1
|
Zhang J, Benko Z, Zhang C, Zhao RY. Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2024; 13:566. [PMID: 39057793 PMCID: PMC11279667 DOI: 10.3390/pathogens13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Zsigmond Benko
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Chenyu Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Richard Y. Zhao
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Department of Microbiology-Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Parrella P, Elikan AB, Kogan HV, Wague F, Marshalleck CA, Snow JW. Bleomycin reduces Vairimorpha (Nosema) ceranae infection in honey bees with some evident host toxicity. Microbiol Spectr 2024; 12:e0334923. [PMID: 38179918 PMCID: PMC10846157 DOI: 10.1128/spectrum.03349-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Microsporidia cause disease in many beneficial insects, including honey bees, yet few pathogen control tools are available for protecting these important organisms against infection. Some evidence suggests that microsporidia possess a reduced number of genes encoding DNA repair proteins. We hypothesized that microsporidia would thus be susceptible to treatment with DNA-damaging agents and tested this hypothesis using a novel, rapid method for achieving robust and homogenous experimental infection of large numbers of newly emerged honey bees with one of its microsporidia pathogens, Vairimorpha (Nosema) ceranae. In carrying out these experiments, we found this novel V. ceranae inoculation method to have similar efficacy as other traditional methods. We show that the DNA-damaging agent bleomycin reduces V. ceranae levels, with minimal but measurable effects on honey bee survival and increased expression of midgut cellular stress genes, including those encoding SHSP. Increased expression of UpdlC suggests the occurrence of epithelial regeneration, which may contribute to host resistance to bleomycin treatment. While bleomycin does reduce infection levels, host toxicity issues may preclude its use in the field. However, with further work, bleomycin may provide a useful tool in the research setting as a potential selection agent for genetic modification of microsporidia.IMPORTANCEMicrosporidia cause disease in many beneficial insects, yet there are few tools available for control in the field or laboratory. Based on the reported paucity of DNA repair enzymes found in microsporidia genomes, we hypothesized that these obligate intracellular parasites would be sensitive to DNA damage. In support of this, we observed that the well-characterized DNA damage agent bleomycin can reduce levels of the microsporidia Vairimorpha (Nosema) ceranae in experimental infections in honey bees. Observation of slightly reduced honey bee survival and evidence of sublethal toxicity likely preclude the use of bleomycin in the field. However, this work identifies bleomycin as a compound that merits further exploration for use in research laboratories as a potential selection agent for generating genetically modified microsporidia.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Helen V. Kogan
- Department of Biology, Barnard College, New York, New York, USA
| | - Fatoumata Wague
- Department of Biology, Barnard College, New York, New York, USA
| | | | | |
Collapse
|
3
|
Single-Agent and Fixed-Dose Combination HIV-1 Protease Inhibitor Drugs in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2021; 10:pathogens10070804. [PMID: 34202872 PMCID: PMC8308830 DOI: 10.3390/pathogens10070804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.
Collapse
|
4
|
Tominaga M, Nozaki K, Umeno D, Ishii J, Kondo A. Robust and flexible platform for directed evolution of yeast genetic switches. Nat Commun 2021; 12:1846. [PMID: 33758180 PMCID: PMC7988172 DOI: 10.1038/s41467-021-22134-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2021] [Indexed: 01/31/2023] Open
Abstract
A wide repertoire of genetic switches has accelerated prokaryotic synthetic biology, while eukaryotic synthetic biology has lagged in the model organism Saccharomyces cerevisiae. Eukaryotic genetic switches are larger and more complex than prokaryotic ones, complicating the rational design and evolution of them. Here, we present a robust workflow for the creation and evolution of yeast genetic switches. The selector system was designed so that both ON- and OFF-state selection of genetic switches is completed solely by liquid handling, and it enabled parallel screen/selection of different motifs with different selection conditions. Because selection threshold of both ON- and OFF-state selection can be flexibly tuned, the desired selection conditions can be rapidly pinned down for individual directed evolution experiments without a prior knowledge either on the library population. The system's utility was demonstrated using 20 independent directed evolution experiments, yielding genetic switches with elevated inducer sensitivities, inverted switching behaviours, sensory functions, and improved signal-to-noise ratio (>100-fold induction). The resulting yeast genetic switches were readily integrated, in a plug-and-play manner, into an AND-gated carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Masahiro Tominaga
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kenta Nozaki
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Daisuke Umeno
- grid.136304.30000 0004 0370 1101Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University, Chiba, Japan
| | - Jun Ishii
