1
|
Lloyd G, Stephens E, Di Maio A, Thomas C. Activation, incompatibility, and displacement of FIB replicons in E. coli. Nucleic Acids Res 2025; 53:gkaf275. [PMID: 40207625 PMCID: PMC11983097 DOI: 10.1093/nar/gkaf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Multi-replicon sex-factor F is the archetype of the largest plasmid group in clinical Enterobacteriaceae. Such plasmids spread antimicrobial resistance (AMR) and virulence functions in commensal bacteria of humans and animals. Displacing (curing) these plasmids by blocking replication and neutralizing addiction is successful with the curing cassette on a high-copy-number vector but, with conjugative IncP-1 plasmid RK2 as vector for our "anti-F cassette", displacement of F'prolac is inefficient unless curing-plasmid copy-number is raised 1.5- to 2-fold. Here we report that it is the anti-FIB segment, originating from FIB-FII plasmid pO157, which needs potentiation. We show that the FIB replicon in F (F-FIB) is defective due to a sub-optimal rep ribosome-binding-site (rbs) but can be activated by FIB-Rep protein expressed from our anti-FIB segment joined to RK2. Deleting FIB-rep from the anti-F cassette removed the need for potentiation. A pO157-FIB single-replicon plasmid was displaced efficiently by the complete anti-F cassette without potentiation, but an F-FIB plasmid, mutated to have a pO157-like rep rbs, was not, indicating that sequence divergence between F and pO157 FIB replicons has weakened their negative cross-reactivity. Thus, raising vector copy-number slightly may be sufficient to increase displacement of plasmids similar but not identical to the sequences in the curing cassette.
Collapse
Affiliation(s)
- Georgina S Lloyd
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro Di Maio
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Tsoi R, Son HI, Hamrick GS, Tang K, Bethke JH, Lu J, Maddamsetti R, You L. A predatory gene drive for targeted control of self-transmissible plasmids. SCIENCE ADVANCES 2025; 11:eads4735. [PMID: 40173243 PMCID: PMC11963995 DOI: 10.1126/sciadv.ads4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Suppressing plasmid transfer in microbial communities has profound implications due to the role of horizontal gene transfer (HGT) in spreading and maintaining diverse functional traits such as metabolic functions, virulence factors, and antibiotic resistance. However, existing tools for inhibiting HGT are limited in their modes of delivery, efficacy, and scalability. Here, we present a versatile denial-of-spread (DoS) strategy to target and eliminate specific conjugative plasmids. Our strategy exploits retrotransfer, whereby an engineered DoS plasmid is introduced into host cells containing a target plasmid. Acting as a predatory gene drive, DoS propagates itself at the expense of the target plasmid, through competition or active elimination. Once the target plasmid is eradicated, DoS is removed via induced plasmid suicide, resulting in a community containing neither plasmid. The strategy is tunable and scalable for various conjugative plasmids, different mechanisms of plasmid inheritance interruption, and diverse environmental contexts. DoS represents a new tool for precise control of gene persistence in microbial communities.
Collapse
Affiliation(s)
- Ryan Tsoi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Hye-In Son
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Grayson S. Hamrick
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Katherine Tang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan H. Bethke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Kreuze K, Friman VP, Vatanen T. Mobile genetic elements: the hidden puppet masters underlying infant gut microbiome assembly? MICROBIOME RESEARCH REPORTS 2024; 4:7. [PMID: 40207272 PMCID: PMC11977359 DOI: 10.20517/mrr.2024.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025]
Abstract
The gut microbiota is important for healthy infant development. Part of the initial colonizing microbial strains originate from the maternal gut, and undergo a selective event, termed the "colonization bottleneck". While vertical mother-to-infant inheritance and subsequent colonization of bacteria have previously been studied, the role of mobile genetic elements (MGEs) in the infant gut microbiota assembly is unclear. In this perspective article, we discuss how horizontally and vertically transmitted phages and conjugative elements potentially have important roles in infant gut microbiota assembly and colonization through parasitic and mutualistic interactions with their bacterial hosts. While some of these MGEs are likely to be detrimental to their host survival, in other contexts, they may help bacteria colonize new niches, antagonize other bacteria, or protect themselves from other parasitic MGEs in the infant gut. As a result, the horizontal transfer of MGEs likely occurs at high rates in the infant gut, contributing to gene transfer between bacteria and affecting which bacteria can pass the colonization bottleneck. We conclude by highlighting the potential in silico, in vitro, and in vivo methodological approaches that could be employed to study the transmission and colonization dynamics of MGEs and bacteria in the infant gut.
Collapse
Affiliation(s)
- Kim Kreuze
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| | - Ville-Petri Friman
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
| | - Tommi Vatanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki FI-00014, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Gudeta DD, Zhao S, Aljahdali N, Foley SL. Coupling antitoxins and blue/white screening with parAB/resolvase mutation as a strategy for Salmonella spp. plasmid curing. Microbiol Spectr 2024; 12:e0122024. [PMID: 39315784 PMCID: PMC11537010 DOI: 10.1128/spectrum.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the dissemination of multidrug resistance plasmids, including those carrying virulence genes in Salmonella spp., efficient plasmid curing tools are lacking. Plasmid partitioning and multimer resolution systems are attractive targets for plasmid cure. However, plasmid curing strategies targeting these systems are often hindered by the host addiction system through a process known as post-segregation killing. Here, we developed vector tools that can mutate the above systems while replenishing short-lived antitoxins. Cloning was performed using Gibson assembly. parAB or resolvase (res) genes on Incompatibility Group (Inc)FIB, IncA/C, IncX4, and plasmids carried by Salmonella species were deleted by first knocking in the N-terminal ß-galactosidase encoding gene (bgaB), followed by in-frame insertion of its C-terminal region using pDG1 and pDG2 vectors, respectively. pDG1 was used as a backbone to develop a vector, designated as pDG-At, expressing 13 antitoxins driven by strong promoters. Plasmid curing was achieved by transforming pDG-At to parAB or res mutants followed by blue-white screening and PCR; however, parAB mutant isolation with this method was low and often non-reproducible. To elucidate whether the prior presence of pDG-At in cells improves viable mutant isolation, we re-constructed pDG-At, designated as pDG-Atπ, using a vector with the R6Kϒ origin of replication with its π-factor required for replication under araBAD promoter. Results showed that pDG-Atπ can replicate in the absence of arabinose but can be cured by growing cells in glucose-rich media. Next, we repeated IncFIB's parAB deletion using pDG1 but in cells carrying pDG-Atπ. Many white colonies were detected on X-Gal-supplemented media but none of them carried the target parA mutation; however, ~80% of the white colonies lost IncFIB plasmid, while the others retained the wild-type plasmid. Similar results were obtained for IncX4 plasmid curing but also found that this method was not reproducible as the white colonies obtained after allelic replacement did not always result in plasmid curing or mutant isolation. This is the first report describing a simple blue/white screening method for plasmid curing that can avoid laborious screening procedures. IMPORTANCE Plasmids play an important role in bacterial physiology, adaptation, evolution, virulence, and antibiotic resistance. An in-depth study of these roles partly depends on the generation of plasmid-free cells. This study shows that vector tools that target genes required for plasmid stability in the presence of an antitoxin-expressing helper plasmid are a viable approach to cure specific plasmids. Expression of bgaB from target plasmids can greatly facilitate visual detection of plasmid cured colonies avoiding time-consuming screening procedures. This approach can be refined for the development of a universal plasmid curing system that can be used to generate plasmid-free cells in other human bacterial pathogens including Gram positives and Gram negatives.
