1
|
Janezic EM, Doan A, Mai E, Bravo DD, Wang J, Kim HS, Spiess C, Bewley K, ElSohly A, Liang WC, Koerber JT, Richalet P, Vanhove M, Comps-Agrar L. A novel, label-free, pre-equilibrium assay to determine the association and dissociation rate constants of therapeutic antibodies on living cells. Br J Pharmacol 2024; 181:3836-3855. [PMID: 37783572 DOI: 10.1111/bph.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon, koff and KD) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon, koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff, but not KD, correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.
Collapse
Affiliation(s)
| | | | - Elaine Mai
- Genentech, Inc, South San Francisco, California, USA
| | | | - Jianyong Wang
- Genentech, Inc, South San Francisco, California, USA
| | - Hok Seon Kim
- Genentech, Inc, South San Francisco, California, USA
| | | | | | - Adel ElSohly
- Genentech, Inc, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
2
|
Geissler M, Ponton A, Nassif C, Malic L, Turcotte K, Lukic L, Morton KJ, Veres T. Use of Polymer Micropillar Arrays as Templates for Solid-Phase Immunoassays. ACS APPLIED POLYMER MATERIALS 2022; 4:5287-5297. [PMID: 37552739 PMCID: PMC9173674 DOI: 10.1021/acsapm.2c00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 08/10/2023]
Abstract
We investigate the use of periodic micropillar arrays produced by high-fidelity microfabrication with cyclic olefin polymers for solid-phase immunoassays. These three-dimensional (3D) templates offer higher surface-to-volume ratios than two-dimensional substrates, making it possible to attach more antibodies and so increase the signal obtained by the assay. Micropillar arrays also provide the capacity to induce wicking, which is used to distribute and confine antibodies on the surface with spatial control. Micropillar array substrates are modified by using oxygen plasma treatment, followed by grafting of (3-aminopropyl)triethoxysilane for binding proteins covalently using glutaraldehyde as a cross-linker. The relationship between microstructure and fluorescence signal was investigated through variation of pitch (10-50 μm), pillar diameter (5-40 μm), and pillar height (5-57 μm). Our findings suggest that signal intensity scales proportionally with the 3D surface area available for performing solid-phase immunoassays. A linear relationship between fluorescence intensity and microscale structure can be maintained even when the aspect ratio and pillar density both become very high, opening the possibility of tuning assay response by design such that desired signal intensity is obtained over a wide dynamic range compatible with different assays, analyte concentrations, and readout instruments. We demonstrate the versatility of the approach by performing the most common immunoassay formats-direct, indirect, and sandwich-in a qualitative fashion by using colorimetric and fluorescence-based detection for a number of clinically relevant protein markers, such as tumor necrosis factor alpha, interferon gamma (IFN-γ), and spike protein of severe acute respiratory syndrome coronavirus 2. We also show quantitative detection of IFN-γ in serum using a fluorescence-based sandwich immunoassay and calibrated samples with spike-in concentrations ranging from 50 pg/mL to 5 μg/mL, yielding an estimated limit of detection of ∼1 pg/mL for arrays with high micropillar density (11561 per mm2) and aspect ratio (1:11.35).
