1
|
El-Raghi AA, Essawi WM, Hassan MAE, Hashem NM, Abdelnour SA. Interactions among factors affecting stillbirths in Egyptian buffaloes (Bubalus bubalis). Trop Anim Health Prod 2025; 57:183. [PMID: 40272636 PMCID: PMC12021697 DOI: 10.1007/s11250-025-04402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
In buffaloes, stillbirth (SB) is a major source of reproductive and economic losses. Hence, the objectives of this study were: 1) investigating the relationship between potential risk factors (body condition score [BCS], gestation period, calving season, calf sex, and dam parity) and SB occurrence in Egyptian buffaloes; and 2) identifying blood metabolites, the redox status, and immune-inflammatory attributes in calves that may be related to SB. The incidence of SB was 6.64%. Among the evaluated risk factors, BCS was a significant risk factor for SB. There was a 73.7% lower odds (lower odds odd ratio, OR = 0.246) of SB for dams with a gestation length ≥ 305 days, compared to those with a gestation length < 305 days. The risk of SB decreased steadily with increasing dam parity. The odds of SB were 2.48 times higher in male calves compared to female calves. In comparison to the spring season, the probability of SB doubled during the summer season. Calf blood serum analysis showed that SB-born calves had higher blood biochemical and cytokines alterations than normal-born calves. On the other hand, immunoglobulins and glutathione peroxidase were significantly lower in SB-born calves. Our results indicated that factors related to the induction of inflammation and/or disrupted immune system responses, such as obesity, high temperature, and oxidative stress, are the main evoking factors for SB in buffaloes; therefore, protective measures against SB in Egyptian buffaloes should be based on controlling these factors, either by nutritional interventions or management practices.
Collapse
Affiliation(s)
- Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, 34517, Egypt
| | - Walaa M Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Mahmoud A E Hassan
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, 12619, Giza, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
2
|
Rojas de Oliveira H, Chud TCS, Oliveira GA, Hermisdorff IC, Narayana SG, Rochus CM, Butty AM, Malchiodi F, Stothard P, Miglior F, Baes CF, Schenkel FS. Genome-wide association analyses reveal copy number variant regions associated with reproduction and disease traits in Canadian Holstein cattle. J Dairy Sci 2024; 107:7052-7063. [PMID: 38788846 DOI: 10.3168/jds.2023-24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/01/2024] [Indexed: 05/26/2024]
Abstract
This study aimed to evaluate the impact of copy number variants (CNV) on 13 reproduction and 12 disease traits in Holstein cattle. Intensity signal files containing log R ratio and B allele frequency information from 13,730 Holstein animals genotyped with a 95K SNP panel, and 8,467 Holstein animals genotyped with a 50K SNP panel were used to identify the CNVs. Subsequently, the identified CNVs were validated using whole-genome sequence data from 126 animals, resulting in 870 high-confidence copy number variant regions (CNVR) on 12,131 animals. Out of these, 54 CNVR had frequencies higher than or equal to 1% in the population and were used in the genome-wide association analysis (one CNVR at a time, including the G matrix). Results revealed that 4 CNVR were significantly associated with at least one of the traits analyzed in this study. Specifically, 2 CNVR were associated with 3 reproduction traits (i.e., calf survival, first service to conception, and nonreturn rate), and 2 CNVR were associated with 2 disease traits (i.e., metritis and retained placenta). These CNVR harbored genes implicated in immune response, cellular signaling, and neuronal development, supporting their potential involvement in these traits. Further investigations to unravel the mechanistic and functional implications of these CNVR on the mentioned traits are warranted.