Collapse
Affiliation(s)
- Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Nesreen Aljahdali
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
5
|
Yen KK, Terlecky AJ, Hao M, Cienfuegos V, Rojtman A, Chen L, Kreiswirth BN. Curing of common plasmids in gram-negative bacteria using a Cas9-based conjugative vector. J Microbiol Methods 2024; 226:107047. [PMID: 39303991 DOI: 10.1016/j.mimet.2024.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
We report the creation of 17 Escherichia coli strains harboring the conjugative plasmid pLCasCureT with a CRISPR-Cas9 system to surgically "cure" the most common plasmids among Enterobacterales species. This approach can create isogenic pairs of strains to study host-plasmid interactions, correlate plasmid genotype and phenotype, and create plasmid-free cloning strains.
Collapse
Affiliation(s)
- Kelly K Yen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States of America.
| | - Austin J Terlecky
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States of America
| | - Mingju Hao
- The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | | | - Albert Rojtman
- Jersey Shore University Medical Center, Neptune, NJ 07753, United States of America
| | - Liang Chen
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, United States of America
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States of America
| |
Collapse
|
6
|
Gruzdev N, Katz C, Yadid I. Curing of a field strain of Salmonella enterica serovar Infantis isolated from poultry from its highly stable pESI like plasmid. J Microbiol Methods 2024; 222:106959. [PMID: 38782300 DOI: 10.1016/j.mimet.2024.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Salmonella enterica serovar Infantis (S. infantis) is an important emerging pathogen, associated with poultry and poultry products and related to an increasing number of human infections in many countries. A concerning trend among S. infantis isolates is the presence of plasmid-mediated multidrug resistance. In many instances, the genes responsible for this resistance are carried on a megaplasmid known as the plasmid of emerging S. infantis (pESI) or pESI like plasmids. Plasmids can be remarkably stable due to the presence of multiple replicons and post-segregational killing systems (PSKs), which contribute to their maintenance within bacterial populations. To enhance our understanding of S. infantis and its multidrug resistance determinants toward the development of new vaccination strategies, we have devised a new method for targeted plasmid curing. This approach effectively overcomes plasmid addiction by leveraging the temporal overproduction of specific antitoxins coupled with the deletion of the partition region. By employing this strategy, we successfully generated a plasmid-free strain from a field isolate derived from S. infantis 119,944. This method provides valuable tools for studying S. infantis and its plasmid-borne multidrug resistance mechanisms and can be easily adopted for plasmid curing from other related bacteria.
Collapse
Affiliation(s)
- Nadya Gruzdev
- Migal-Galilee Research Institute, Kiryat-Shmona 1101602, Israel
| | - Chen Katz
- Migal-Galilee Research Institute, Kiryat-Shmona 1101602, Israel
| | - Itamar Yadid
- Migal-Galilee Research Institute, Kiryat-Shmona 1101602, Israel; Tel-Hai College, Upper Galilee 1220800, Israel.
| |
Collapse
|
7
|
Wi SM, Kim SK, Lee JB, Yoon JW. Acid tolerance of enterohemorrhagic Escherichia coli O157:H7 strain ATCC 43894 and its relationship with a large virulence plasmid pO157. Vet Microbiol 2023; 284:109833. [PMID: 37515979 DOI: 10.1016/j.vetmic.2023.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a zoonotic pathogen that causes a severe intestinal infection including hemolytic uremic syndrome in humans. Various factors contribute to its pathogenesis, including a large virulence plasmid pO157. This F-like 92-kb plasmid is isolated in virtually all clinical EHEC isolates, and is considered a hallmark of EHEC virulence. A previous report stated that removal of pO157 from EHEC ATCC 43894 induced overexpression of GadAB that are essential in glutamate-dependent acid resistance (GDAR) system, yet the mechanism remains elusive. Based on this observation, we surmised that pO157 is involved in the regulation of GDAR system. We comparatively analyzed 43894 and its pO157-cured (ΔpO157) mutant 277 for i) their acid resistance, ii) changes in the transcriptional profiles and iii) expression of GDAR associated genes/proteins. Survivability of 43894 upon exposure to acidic conditions was significantly lower than the ΔpO157 mutant. In addition, RNA-sequencing revealed that genes involved in GDAR were significantly down-regulated in 43894 when compared to the ΔpO157 mutant. Exogenous expression of GadE in 43894 led to expression of GadAB, suggesting possible intervention of pO157 in GDAR regulation. Despite these findings, reintroduction of pO157 into 277 did not reverted Gad overexpression. Likewise, removing pO157 from 43894 using the plasmid incompatibility method did not induce Gad overexpression as shown in 277. Taken together, the results suggest that variation in acid resistance among EHEC isolates exists, and the large virulence plasmid pO157 has no effect on weak acid resistance phenotype displayed in 43894.
Collapse
Affiliation(s)
- Seon Mi Wi
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
8
|
Xiao Y, Zhang Y, Xie F, Olsen RH, Shi L, Li L. Inhibition of Plasmid Conjugation in Escherichia coli by Targeting rbsB Gene Using CRISPRi System. Int J Mol Sci 2023; 24:10585. [PMID: 37445761 DOI: 10.3390/ijms241310585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic-resistant genes (ARGs) among human pathogens. The spread of ARGs can be halted or diminished by interfering with the conjugation process. In this study, we explored the possibility of using an rbsB gene as a single target to inhibit plasmid-mediated horizontal gene transfer in Escherichia coli by CRISPR interference (CRISPRi) system. Three single-guide RNAs (sgRNAs) were designed to target the rbsB gene. The transcriptional levels of the rbsB gene, the conjugation-related genes, and the conjugation efficiency in the CRISPRi strain were tested. We further explored the effect of the repressed expression of the rbsB gene on the quorum sensing (QS) system and biofilm formation. The results showed that the constructed CRISPRi system was effective in repressing the transcriptional level of the rbsB gene at a rate of 66.4%. The repressed expression of the rbsB gene resulted in the reduced conjugation rate of RP4 plasmid by 88.7%, which significantly inhibited the expression of the conjugation-related genes (trbBp, trfAp, traF and traJ) and increased the global regulator genes (korA, korB and trbA). The repressed rbsB gene expression reduced the depletion of autoinducer 2 signals (AI-2) by 12.8% and biofilm formation by a rate of 68.2%. The results of this study indicated the rbsB gene could be used as a universal target for the inhibition of conjugation. The constructed conjugative CRISPRi system has the potential to be used in ARG high-risk areas.
