1
|
Zhou Y, Tang Y, Liao C, Su M, Shih K. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130977. [PMID: 36860053 DOI: 10.1016/j.jhazmat.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition-structure-property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
Collapse
Affiliation(s)
- Ying Zhou
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Changzhong Liao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Strawn DG, Hettiarachchi GM. Fifty years of articles in JEQ on trace elements in the environment and future outlook. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1266-1281. [PMID: 34661908 DOI: 10.1002/jeq2.20296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Fifty years ago, the Journal of Environmental Quality (JEQ) was launched to provide an outlet for publication of research on the impacts of agriculture on the environment, and vice versa. A core concept of JEQ is advancement of environmental science, with emphasis on understanding factors that affect the fate, risks, and quality of soil, water, and atmospheric systems, and how these system processes affect plants, microbes, and animals. Trace elements are a focus area of JEQ because when present at higher than natural concentrations, they may pose risks to environmental quality and ecosystem health, depending on their bioavailability. Trace element biogeochemical cycling is affected by anthropogenic influences on land, air, and water, including land management practices such as agriculture and mining. The Journal of Environmental Quality has published a prolific catalog of scientific research publications on trace elements and their risks to humans, soil health, water quality, and the environment. In this review, research on trace elements and their impacts on environmental quality is presented, with a special focus on work published in JEQ.
Collapse
Affiliation(s)
- Daniel G Strawn
- Dep. of Soil and Water Systems, Univ. of Idaho, Moscow, ID, 83844, USA
| | | |
Collapse
|
3
|
Carlomagno I, Antonelli M, Aquilanti G, Bellutti P, Bertuccio G, Borghi G, Cautero G, Cirrincione D, de Giudici G, Ficorella F, Gandola M, Giuressi D, Medas D, Mele F, Menk RH, Olivi L, Orzan G, Picciotto A, Podda F, Rachevski A, Rashevskaya I, Stebel L, Vacchi A, Zampa G, Zampa N, Zorzi N, Meneghini C. Trace-element XAFS sensitivity: a stress test for a new XRF multi-detector. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1811-1819. [PMID: 34738934 PMCID: PMC8570214 DOI: 10.1107/s1600577521008857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.p.m. range. The potentialities of the detector are presented through a case study: the speciation of ultra-diluted elements (Fe, Mn and Cr) in geological rocks from a calcareous formation related to the dispersal processes from Ontong (Java) volcanism (mid-Cretaceous). Trace-elements speciation is crucial in evaluating the impact of geogenic and anthropogenic harmful metals on the environment, and to evaluate the risks to human health and ecosystems. These results show that the new detector is suitable for collecting spectra of 3d elements in trace amounts in a calcareous matrix. The data quality is high enough that quantitative data analysis could be performed to determine their chemical speciation.