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- grid.31432.370000 0001 1092 3077Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Engineering Biology Research Center, Kobe University, Kobe, Japan ,grid.31432.370000 0001 1092 3077Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Kobe, Japan ,grid.7597.c0000000094465255Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
5
|
Benko Z, Zhang J, Zhao RY. Development of A Fission Yeast Cell-Based Platform for High Throughput Screening of HIV-1 Protease Inhibitors. Curr HIV Res 2021; 17:429-440. [PMID: 31782368 DOI: 10.2174/1570162x17666191128102839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND HIV-1 protease inhibitor (PI) is one of the most potent classes of drugs in combinational antiretroviral therapies (cART). When a PI is used in combination with other anti- HIV drugs, cART can often suppress HIV-1 below detection thus prolonging the patient's lives. However, the challenge often faced by patients is the emergence of HIV-1 drug resistance. Thus, PIs with high genetic-barrier to drug-resistance are needed. OBJECTIVE The objective of this study was to develop a novel and simple fission yeast (Schizosaccharomyces pombe) cell-based system that is suitable for high throughput screening (HTS) of small molecules against HIV-1 protease (PR). METHODS A fission yeast RE294-GFP strain that stably expresses HIV-1 PR and green fluorescence protein (GFP) under the control of an inducible nmt1 promoter was used. Production of HIV-1 PR induces cellular growth arrest, which was used as the primary endpoint for the search of PIs and was quantified by an absorbance-based method. Levels of GFP production were used as a counter-screen control to eliminate potential transcriptional nmt1 inhibitors. RESULTS Both the absorbance-based HIV-1 PR assay and the GFP-based fluorescence assay were miniaturized and optimized for HTS. A pilot study was performed using a small drug library mixed with known PI drugs and nmt1 inhibitors. With empirically adjusted and clearly defined double-selection criteria, we were able to correctly identify the PIs and to exclude all hidden nmt1 inhibitors. CONCLUSION We have successfully developed and validated a fission yeast cell-based HTS platform for the future screening and testing of HIV-1 PR inhibitors.
Collapse
Affiliation(s)
- Zsigmond Benko
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Jiantao Zhang
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Richard Y Zhao
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Department of Microbiology- Immunology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Human Virology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Global Health, University of Maryland Medical School, Baltimore, MD 21201, United States
| |
Collapse
|
6
|
Robinson KA, Dunn M, Hussey SP, Fritz-Laylin LK. Identification of antibiotics for use in selection of the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. PLoS One 2020; 15:e0240480. [PMID: 33079945 PMCID: PMC7575076 DOI: 10.1371/journal.pone.0240480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Global amphibian populations are being decimated by chytridiomycosis, a deadly skin infection caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Although ongoing efforts are attempting to limit the spread of these infections, targeted treatments are necessary to manage the disease. Currently, no tools for genetic manipulation are available to identify and test specific drug targets in these fungi. To facilitate the development of genetic tools in Bd and Bsal, we have tested five commonly used antibiotics with available resistance genes: Hygromycin, Blasticidin, Puromycin, Zeocin, and Neomycin. We have identified effective concentrations of each for selection in both liquid culture and on solid media. These concentrations are within the range of concentrations used for selecting genetically modified cells from a variety of other eukaryotic species.
Collapse
Affiliation(s)
- Kristyn A. Robinson
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Mallory Dunn
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Shane P. Hussey
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| | - Lillian K. Fritz-Laylin
- Department of Biology, The University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
7
|
Spindle pole body movement is affected by glucose and ammonium chloride in fission yeast. Biochem Biophys Res Commun 2019; 511:820-825. [PMID: 30846209 DOI: 10.1016/j.bbrc.2019.02.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
The complexity of chromatin dynamics is orchestrated by several active processes. In fission yeast, the centromeres are clustered around the spindle pole body (SPB) and oscillate in a microtubule- and adenosine triphosphate (ATP)-dependent manner. However, whether and how SPB oscillation are affected by different environmental conditions remain poorly understood. In this study, we quantitated movements of the SPB component, which colocalizes with the centromere in fission yeast. We found that SPB movement was significantly reduced at low glucose concentrations. Movement of the SPB was also affected by the presence of ammonium chloride. Power spectral analysis revealed that periodic movement of the SPB is disrupted by low glucose concentrations. Measurement of ATP levels in living cells by quantitative single-cell imaging suggests that ATP levels are not the only determinant of SPB movement. Our results provide novel insight into how SPB movement is regulated by cellular energy status and additional factors such as the medium nutritional composition.