Collapse
Affiliation(s)
- Yawen Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Fengjun Xie
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Maurya AP, Lazdins A, Wilson H, Lloyd GS, Stephens ER, Haines AS, Thomas CM. Iteron control of oriV function in IncP-1 plasmid RK2. Plasmid 2023; 126:102681. [PMID: 36990191 DOI: 10.1016/j.plasmid.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Replication control of many plasmids is mediated by the balance between the positive and negative effects of Rep protein binding repeated sequences (iterons) associated with the replication origin, oriV. Negative control is thought to be mediated by dimeric Rep protein linking iterons in a process termed "handcuffing". The well-studied oriV region of RK2 contains 9 iterons arranged as a singleton (iteron 1), a group of 3 (iterons 2-4) and a group of 5 (iterons 5-9), but only iterons 5 to 9 are essential for replication. An additional iteron (iteron 10), oriented in the opposite direction, is also involved and reduces copy-number nearly two-fold. Since iterons 1 and 10 share an identical upstream hexamer (5' TTTCAT 3') it has been hypothesised that they form a TrfA-mediated loop facilitated by their inverted orientation. Here we report that contrary to the hypothesis, flipping one or other so they are in direct orientation results in marginally lower rather than higher copy-number. In addition, following mutagenesis of the hexamer upstream of iteron 10, we report that the Logo for the hexamer "upstream" of the regulatory iterons (1 to 4 and 10) differs from that of the essential iterons, suggesting functional differences in their interaction with TrfA.
Collapse
Affiliation(s)
- Anand P Maurya
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro Lazdins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Helen Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina S Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
10
|
Kitagawa W, Hata M. Development of Efficient Genome-Reduction Tool Based on Cre/ loxP System in Rhodococcus erythropolis. Microorganisms 2023; 11:microorganisms11020268. [PMID: 36838232 PMCID: PMC9959502 DOI: 10.3390/microorganisms11020268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Rhodococcus has been extensively studied for its excellent ability to degrade artificial chemicals and its capability to synthesize biosurfactants and antibiotics. In recent years, studies have attempted to use Rhodococcus as a gene expression host. Various genetic tools, such as plasmid vectors, transposon mutagenesis, and gene disruption methods have been developed for use in Rhodococcus; however, no effective method has been reported for performing large-size genome reduction. Therefore, the present study developed an effective plasmid-curing method using the levansucrase-encoding sacB gene and a simple two-step genome-reduction method using a modified Cre/loxP system. For the results, R. erythropolis JCM 2895 was used as the model; a mutant strain that cured all four plasmids and deleted seven chromosomal regions was successfully obtained in this study. The total DNA deletion size was >600 kb, which corresponds mostly to 10% of the genome size. Using this method, a genome-structure-stabilized and unfavorable gene/function-lacking host strain can be created in Rhodococcus. This genetic tool will help develop and improve Rhodococcus strains for various industrial and environmental applications.
Collapse
Affiliation(s)
- Wataru Kitagawa
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), Sapporo 062-8517, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
- Correspondence:
| | - Miyako Hata
- Bioproduction Research Institute, National Institute of Advanced Industrial and Technology (AIST), Sapporo 062-8517, Japan
| |
Collapse
|
11
|
Palkovicova J, Sukkar I, Delafuente J, Valcek A, Medvecky M, Jamborova I, Bitar I, Phan MD, San Millan A, Dolejska M. Fitness effects of blaCTX-M-15-harbouring F2:A1:B- plasmids on their native Escherichia coli ST131 H30Rx hosts. J Antimicrob Chemother 2022; 77:2960-2963. [PMID: 35880751 DOI: 10.1093/jac/dkac250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To investigate the fitness effects of large blaCTX-M-15-harbouring F2:A1:B- plasmids on their native Escherichia coli ST131 H30Rx hosts. METHODS We selected five E. coli ST131 H30Rx isolates of diverse origin, each carrying an F2:A1:B- plasmid with the blaCTX-M-15 gene. The plasmid was eliminated from each isolate by displacement using an incompatible curing plasmid, pMDP5_cureEC958. WGS was performed to obtain complete chromosome and plasmid sequences of original isolates and to detect chromosomal mutations in 'cured' clones. High-throughput competition assays were conducted to determine the relative fitness of cured clones compared with the corresponding original isolates. RESULTS We were able to successfully eliminate the F2:A1:B- plasmids from all five original isolates using pMDP5_cureEC958. The F2:A1:B- plasmids produced non-significant fitness effects in three isolates and moderate reductions in relative fitness (3%-4%) in the two remaining isolates. CONCLUSIONS We conclude that F2:A1:B- plasmids pose low fitness costs in their E. coli ST131 H30Rx hosts. This plasmid-host fitness compatibility is likely to promote the maintenance of antibiotic resistance in this clinically important E. coli lineage.
Collapse
Affiliation(s)
- Jana Palkovicova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Javier Delafuente
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
| | - Adam Valcek
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Microbial Resistance and Drug Discovery, VIB-VUB Centre for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Matej Medvecky
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ivana Jamborova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Ibrahim Bitar
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Minh Duy Phan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, University of Veterinary Sciences Brno, Brno, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
12
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
13
|
Plasmid-mediated ciprofloxacin resistance imparts a selective advantage on Escherichia coli ST131. Antimicrob Agents Chemother 2021; 66:e0214621. [PMID: 34780264 DOI: 10.1128/aac.02146-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli ST131 is a recently emerged antibiotic resistant clone responsible for high rates of urinary tract and bloodstream infections. Despite its global dominance, the precise mechanisms that have driven the rapid dissemination of ST131 remain unknown. Here, we show that the plasmid-associated resistance gene encoding the AAC(6')-Ib-cr enzyme that inactivates the fluoroquinolone antibiotic ciprofloxacin is present in >70% of strains from the most rapidly expanding subgroup of multidrug resistant ST131. Using a series of genome-edited and plasmid-cured isogenic strains, we demonstrate that the aac(6')-Ib-cr gene confers a selective advantage on ST131 in the presence of ciprofloxacin, even in strains containing chromosomal GyrA and ParC FQ-resistance mutations. Further, we identify a pattern of emerging carbapenem resistance in other common E. coli clones carrying both aac(6')-Ib-cr and chromosomal FQ-resistance mutations, suggesting this dual resistance combination may also impart a selective advantage on these non-ST131 antibiotic resistant lineages.