Collapse
Affiliation(s)
| | | | | | - Pierluigi Bellutti
- Fondazione Bruno Kessler – FBK, Trento, Italy
- TIFPA – INFN, Trento, Italy
| | | | - Giacomo Borghi
- Fondazione Bruno Kessler – FBK, Trento, Italy
- TIFPA – INFN, Trento, Italy
| | - Giuseppe Cautero
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy
- INFN – Trieste, Padriciano, Trieste, Italy
| | - Daniela Cirrincione
- INFN – Trieste, Padriciano, Trieste, Italy
- Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy
| | - Giovanni de Giudici
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy
| | | | | | - Dario Giuressi
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy
- INFN – Trieste, Padriciano, Trieste, Italy
| | - Daniela Medas
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy
| | - Filippo Mele
- Politecnico di Milano, Como, Italy
- INFN – Milano, Milano, Italy
| | - Ralf H. Menk
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy
- INFN – Trieste, Padriciano, Trieste, Italy
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Canada SK S7N 5A2
| | - Luca Olivi
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy
| | | | - Antonino Picciotto
- Fondazione Bruno Kessler – FBK, Trento, Italy
- TIFPA – INFN, Trento, Italy
| | - Francesca Podda
- Department of Chemical and Geological Science, University of Cagliari, Cagliari, Italy
| | | | | | - Luigi Stebel
- Elettra Sincrotrone Trieste, Basovizza, Trieste, Italy
| | - Andrea Vacchi
- INFN – Trieste, Padriciano, Trieste, Italy
- Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy
| | | | - Nicola Zampa
- INFN – Trieste, Padriciano, Trieste, Italy
- Department of Mathematics, Computer Science, and Physics, University of Udine, Udine, Italy
| | - Nicola Zorzi
- Fondazione Bruno Kessler – FBK, Trento, Italy
- TIFPA – INFN, Trento, Italy
| | | |
Collapse
|
4
|
Luo J, Yu D, Hristovski KD, Fu K, Shen Y, Westerhoff P, Crittenden JC. Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4287-4304. [PMID: 33709709 DOI: 10.1021/acs.est.0c07936] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterial adsorbents (NAs) have shown promise to efficiently remove toxic metals from water, yet their practical use remains challenging. Limited understanding of adsorption mechanisms and scaling up evaluation are the two main obstacles. To fully realize the practical use of NAs for metal removal, we review the advanced tools and chemical principles to identify mechanisms, highlight the importance of adsorption capacity and kinetics on engineering design, and propose a systematic engineering scenario for full-scale NA implementation. Specifically, we provide in-depth insight for using density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate adsorption mechanisms in terms of active site verification and molecular interaction configuration. Furthermore, we discuss engineering issues for designing, scaling, and operating NA systems, including adsorption modeling, reactor selection, and NA regeneration, recovery, and disposal. This review also prioritizes research needs for (i) determining NA microstructure properties using DFT, XAFS, and machine learning and (ii) recovering NAs from treated water. Our critical review is expected to guide and advance the development of highly efficient NAs for engineering applications.
Collapse
Affiliation(s)
- Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Deyou Yu
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kiril D Hristovski
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, Arizona 85212, United States
| | - Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Nanobiotechnology for Agriculture: Smart Technology for Combating Nutrient Deficiencies with Nanotoxicity Challenges. SUSTAINABILITY 2021. [DOI: 10.3390/su13041781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanobiotechnology in agriculture is a driver for modern-day smart, efficient agricultural practices. Nanoparticles have been shown to stimulate plant growth and disease resistance. The goal of sustainable farming can be accomplished by developing and sustainably exploiting the fruits of nanobiotechnology to balance the advantages nanotechnology provides in tackling environmental challenges. This review aims to advance our understanding of nanobiotechnology in relevant areas, encourage interactions within the research community for broader application, and benefit society through innovation to realize sustainable agricultural practices. This review critically evaluates what is and is not known in the domain of nano-enabled agriculture. It provides a holistic view of the role of nanobiotechnology in multiple facets of agriculture, from the synthesis of nanoparticles to controlled and targeted delivery, uptake, translocation, recognition, interaction with plant cells, and the toxicity potential of nanoparticle complexes when presented to plant cells.
Collapse
|
6
|
Terzano R, Denecke MA, Falkenberg G, Miller B, Paterson D, Janssens K. Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report). PURE APPL CHEM 2019; 91:1029-1063. [PMID: 32831407 PMCID: PMC7433040 DOI: 10.1515/pac-2018-0605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.
Collapse
Affiliation(s)
- Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Melissa A. Denecke
- The University of Manchester, Dalton Nuclear Institute, Oxford Road, Manchester M14 9PL, UK
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestr. 85, 22603 Hamburg, Germany
| | - Bradley Miller
- United States Environmental Protection Agency, National Enforcement Investigations Center, Lakewood, Denver, CO 80225, USA
| | - David Paterson
- Australian Synchrotron, ANSTO Clayton Campus, Clayton, Victoria 3168, Australia
| | - Koen Janssens
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|