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - André Ponton
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Lidija Malic
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Karine Turcotte
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Keith J. Morton
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of
Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4,
Canada
| |
Collapse
|
3
|
Kamat V, Boutot C, Rafique A, Granados C, Wang J, Badithe A, Torres M, Chatterjee I, Olsen O, Olson W, Huang T. High affinity human Fc specific monoclonal antibodies for capture kinetic analyses of antibody-antigen interactions. Anal Biochem 2022; 640:114455. [PMID: 34788604 DOI: 10.1016/j.ab.2021.114455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
We recently demonstrated that capturing human monoclonal antibodies (hmAbs) using high affinity anti-human Fc (AHC) antibodies allows reliable characterization of antibody-antigen interactions. Here, we characterized six human Fc specific mouse monoclonal antibodies (mAbs) and compared their binding profiles with three previously characterized goat AHC polyclonal antibodies (pAbs), exhibiting properties of a good capture reagent. All six mouse AHC mAbs specifically bound with high affinity to the Fc region of hIgG1, hIgG2, hIgG4 and to 43 different hIgG variants, containing substitutions and/or mutations in the hinge and/or Fc region, that have been reported to exhibit modified antibody effector function and/or pharmacokinetics. Biacore sensor surfaces individually derivatized with mouse AHC mAbs exhibited >2.5-fold higher hIgG binding capacity compared to the three goat AHC pAb surfaces and reproducibly captured hIgG over 300 capture-regeneration cycles. The results of the capture kinetic analyses performed on 31 antibody-antigen interactions using surfaces derivatized with either of the two highest affinity AHC mAbs (REGN7942 or REGN7943) were in concordance with those performed using goat AHC pAb surfaces. Our data demonstrate that AHC mAbs such as REGN7942 and REGN7943 that have properties superior than the three goat AHC pAbs are highly valuable research reagents, especially to perform capture kinetic analyses of antibody-antigen interactions on optical biosensors.
Collapse
Affiliation(s)
- Vishal Kamat
- Therapeutic Proteins, Regeneron Pharmaceuticals, USA.
| | | | | | | | - Jing Wang
- Therapeutic Proteins, Regeneron Pharmaceuticals, USA
| | - Ashok Badithe
- Therapeutic Proteins, Regeneron Pharmaceuticals, USA
| | | | | | - Olav Olsen
- Therapeutic Proteins, Regeneron Pharmaceuticals, USA
| | - William Olson
- Therapeutic Proteins, Regeneron Pharmaceuticals, USA
| | - Tammy Huang
- Therapeutic Proteins, Regeneron Pharmaceuticals, USA
| |
Collapse
|
4
|
Budroni S, Buricchi F, Cavallone A, Volpini G, Mariani A, Lo Surdo P, Blohmke CJ, Del Giudice G, Medini D, Finco O. Computational modeling of microfluidic data provides high-throughput affinity estimates for monoclonal antibodies. Comput Struct Biotechnol J 2021; 19:3664-3672. [PMID: 34257845 PMCID: PMC8255181 DOI: 10.1016/j.csbj.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/27/2022] Open
Abstract
Affinity measurement is a fundamental step in the discovery of monoclonal antibodies (mAbs) and of antigens suitable for vaccine development. Innovative affinity assays are needed due to the low throughput and/or limited dynamic range of available technologies. We combined microfluidic technology with quantum-mechanical scattering theory, in order to develop a high-throughput, broad-range methodology to measure affinity. Fluorescence intensity profiles were generated for out-of-equilibrium solutions of labelled mAbs and their antigen-binding fragments migrating along micro-columns with immobilized cognate antigen. Affinity quantification was performed by computational data analysis based on the Landau probability distribution. Experiments using a wide array of human or murine antibodies against bacterial or viral, protein or polysaccharide antigens, showed that all the antibody-antigen capture profiles (n = 841) generated at different concentrations were accurately described by the Landau distribution. A scale parameter W, proportional to the full-width-at-half-maximum of the capture profile, was shown to be independent of the antibody concentration. The W parameter correlated significantly (Pearson's r [p-value]: 0.89 [3 × 10-8]) with the equilibrium dissociation constant KD, a gold-standard affinity measure. Our method showed good intermediate precision (median coefficient of variation: 5%) and a dynamic range corresponding to KD values spanning from ~10-7 to ~10-11 Molar. Relative to assays relying on antibody-antigen equilibrium in solution, even when they are microfluidic-based, the method's turnaround times were decreased from 2 days to 2 h. The described computational modelling of antibody capture profiles represents a fast, reproducible, high-throughput methodology to accurately measure a broad range of antibody affinities in very low volumes of solution.
Collapse
|