Collapse
|
14
|
Molecular characterization of plasmids encoding bla CTX-M from faecal Escherichia coli in travellers returning to the UK from South Asia. J Hosp Infect 2021; 114:134-143. [PMID: 33862156 DOI: 10.1016/j.jhin.2021.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The global prevalence of extended-spectrum beta-lactamase-producing Escherichia coli is rising and is dominated by blaCTX-M spread by plasmids. Travellers to South Asia from Western Europe have high rates of acquisition of faecal CTX-M-producing E. coli (CTX-M-EC). AIMS To determine the conjugative ability of CTX-M-EC acquired by healthy volunteers after travel to South Asia, the proportion of travel-acquired CTX-M-EC where blaCTX-M is encoded on a plasmid vs on the bacterial chromosome, and the relatedness of travel-acquired CTX-M-EC plasmids to previously sequenced plasmids. METHODS Faecal samples were collected pre- and post-travel from 23 volunteers who visited South Asia, and CTX-M-EC were cultured. After short- and long-read sequencing, 10 plasmid sequences were identified and compared with previously sequenced plasmids in GenBank. Conjugation to E. coli K-12 was undertaken using filter mating. FINDINGS Thirty-five percent of CTX-M-EC isolates tested transferred the blaCTX-M plasmid by conjugation. Travel-acquired CTX-M-EC carried blaCTX-M on a plasmid in 62% of isolates, whereas 38% of isolates had blaCTX-M on the chromosome. CTX-M-EC plasmids acquired after travel to South Asia had close homology to previously described epidemic plasmids which are widely disseminated in humans, animals and the natural environment. CONCLUSION Globally successful epidemic plasmids are involved in the spread of CTX-M-EC. Targeted strategies may be used to displace such plasmids from the host strain as part of efforts in infection prevention and control in healthcare settings. Bacteria with blaCTX-M plasmids were readily acquired by healthy volunteers, and were carried on return to the UK, providing opportunities for onward dissemination.
Collapse
|
15
|
Lan YJ, Tan SI, Cheng SY, Ting WW, Xue C, Lin TH, Cai MZ, Chen PT, Ng IS. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Vrancianu CO, Popa LI, Bleotu C, Chifiriuc MC. Targeting Plasmids to Limit Acquisition and Transmission of Antimicrobial Resistance. Front Microbiol 2020; 11:761. [PMID: 32435238 PMCID: PMC7219019 DOI: 10.3389/fmicb.2020.00761] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a significant global threat to both public health and the environment. The emergence and expansion of AMR is sustained by the enormous diversity and mobility of antimicrobial resistance genes (ARGs). Different mechanisms of horizontal gene transfer (HGT), including conjugation, transduction, and transformation, have facilitated the accumulation and dissemination of ARGs in Gram-negative and Gram-positive bacteria. This has resulted in the development of multidrug resistance in some bacteria. The most clinically significant ARGs are usually located on different mobile genetic elements (MGEs) that can move intracellularly (between the bacterial chromosome and plasmids) or intercellularly (within the same species or between different species or genera). Resistance plasmids play a central role both in HGT and as support elements for other MGEs, in which ARGs are assembled by transposition and recombination mechanisms. Considering the crucial role of MGEs in the acquisition and transmission of ARGs, a potential strategy to control AMR is to eliminate MGEs. This review discusses current progress on the development of chemical and biological approaches for the elimination of ARG carriers.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Laura Ioana Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Coralia Bleotu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
17
|
Volke DC, Friis L, Wirth NT, Turlin J, Nikel PI. Synthetic control of plasmid replication enables target- and self-curing of vectors and expedites genome engineering of Pseudomonas putida. Metab Eng Commun 2020; 10:e00126. [PMID: 32215253 PMCID: PMC7090339 DOI: 10.1016/j.mec.2020.e00126] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering of non-conventional microorganisms calls for the development of dedicated synthetic biology tools. Pseudomonas putida is a Gram-negative, non-pathogenic soil bacterium widely used for metabolic engineering owing to its versatile metabolism and high levels of tolerance to different types of stress. Genome editing of P. putida largely relies on homologous recombination events, assisted by helper plasmid-based expression of genes encoding DNA modifying enzymes. Plasmid curing from selected isolates is the most tedious and time-consuming step of this procedure, and implementing commonly used methods to this end in P. putida (e.g. temperature-sensitive replicons) is often impractical. To tackle this issue, we have developed a toolbox for both target- and self-curing of plasmid DNA in Pseudomonas species. Our method enables plasmid-curing in a simple cultivation step by combining in vivo digestion of vectors by the I-SceI homing nuclease with synthetic control of plasmid replication, triggered by the addition of a cheap chemical inducer (3-methylbenzoate) to the medium. The system displays an efficiency of vector curing >90% and the screening of plasmid-free clones is greatly facilitated by the use of fluorescent markers that can be selected according to the application intended. Furthermore, quick genome engineering of P. putida using self-curing plasmids is demonstrated through genome reduction of the platform strain EM42 by eliminating all genes encoding β-lactamases, the catabolic ben gene cluster, and the pyoverdine synthesis machinery. Physiological characterization of the resulting streamlined strain, P. putida SEM10, revealed advantageous features that could be exploited for metabolic engineering. Plasmid-curing is the most time-consuming step in genome engineering approaches. We have developed a system for easy target- and self-curing of plasmid DNA. Synthetic control of replication and highly-specific in vivo DNA digestion were used. Plasmid curing with this system displays an efficiency >90% in a 24-h cultivation. Quick genome engineering facilitated genome reduction of P. putida.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Laura Friis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Nicolas T Wirth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Justine Turlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
18
|
Lazdins A, Maurya AP, Miller CE, Kamruzzaman M, Liu S, Stephens ER, Lloyd GS, Haratianfar M, Chamberlain M, Haines AS, Kreft JU, Webber MA, Iredell J, Thomas CM. Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS One 2020; 15:e0225202. [PMID: 31940351 PMCID: PMC6961859 DOI: 10.1371/journal.pone.0225202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.
Collapse
Affiliation(s)
- Alessandro Lazdins
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Anand Prakash Maurya
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Claire E. Miller
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Muhammad Kamruzzaman
- University of Sydney, Centre for Infectious Disease & Microbiology, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Shuting Liu
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Elton R. Stephens
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Georgina S. Lloyd
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mona Haratianfar
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Melissa Chamberlain
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Anthony S. Haines
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Jan-Ulrich Kreft
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mark. A. Webber
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Jonathan Iredell
- University of Sydney, Centre for Infectious Disease & Microbiology, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Christopher M. Thomas
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| |
Collapse
|
19
|
DelaFuente J, Rodriguez-Beltran J, San Millan A. Methods to Study Fitness and Compensatory Adaptation in Plasmid-Carrying Bacteria. Methods Mol Biol 2020; 2075:371-382. [PMID: 31584176 DOI: 10.1007/978-1-4939-9877-7_26] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mobile genetic elements such as plasmids mediate horizontal gene transfer in prokaryotes, promoting bacterial adaptation and evolution. Despite the potential advantages conferred by these genetic elements, plasmids can also produce a fitness cost when they arrive to a new host. This initial burden is one of the main limits to the spread of plasmids in bacterial populations. However, plasmid costs can be ameliorated over time through compensatory mutations in the plasmid or the chromosome (compensatory adaptation). Understanding the origin of the cost produced by plasmids and the potential for compensatory adaptation is crucial to predict the spread and evolution of plasmid-mediated traits, such as antibiotic resistance. Here, we describe a simple protocol designed to analyze the fitness effects of a plasmid in a new host bacterium. We also provide a method to examine the potential for compensatory adaptation, using experimental evolution, and to elucidate if compensation originates in the plasmid, the bacterium, or both.