Collapse
|
8
|
Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening. Appl Microbiol Biotechnol 2018; 102:2351-2361. [DOI: 10.1007/s00253-018-8756-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/28/2022]
|
9
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 2017; 17:3089757. [PMID: 28369336 DOI: 10.1093/femsyr/fox017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Metabolic engineering of Rhodosporidium toruloides, a robust lipid and caroteinoid producer, is of great importance for oleochemicals and carotenoids production. However, the Agrobacterium-mediated gene transformation is tedious and time consuming. Here, we described a fast and efficient genetic transformation of R. toruloides using electroporation with linear DNA fragments, and the process was optimized. The results showed that 2 × 103 transformants can be obtained at 0.7 kV/μg linear DNA by using hygromycin and bleomycin as selection markers after the competent cells pretreated with 25 mM DTT and 100 mM LiAc. Our results would facilitate mutant library construction and metabolic engineering of R. toruloides for production of oleochemicals and carotenoids. We further demonstrated that all transformants arose due to illegitimate integration of transforming DNA fragments by colony PCR.
Collapse
Affiliation(s)
- Hongdi Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.,Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiang Jiao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yanan Wang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiaobing Yang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Wenyi Sun
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Zongbao Kent Zhao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
11
|
A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2014; 4:1173-82. [PMID: 24727291 PMCID: PMC4065261 DOI: 10.1534/g3.114.011049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Yeast sporulation is a highly regulated developmental program by which diploid cells generate haploid gametes, termed spores. To better define the genetic pathways regulating sporulation, a systematic screen of the set of ~3300 nonessential Schizosaccharomyces pombe gene deletion mutants was performed to identify genes required for spore formation. A high-throughput genetic method was used to introduce each mutant into an h(90) background, and iodine staining was used to identify sporulation-defective mutants. The screen identified 34 genes whose deletion reduces sporulation, including 15 that are defective in forespore membrane morphogenesis. In S. pombe, the total number of sporulation-defective mutants is a significantly smaller fraction of coding genes than in S. cerevisiae, which reflects the different evolutionary histories and biology of the two yeasts.
Collapse
|
12
|
Ahn J, Won M, Kyun ML, Kim YS, Jung CR, Im DS, Song KB, Chung KS. Development of episomal vectors carrying a nourseothricin-resistance marker for use in minimal media for Schizosaccharomyces pombe. Yeast 2013; 30:219-27. [PMID: 23609041 DOI: 10.1002/yea.2955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/01/2013] [Indexed: 01/25/2023] Open
Abstract
In the post-genomic era, an immediate challenge is to assign biological functions to novel proteins encoded by the genome. This challenge requires the use of a simple organism as a genetic tool and a range of new high-throughput techniques. Schizosacchromyces pombe is a powerful model organism used to investigate disease-related genes and provides useful tools for the functional analysis of heterologous genes. To expand the current array of experimental tools, we constructed two series of Sz. pombe expression vectors, i.e. general and Gateway vectors, containing nourseothricin-resistance markers. Vectors carrying nourseothricin-resistance markers possess advantages in that they do not limit the parental strains with auxotrophic mutations with respect to availability for use in clone selection and can be used together with vectors carrying nutrient markers in minimal media. We modified the pSLF173, pSLF273 and pSLF373 vectors carrying a triple haemagglutinin epitope (3×HA) and an Ura4 marker. The vectors described here contain the nmt1 promoter with three different episomal expression strengths for proteins fused with 3×HA, EGFP or DsRed at the N-terminus. These vectors represent an important contribution to the genome-wide investigation of multiple heterologous genes and for functional and genetic analysis of novel human genes.
Collapse
Affiliation(s)
- Jiwon Ahn
- Genome Research Centre, KRIBB, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|