Collapse
Affiliation(s)
- Johannes A. J. Meesters
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Albert
A. Koelmans
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- IMARES
− Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box
68, 1970 AB IJmuiden, The Netherlands
| | - Joris T. K. Quik
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - A. Jan Hendriks
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Dik van de Meent
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| |
Collapse
|
11
|
Tiwari AJ, Morris JR, Vejerano EP, Hochella MF, Marr LC. Oxidation of c60 aerosols by atmospherically relevant levels of o3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2706-2714. [PMID: 24517376 DOI: 10.1021/es4045693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atmospheric processing of carbonaceous nanoparticles (CNPs) may play an important role in determining their fate and environmental impacts. This work investigates the reaction between aerosolized C60 and atmospherically relevant mixing ratios of O3 at differing levels of humidity. Results indicate that C60 is oxidized by O3 and forms a variety of oxygen-containing functional groups on the aerosol surface, including C60O, C60O2, and C60O3. The pseudo-first-order reaction rate between C60 and O3 ranges from 9 × 10(-6) to 2 × 10(-5) s(-1). The reaction is likely to be limited to the aerosol surface. Exposure to O3 increases the oxidative stress exerted by the C60 aerosols as measured by the dichlorofluorescein acellular assay but not by the uric acid, ascorbic acid, glutathione, or dithiothreitol assays. The initial prevalence of C60O and C60O2 as intermediate products is enhanced at higher humidity, as is the surface oxygen content of the aerosols. These results show that C60 can be oxidized when exposed to O3 under ambient conditions, such as those found in environmental, laboratory, and industrial settings.
Collapse
Affiliation(s)
- Andrea J Tiwari
- Civil & Environmental Engineering, ‡Chemistry, and §Geosciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Burns JM, Pennington PL, Sisco PN, Frey R, Kashiwada S, Fulton MH, Scott GI, Decho AW, Murphy CJ, Shaw TJ, Ferry JL. Surface charge controls the fate of Au nanorods in saline estuaries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12844-12851. [PMID: 24144224 DOI: 10.1021/es402880u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work reports the distribution of negatively charged, gold core nanoparticles in a model marine estuary as a function of time. A single dose of purified polystyrene sulfonate (PSS)-coated gold nanorods was added to a series of three replicate estuarine mesocosms to emulate an abrupt nanoparticle release event to a tidal creek of a Spartina -dominated estuary. The mesocosms contained several phases that were monitored: seawater, natural sediments, mature cordgrass, juvenile northern quahog clam, mud snails, and grass shrimp. Aqueous nanorod concentrations rose rapidly upon initial dosing and then fell to stable levels over the course of approximately 50 h, after which they remained stable for the remainder of the experiment (41 days total). The concentration of nanorods rose in all other phases during the initial phase of the experiment; however, some organisms demonstrated depuration over extended periods of time (100+ h) before removal from the dosed tanks. Clams and biofilm samples were also removed from the contaminated tanks post-exposure to monitor their depuration in pristine seawater. The highest net uptake of gold (mass normalized) occurred in the biofilm phase during the first 24 h, after which it was stable (to the 95% level of confidence) throughout the remainder of the exposure experiment. The results are compared against a previous study of positively charged nanoparticles of the same size to parameterize the role of surface charge in determining nanoparticle fate in complex aquatic environments.
Collapse
Affiliation(s)
- Justina M Burns
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jackson P, Jacobsen NR, Baun A, Birkedal R, Kühnel D, Jensen KA, Vogel U, Wallin H. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem Cent J 2013; 7:154. [PMID: 24034413 PMCID: PMC3848800 DOI: 10.1186/1752-153x-7-154] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships.
Collapse
Affiliation(s)
- Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen Ø, DK-2100, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Meesters JAJ, Veltman K, Hendriks AJ, van de Meent D. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2013; 9:e15-e26. [PMID: 23633247 DOI: 10.1002/ieam.1446] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/26/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Engineered nanomaterials (ENMs) possess novel properties making them attractive for application in a wide spectrum of fields. These novel properties are not accounted for in the environmental risk assessment methods that the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) proposes in their guidance on environmental exposure estimation, although ENMs are already applied in a variety of consumer and industrial products. It is thus necessary to evaluate the guidance document REACH provides on environmental exposure estimation on its applicability to ENMs. This is most urgently the case for engineered nanoparticles (ENPs), as the novel properties are most often only applicable to them. The environmental fate of ENPs was reviewed and compared to the environmental fate of chemicals according to the REACH guidance. Major deviations between the fate of ENPs and predicted fate by REACH were found. They were related to at least 1 of 3 major assumptions made in REACH guidance: 1) in REACH, environmental alteration processes are all thought of as removal processes, whereas alterations of ENPs in the environment may greatly affect their properties, environmental effects, and behavior, 2) in REACH, chemicals are supposed to dissolve instantaneously and completely on release into the environment, whereas ENPs should be treated as nondissolved nanosized solids, and 3) in REACH, partitioning of dissolved chemicals to solid particles in air, water, and soil is estimated with thermodynamic equilibrium coefficients, but in the case of ENPs thermodynamic equilibrium between "dispersed" and "attached" states is generally not expected. The environmental exposure assessment of REACH therefore needs adjustment to cover the specific environmental fate of ENPs. Incorporation of the specific environmental fate processes of ENPs into the environmental risk assessment framework of REACH requires a pragmatic approach.
Collapse
|
16
|
Benn T, Herckes P, Westerhoff P. Fullerenes in Environmental Samples: C60 in Atmospheric Particulate Matter. COMPREHENSIVE ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/b978-0-444-56328-6.00010-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Lowry GV, Hotze EM, Bernhardt ES, Dionysiou DD, Pedersen JA, Wiesner MR, Xing B. Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. JOURNAL OF ENVIRONMENTAL QUALITY 2010; 39:1867-1874. [PMID: 21284284 DOI: 10.2134/jeq2010.0297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The release of engineered nanomaterials (ENMs) into the biosphere will increase as industries find new and useful ways to utilize these materials. Scientists and engineers are beginning to assess the material properties that determine the fate, transport, and effects of ENMs; however, the potential impacts of released ENMs on organisms, ecosystems, and human health remain largely unknown. This special collection of four review papers and four technical papers identifies many key and emerging knowledge gaps regarding the interactions between nanomaterials and ecosystems. These critical knowledge gaps include the form, route, and mass of nanomaterials entering the environment; the transformations and ultimate fate of nanomaterials in the environment; the transport, distribution, and bioavailability of nanomaterials in environmental media; and the organismal responses to nanomaterial exposure and effects of nanomaterial inputs, on ecological communities and biogeochemical processes at relevant environmental concentrations and forms. This introductory section summarizes the state of knowledge and emerging areas of research needs identified within the special collection. Despite recent progress in understanding the transport, transformations, and fate of ENMs in model environments and organisms, there remains a large need for fundamental information regarding releases, distribution, transformations and persistence, and bioavailability of nanomaterials. Moreover, fate, transport, bioaccumulation, and ecological impacts research is needed using environmentally relevant concentrations and forms of ENMs in real field materials and with a broader range of organisms.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil & Environmental Engineering and Chemical Engineering, Carnegie Mellon Univ., Pittsburgh, PA 15213-3890, USA.
| | | | | | | | | | | | | |
Collapse
|