Collapse
Affiliation(s)
- Javier DelaFuente
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jeronimo Rodriguez-Beltran
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Alvaro San Millan
- Department of Microbiology, Hospital Universitario Ramon y Cajal (IRYCIS), Madrid, Spain.
- Network Research Centre for Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
20
|
Wang P, He D, Li B, Guo Y, Wang W, Luo X, Zhao X, Wang X. Eliminating mcr-1-harbouring plasmids in clinical isolates using the CRISPR/Cas9 system. J Antimicrob Chemother 2019; 74:2559-2565. [PMID: 31203365 DOI: 10.1093/jac/dkz246] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES To eliminate mcr-1-harbouring plasmids and MDR plasmids in clinical Escherichia coli isolates. METHODS Plasmid pMBLcas9 expressing Cas9 was constructed and used to clone target single-guide RNAs (sgRNAs) for plasmid curing. The recombinant plasmid pMBLcas9-sgRNA was transferred by conjugation into two clinical E. coli isolates. The curing efficiency of different sgRNAs targeting conserved genes was tested. The elimination of targeted plasmids and the generation of transposase-mediated recombination of p14EC033a variants were characterized by PCR and DNA sequencing. RESULTS In this study, four native plasmids in isolate 14EC033 and two native plasmids in isolate 14EC007 were successfully eliminated in a step-by-step manner using pMBLcas9. Moreover, two native plasmids in 14EC007 were simultaneously eliminated by tandemly cloning multiple sgRNAs in pMBLcas9, sensitizing 14EC007 to polymyxin and carbenicillin. In 14EC033 with two mcr-1-harbouring plasmids, IncI2 plasmid p14EC033a and IncX4 plasmid p14EC033b, a single mcr-1 sgRNA mediated the loss of p14EC033b and generated a mutant p14EC033a in which the mcr-1 gene was deleted. An insertion element, IS5, located upstream of mcr-1 in p14EC033a was responsible for transposase-mediated recombination, resulting in mcr-1 gene deletion instead of plasmid curing. CONCLUSIONS CRISPR/Cas9 can be used to efficiently sensitize clinical isolates to antibiotics in vitro. For isolates with multiple plasmids, the CRISPR/Cas9 approach can either remove each plasmid in a stepwise manner or simultaneously remove multiple plasmids in one step. Moreover, this approach can be used to delete multiple gene copies by using only one sgRNA. However, caution must be exercised to avoid unwanted recombination events during genetic manipulation.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Dongmei He
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongjian Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xuanyu Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, the South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Abstract
Escherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli. Proteins secreted by the type V secretion system possess multiple functions, including the capacity to mediate adhesion, aggregation, and biolfilm formation. The type V secretion system can be divided into five subclasses, one of which is the type Ve system. Proteins of the type Ve secretion system are also referred to as inverse autotransporters (IATs). In this study, we performed an in silico analysis of 126 completely sequenced Escherichia coli genomes available in the NCBI database and identified several distinct IAT-encoding gene families whose distribution varied throughout the E. coli phylogeny. The genes included three characterized IATs (intimin, fdeC, and yeeJ) and four uncharacterized IATs (here named iatA, iatB, iatC, and iatD). The four iat genes were cloned from the completely sequenced environmental E. coli strain SMS-3-5 and characterized. Three of these IAT proteins (IatB, IatC, and IatD) were expressed at the cell surface and possessed the capacity to mediate biofilm formation in a recombinant E. coli K-12 strain. Further analysis of the iatB gene, which showed a unique association with extraintestinal E. coli strains, suggested that its regulation is controlled by the LeuO global regulator. Overall, this study provides new data describing the prevalence, sequence variation, domain structure, function, and regulation of IATs found in E. coli. IMPORTANCEEscherichia coli is one of the most prevalent facultative anaerobes of the human gut. E. coli normally exists as a harmless commensal but can also cause disease following the acquisition of genes that enhance its pathogenicity. Adhesion is an important first step in colonization of the host and is mediated by an array of cell surface components. In E. coli, these include a family of adhesins secreted by the type V secretion system. Here, we identified and characterized new proteins from an emerging subclass of the type V secretion system known as the inverse autotransporters (IATs). We found that IAT-encoding genes are present in a wide range of strains and showed that three novel IATs were localized on the E. coli cell surface and mediated biofilm formation. Overall, this study provides new insight into the prevalence, function, and regulation of IATs in E. coli.
Collapse
|
22
|
Raymond B. Five rules for resistance management in the antibiotic apocalypse, a road map for integrated microbial management. Evol Appl 2019; 12:1079-1091. [PMID: 31297143 PMCID: PMC6597870 DOI: 10.1111/eva.12808] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Resistance to new antimicrobials can become widespread within 2-3 years. Resistance problems are particularly acute for bacteria that can experience selection as both harmless commensals and pathogenic hospital-acquired infections. New drugs, although welcome, cannot tackle the antimicrobial resistance crisis alone: new drugs must be partnered with more sustainable patterns of use. However, the broader experience of resistance management in other disciplines, and the assumptions on which resistance rests, is not widely appreciated in clinical and microbiological disciplines. Improved awareness of the field of resistance management could improve clinical outcomes and help shape novel solutions. Here, the aim is to develop a pragmatic approach to developing a sustainable integrated means of using antimicrobials, based on an interdisciplinary synthesis of best practice, recent theory and recent clinical data. This synthesis emphasizes the importance of pre-emptive action and the value of reducing the supply of genetic novelty to bacteria under selection. The weight of resistance management experience also cautions against strategies that over-rely on the fitness costs of resistance or low doses. The potential (and pitfalls) of shorter courses, antibiotic combinations and antibiotic mixing or cycling are discussed in depth. Importantly, some of variability in the success of clinical trials of mixing approaches can be explained by the number and diversity of drugs in a trial, as well as whether trials encompass single wards or the wider transmission network that is a hospital. Consideration of the importance of data, and of the initially low frequency of resistance, leads to a number of additional recommendations. Overall, reduction in selection pressure, interference with the transmission of problematic genotypes and multidrug approaches (combinations, mixing or cycling) are all likely to be required for sustainability and the protection of forthcoming drugs.
Collapse
|
23
|
Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing. FEMS Microbiol Rev 2018; 42:781-804. [PMID: 30085063 PMCID: PMC6199537 DOI: 10.1093/femsre/fuy031] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem hindering treatment of bacterial infections, rendering many aspects of modern medicine less effective. AMR genes (ARGs) are frequently located on plasmids, which are self-replicating elements of DNA. They are often transmissible between bacteria, and some have spread globally. Novel strategies to combat AMR are needed, and plasmid curing and anti-plasmid approaches could reduce ARG prevalence, and sensitise bacteria to antibiotics. We discuss the use of curing agents as laboratory tools including chemicals (e.g. detergents and intercalating agents), drugs used in medicine including ascorbic acid, psychotropic drugs (e.g. chlorpromazine), antibiotics (e.g. aminocoumarins, quinolones and rifampicin) and plant-derived compounds. Novel strategies are examined; these include conjugation inhibitors (e.g. TraE inhibitors, linoleic, oleic, 2-hexadecynoic and tanzawaic acids), systems designed around plasmid incompatibility, phages and CRISPR/Cas-based approaches. Currently, there is a general lack of in vivo curing options. This review highlights this important shortfall, which if filled could provide a promising mechanism to reduce ARG prevalence in humans and animals. Plasmid curing mechanisms which are not suitable for in vivo use could still prove important for reducing the global burden of AMR, as high levels of ARGs exist in the environment.
Collapse
Affiliation(s)
- Michelle M C Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham B15 2TT, UK
| | - Maria Laura Ciusa
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 2018; 72:2145-2155. [PMID: 28541467 DOI: 10.1093/jac/dkx146] [Citation(s) in RCA: 526] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Globally, rates of ESBL-producing Enterobacteriaceae are rising. We undertook a literature review, and present the temporal trends in blaCTX-M epidemiology, showing that blaCTX-M-15 and blaCTX-M-14 have displaced other genotypes in many parts of the world. Explanations for these changes can be attributed to: (i) horizontal gene transfer (HGT) of plasmids; (ii) successful Escherichia coli clones; (iii) ESBLs in food animals; (iv) the natural environment; and (v) human migration and access to basic sanitation. We also provide explanations for the changing epidemiology of blaCTX-M-2 and blaCTX-M-27. Modifiable anthropogenic factors, such as poor access to basic sanitary facilities, encourage the spread of blaCTX-M and other antimicrobial resistance (AMR) genes, such as blaNDM, blaKPC and mcr-1. We provide further justification for novel preventative and interventional strategies to reduce transmission of these AMR genes.
Collapse
Affiliation(s)
- Edward R Bevan
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,Public Health England, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham B5 9SS, UK
| | - Annie M Jones
- Magus Strategic Communications Ltd, Marr House, Scagglethorpe, Malton YO17?8ED, UK
| | - Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,Public Health England, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham B5 9SS, UK
| |
Collapse
|
25
|
König E, Zerbini F, Zanella I, Fraccascia D, Grandi G. Multiple Stepwise Gene Knockout Using CRISPR/Cas9 in Escherichia coli. Bio Protoc 2018; 8:e2688. [PMID: 34179238 PMCID: PMC8203979 DOI: 10.21769/bioprotoc.2688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 11/02/2022] Open
Abstract
With the recent implementation of the CRISPR/Cas9 technology as a standard tool for genome editing, laboratories all over the world are undergoing one of the biggest advancements in molecular biology since PCR. The key advantage of this method is its simplicity and universal applicability for species of any phylum. Of particular interest is the extensively studied Gram-negative bacterium Escherichia coli, as it is considered as the workhorse for both research and industrial purposes. Here, we present a simple, robust and effective protocol using the CRISPR/Cas9 system in combination with the λ Red machinery for gene knockout in E. coli. Crucial in our procedure is the use of a double-stranded donor DNA and a curing strategy for removal of the guide RNA encoding plasmid that allows starting a new mutation after only two working days. Our protocol allows multiple, stepwise gene knockout strains with high mutagenesis efficiencies applicable for high-throughput approaches.
Collapse
Affiliation(s)
- Enrico König
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Francesca Zerbini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Ilaria Zanella
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Davide Fraccascia
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| | - Guido Grandi
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Trento, Italy
| |
Collapse
|
26
|
Abstract
Plasmids are highly useful tools for studying living cells and for heterologous expression of genes and pathways in cell factories. Standardized tools and operating procedures for handling such DNA vectors are core principles in synthetic biology. Here, we describe protocols for molecular cloning and exchange of genetic parts in the Standard European Vectors Architecture (SEVA) vector system. Additionally, to facilitate rapid testing and iterative bioengineering using different vector designs, we provide a one-step protocol for a universal CRISPR-Cas9-based plasmid curing system (pFREE) and demonstrate the application of this system to cure SEVA constructs (all vectors are available at SEVA/Addgene).
Collapse
Affiliation(s)
- Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
27
|
Lauritsen I, Porse A, Sommer MOA, Nørholm MHH. A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microb Cell Fact 2017; 16:135. [PMID: 28764701 PMCID: PMC5540278 DOI: 10.1186/s12934-017-0748-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/22/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plasmids are widely used and essential tools in molecular biology. However, plasmids often impose a metabolic burden and are only temporarily useful for genetic engineering, bio-sensing and characterization purposes. While numerous techniques for genetic manipulation exist, a universal tool enabling rapid removal of plasmids from bacterial cells is lacking. RESULTS Based on replicon abundance and sequence conservation analysis, we show that the vast majority of bacterial cloning and expression vectors share sequence similarities that allow for broad CRISPR-Cas9 targeting. We have constructed a universal plasmid-curing system (pFREE) and developed a one-step protocol and PCR procedure that allow for identification of plasmid-free clones within 24 h. While the context of the targeted replicons affects efficiency, we obtained curing efficiencies between 40 and 100% for the plasmids most widely used for expression and engineering purposes. By virtue of the CRISPR-Cas9 targeting, our platform is highly expandable and can be applied in a broad host context. We exemplify the wide applicability of our system in Gram-negative bacteria by demonstrating the successful application in both Escherichia coli and the promising cell factory chassis Pseudomonas putida. CONCLUSION As a fast and freely available plasmid-curing system, targeting virtually all vectors used for cloning and expression purposes, we believe that pFREE has the potential to eliminate the need for individualized vector suicide solutions in molecular biology. We envision the application of pFREE to be especially useful in methodologies involving multiple plasmids, used sequentially or simultaneously, which are becoming increasingly popular for genome editing or combinatorial pathway engineering.
Collapse
Affiliation(s)
- Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Morten O. A. Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Abstract
Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile genetic elements (MGE) from other lineages. Newly acquired MGEs are often poorly adapted causing intragenomic conflicts, resolved by compensatory adaptation of the chromosome, the MGE or reciprocal coadaptation. The footprints of such intragenomic coevolution are present in bacterial genomes, suggesting an important role promoting genomic integration of horizontally acquired genes, but direct experimental evidence of the process is limited. Here we show adaptive modulation of tetracycline resistance via intragenomic coevolution between Escherichia coli and the multi-drug resistant (MDR) plasmid RK2. Tetracycline treatments, including monotherapy or combination therapies with ampicillin, favoured de novo chromosomal resistance mutations coupled with mutations on RK2 impairing the plasmid-encoded tetracycline efflux-pump. These mutations together provided increased tetracycline resistance at reduced cost. Additionally, the chromosomal resistance mutations conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not observed under ampicillin-only or no antibiotic selection. Intragenomic coevolution can create genomes comprised of multiple replicons that together provide high-level, low-cost resistance, but the resulting co-dependence may limit the spread of coadapted MGEs to other lineages.
Collapse
|
29
|
Zerbini F, Zanella I, Fraccascia D, König E, Irene C, Frattini LF, Tomasi M, Fantappiè L, Ganfini L, Caproni E, Parri M, Grandi A, Grandi G. Large scale validation of an efficient CRISPR/Cas-based multi gene editing protocol in Escherichia coli. Microb Cell Fact 2017; 16:68. [PMID: 28438207 PMCID: PMC5404680 DOI: 10.1186/s12934-017-0681-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The exploitation of the CRISPR/Cas9 machinery coupled to lambda (λ) recombinase-mediated homologous recombination (recombineering) is becoming the method of choice for genome editing in E. coli. First proposed by Jiang and co-workers, the strategy has been subsequently fine-tuned by several authors who demonstrated, by using few selected loci, that the efficiency of mutagenesis (number of mutant colonies over total number of colonies analyzed) can be extremely high (up to 100%). However, from published data it is difficult to appreciate the robustness of the technology, defined as the number of successfully mutated loci over the total number of targeted loci. This information is particularly relevant in high-throughput genome editing, where repetition of experiments to rescue missing mutants would be impractical. This work describes a "brute force" validation activity, which culminated in the definition of a robust, simple and rapid protocol for single or multiple gene deletions. RESULTS We first set up our own version of the CRISPR/Cas9 protocol and then we evaluated the mutagenesis efficiency by changing different parameters including sequence of guide RNAs, length and concentration of donor DNAs, and use of single stranded and double stranded donor DNAs. We then validated the optimized conditions targeting 78 "dispensable" genes. This work led to the definition of a protocol, featuring the use of double stranded synthetic donor DNAs, which guarantees mutagenesis efficiencies consistently higher than 10% and a robustness of 100%. The procedure can be applied also for simultaneous gene deletions. CONCLUSIONS This work defines for the first time the robustness of a CRISPR/Cas9-based protocol based on a large sample size. Since the technical solutions here proposed can be applied to other similar procedures, the data could be of general interest for the scientific community working on bacterial genome editing and, in particular, for those involved in synthetic biology projects requiring high throughput procedures.
Collapse
Affiliation(s)
- Francesca Zerbini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Ilaria Zanella
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Davide Fraccascia
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Enrico König
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Carmela Irene
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Luca F. Frattini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Michele Tomasi
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Laura Fantappiè
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Luisa Ganfini
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Elena Caproni
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| | - Matteo Parri
- Toscana Life Sciences Scientific Park, Via Fiorentina, 1, 53100 Siena, Italy
| | - Alberto Grandi
- Toscana Life Sciences Scientific Park, Via Fiorentina, 1, 53100 Siena, Italy
| | - Guido Grandi
- Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, Povo, 38123 Trento, Italy
| |
Collapse
|
30
|
Kamruzzaman M, Shoma S, Thomas CM, Partridge SR, Iredell JR. Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS One 2017; 12:e0172913. [PMID: 28245276 PMCID: PMC5330492 DOI: 10.1371/journal.pone.0172913] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 11/21/2022] Open
Abstract
Antibiotic resistance increases the likelihood of death from infection by common pathogens such as Escherichia coli and Klebsiella pneumoniae in developed and developing countries alike. Most important modern antibiotic resistance genes spread between such species on self-transmissible (conjugative) plasmids. These plasmids are traditionally grouped on the basis of replicon incompatibility (Inc), which prevents coexistence of related plasmids in the same cell. These plasmids also use post-segregational killing (‘addiction’) systems, which poison any bacterial cells that lose the addictive plasmid, to guarantee their own survival. This study demonstrates that plasmid incompatibilities and addiction systems can be exploited to achieve the safe and complete eradication of antibiotic resistance from bacteria in vitro and in the mouse gut. Conjugative ‘interference plasmids’ were constructed by specifically deleting toxin and antibiotic resistance genes from target plasmids. These interference plasmids efficiently cured the corresponding antibiotic resistant target plasmid from different Enterobacteriaceae in vitro and restored antibiotic susceptibility in vivo to all bacterial populations into which plasmid-mediated resistance had spread. This approach might allow eradication of emergent or established populations of resistance plasmids in individuals at risk of severe sepsis, enabling subsequent use of less toxic and/or more effective antibiotics than would otherwise be possible, if sepsis develops. The generalisability of this approach and its potential applications in bioremediation of animal and environmental microbiomes should now be systematically explored.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Shereen Shoma
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Christopher M. Thomas
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Sally R. Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail:
| |
Collapse
|
31
|
Freire Martín I, Thomas CM, Laing E, AbuOun M, La Ragione RM, Woodward MJ. Curing vector for IncI1 plasmids and its use to provide evidence for a metabolic burden of IncI1 CTX-M-1 plasmid pIFM3791 on Klebsiella pneumoniae. J Med Microbiol 2016; 65:611-618. [PMID: 27166141 DOI: 10.1099/jmm.0.000271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a sequence-based approach we previously identified an IncI1 CTX-M-1 plasmid, pIFM3791, on a single pig farm in the UK that was harboured by Klebsiella pneumoniae, Escherichia coli and Salmonella enterica serotype 4,5,12:i:-. To test the hypothesis that the plasmid had spread rapidly into these differing host bacteria we wished to assess whether the plasmid conferred a fitness advantage. To do this an IncI1 curing vector was constructed and used to displace the IncI1 CTX-M-1 plasmids from K. pneumoniae strain B3791 and several other unrelated IncI1-harbouring strains indicating the potential wider application of the curing vector. The IncI1 CTX-M-1 plasmid was reintroduced by conjugation into the cured K. pneumoniae strain and also a naturally IncI1 plasmid free S. enterica serotype 4,5,12:i:-, S348/11. Original, cured and complemented strains were tested for metabolic competence using Biolog technology and in competitive growth, association to mammalian cells and biofilm formation experiments. The plasmid-cured K. pneumoniae strain grew more rapidly than either the original plasmid-carrying strain or plasmid-complemented strains in competition experiments. Additionally, the plasmid-cured strain was significantly better at respiring with l-sorbose as a carbon source and putrescine, γ-amino-n-butyric acid, l-alanine and l-proline as nitrogen sources. By contrast, no differences in phenotype were found when comparing plasmid-harbouring and plasmid-free S. enterica S348/11. In conclusion, the IncI1 curing vector successfully displaced multiple IncI plasmids. The IncI1 CTX-M1 plasmid conferred a growth disadvantage upon K. pneumoniae, possibly by imposing a metabolic burden, the mechanism of which remains to be determined.
Collapse
Affiliation(s)
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emma Laing
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Roberto M La Ragione
- Animal and Plant Health Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7AL, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights Park, Reading RG6 5AP, UK
| |
Collapse
|
32
|
Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock REW, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH. Alternatives to antibiotics-a pipeline portfolio review. THE LANCET. INFECTIOUS DISEASES 2016; 16:239-51. [PMID: 26795692 DOI: 10.1016/s1473-3099(15)00466-1] [Citation(s) in RCA: 572] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 01/21/2023]
Abstract
Antibiotics have saved countless lives and enabled the development of modern medicine over the past 70 years. However, it is clear that the success of antibiotics might only have been temporary and we now expect a long-term and perhaps never-ending challenge to find new therapies to combat antibiotic-resistant bacteria. A broader approach to address bacterial infection is needed. In this Review, we discuss alternatives to antibiotics, which we defined as non-compound approaches (products other than classic antibacterial agents) that target bacteria or any approaches that target the host. The most advanced approaches are antibodies, probiotics, and vaccines in phase 2 and phase 3 trials. This first wave of alternatives to antibiotics will probably best serve as adjunctive or preventive therapies, which suggests that conventional antibiotics are still needed. Funding of more than £1·5 billion is needed over 10 years to test and develop these alternatives to antibiotics. Investment needs to be partnered with translational expertise and targeted to support the validation of these approaches in phase 2 trials, which would be a catalyst for active engagement and investment by the pharmaceutical and biotechnology industry. Only a sustained, concerted, and coordinated international effort will provide the solutions needed for the future.
Collapse
Affiliation(s)
- Lloyd Czaplewski
- Chemical Biology Ventures, Abingdon, Oxfordshire, UK; Abgentis, Edgbaston, Birmingham, UK; Persica Pharmaceuticals, Canterbury, Kent, UK.
| | | | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mike Dawson
- Novacta Biosystems, Welwyn Garden City, Hertfordshire, UK; Cantab Anti-infectives, Welwyn Garden City, Hertfordshire, UK
| | | | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Simon Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; Absynth Biologics, Liverpool, UK
| | | | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - David Harper
- Evolution Biotechnologies, Ampthill, Bedfordshire, UK
| | - Ian R Henderson
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kai Hilpert
- Institute of Infection and Immunity, St George's, University of London, London, UK; TiKa Diagnostics, London, UK
| | - Brian V Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK; Queen Victoria Hospital NHS Foundation Trust, East Grinstead, West Sussex, UK
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - David Knowles
- Absynth Biologics, Liverpool, UK; Procarta Biosystems, Norwich, UK
| | | | - David Payne
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA
| | | | - Sunil Shaunak
- Department of Medicine, Imperial College London, London, UK
| | | | - Christopher M Thomas
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK; Plasgene, Edgbaston, Birmingham, UK
| | - Trevor J Trust
- Pan-Provincial Vaccine Enterprise, Saskatoon, SK, Canada
| | | | - John H Rex
- AstraZeneca, Boston, MA, USA; F2G, Manchester, UK
| |
Collapse
|
33
|
Kirchner M, AbuOun M, Mafura M, Bagnall M, Hunt T, Thomas C, Weile J, Anjum MF. Cefotaxime resistant Escherichia coli collected from a healthy volunteer; characterisation and the effect of plasmid loss. PLoS One 2013; 8:e84142. [PMID: 24386342 PMCID: PMC3873979 DOI: 10.1371/journal.pone.0084142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022] Open
Abstract
In this study 6 CTX-M positive E. coli isolates collected during a clinical study examining the effect of antibiotic use in a human trial were analysed. The aim of the study was to analyse these isolates and assess the effect of full or partial loss of plasmid genes on bacterial fitness and pathogenicity. A DNA array was utilised to assess resistance and virulence gene carriage. Plasmids were characterised by PCR-based replicon typing and addiction system multiplex PCR. A phenotypic array and insect virulence model were utilised to assess the effect of plasmid-loss in E. coli of a large multi-resistance plasmid. All six E. coli carrying blaCTX-M-14 were detected from a single participant and were identical by pulse field gel electrophoresis and MLST. Plasmid profiling and arrays indicated absence of a large multi-drug resistance (MDR) F-replicon plasmid carrying blaTEM, aadA4, strA, strB, dfrA17/19, sul1, and tetB from one isolate. Although this isolate partially retained the plasmid it showed altered fitness characteristics e.g. inability to respire in presence of antiseptics, similar to a plasmid-cured strain. However, unlike the plasmid-cured or plasmid harbouring strains, the survival rate for Galleria mellonella infected by the former strain was approximately 5-times lower, indicating other possible changes accompanying partial plasmid loss. In conclusion, our results demonstrated that an apparently healthy individual can harbour blaCTX-M-14E. coli strains. In one such strain, isolated from the same individual, partial absence of a large MDR plasmid resulted in altered fitness and virulence characteristics, which may have implications in the ability of this strain to infect and any subsequent treatment.
Collapse
Affiliation(s)
- Miranda Kirchner
- Department of Bacteriology and Food Safety, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology and Food Safety, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Muriel Mafura
- Department of Bacteriology and Food Safety, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Mary Bagnall
- Department of Bacteriology and Food Safety, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Theresa Hunt
- Department of Bacteriology and Food Safety, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Christopher Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jan Weile
- Institute for Laboratory and Transfusion Medicine at the Heart and Diabetes Centre, University Hospital of the Ruhr University, Bochum, Germany
| | - Muna F. Anjum
- Department of Bacteriology and Food Safety, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Enterohemorrhagic Escherichia coli O157:H7 Shiga toxins inhibit gamma interferon-mediated cellular activation. Infect Immun 2012; 80:2307-15. [PMID: 22526675 DOI: 10.1128/iai.00255-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a food-borne pathogen that causes significant morbidity and mortality in developing and industrialized nations. EHEC infection of host epithelial cells is capable of inhibiting the gamma interferon (IFN-γ) proinflammatory pathway through the inhibition of Stat-1 phosphorylation, which is important for host defense against microbial pathogens. The aim of this study was to determine the bacterial factors involved in the inhibition of Stat-1 tyrosine phosphorylation. Human HEp-2 and Caco-2 epithelial cells were challenged directly with either EHEC or bacterial culture supernatants and stimulated with IFN-γ, and then the protein extracts were analyzed by immunoblotting. The data showed that IFN-γ-mediated Stat-1 tyrosine phosphorylation was inhibited by EHEC secreted proteins. Using two-dimensional difference gel electrophoresis, EHEC Shiga toxins were identified as candidate inhibitory factors. EHEC Shiga toxin mutants were then generated and complemented in trans, and mutant culture supernatant was supplemented with purified Stx to confirm their ability to subvert IFN-γ-mediated cell activation. We conclude that while other factors are likely involved in the suppression of IFN-γ-mediated Stat-1 tyrosine phosphorylation, E. coli-derived Shiga toxins represent a novel mechanism by which EHEC evades the host immune system.
Collapse
|
35
|
Ho NK, Crandall I, Sherman PM. Identifying mechanisms by which Escherichia coli O157:H7 subverts interferon-γ mediated signal transducer and activator of transcription-1 activation. PLoS One 2012; 7:e30145. [PMID: 22253910 PMCID: PMC3256229 DOI: 10.1371/journal.pone.0030145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 12/16/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein.
Collapse
Affiliation(s)
- Nathan K. Ho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ian Crandall
- Department of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Philip M. Sherman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|