Collapse
Affiliation(s)
- Hinayah Rojas de Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| | - Tatiane C S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Isis C Hermisdorff
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Saranya G Narayana
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Lactanet, Guelph, ON, Canada N1K 1E5
| | - Christina M Rochus
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | - Francesca Malchiodi
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Semex, Guelph, ON, Canada N1H 6J2
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2H1
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Lactanet, Guelph, ON, Canada N1K 1E5
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland 3012
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
3
|
Hashem NM, Essawi WM, El-Demerdash AS, El-Raghi AA. Biomolecule-Producing Probiotic Bacterium Lactococcus lactis in Free or Nanoencapsulated Form for Endometritis Treatment and Fertility Improvement in Buffaloes. J Funct Biomater 2024; 15:138. [PMID: 38921512 PMCID: PMC11204555 DOI: 10.3390/jfb15060138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
A Lactococcus (L.) lactis strain producing antimicrobial and anti-inflammatory biomolecules (mainly 1,4-Diaza-2,5-dioxobicyclo[4.3.0]nonanes and pyrazine-derivatives) was tested for its capacity to cure clinical endometritis in buffaloes compared to conventional antibiotic-based treatment. Clinical endometritis-diagnosed buffaloes (n = 16/group) were infused intrauterine with four doses of 109 CFU-free (FLC group) or nanoencapsulated L. lactis (NLC group) and compared to those that received three doses of saline + a single dose of 500 mg cephapirin benzathin (AB group) or four doses of saline (control, C group) every other day. Endometrium samples were analyzed for cytological (polymorphonuclear cells, PMN), bacteriological, and proinflammatory mRNA expression. Uterine wash and blood samples were collected to determine proinflammatory cytokine concentrations and metabolites in the blood samples. The reproductive performance of buffaloes was assessed. Compared to the C group, the AB and NLC groups had the lowest percentage of PMN, followed by those in the FLC group (p < 0.05). All treated buffaloes had significantly lower numbers of pathogens than the control buffaloes. Compared to control, all treatments significantly down-regulated endometrial proinflammatory encoding mRNA expression. The concentrations of IL1B, TNFAIP7, and leukocyte esterase activity in the uterine washings were significantly decreased in the AB and NLC groups compared to the C and FLC groups. All treatments significantly decreased concentrations of serum proinflammatory cytokines compared to control. Both the AB and NLC groups had significantly lower concentrations of serum NEFA than the C and FLC groups. The percentage of control buffaloes having an echogenic uterus and PVD score > 2 was significantly higher than those in the treated buffaloes with higher numbers of corpora lutea, higher conception rates, and shorter days open than control buffaloes (p < 0.05). In conclusion, L. lactis-producing antimicrobial and anti-inflammatory metabolites reduce uterine inflammatory responses and improve fertility in buffaloes.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal, Herrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Walaa M. Essawi
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt;
| | - Azza S. El-Demerdash
- Laboratory of Biotechnology, Department of Microbiology, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig 44516, Egypt;
| | - Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt;
| |
Collapse
|
4
|
Masoomi M, Kheirandish P, Javadmanesh A, Danesh Mesgaran S, Izadi H, Danesh Mesgaran M. Rumen-protected l-carnitine supplementation during mating period altered metabolic status and reproductive performance of ewes. J Anim Physiol Anim Nutr (Berl) 2024; 108:300-309. [PMID: 37867377 DOI: 10.1111/jpn.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Current study hypothesized that dietary l-carnitine (LC) inclusion during the mating period ameliorates both metabolic status and reproductive performance of ewes. Seventy Baluchi ewes (52 ± 4.2 kg of bodyweight and 18 ± 6 months old of age) were enrolled in this study. Animals were randomly allocated into two dietary treatments, control (only basal diet) or basal diet plus supplementation with a rumen-protected LC (Carneon 20 Rumin-pro; 20% LC; Kaesler Nutrition GmbH) at the rate of 10 g/head/day from 21 days before until 35 days after introducing rams to the ewes (MP). Feed intake was monitored by subtracting the ort from feed offered. Blood sample collection was conducted on Days -10, +10 and +20 relative to MP. Pregnancy was confirmed on Day 30 post-MP. Feed intake of the ewes in the LC group was higher than the control (p < 0.05). LC supplementation increased the cholesterol concentration in the ewes (p < 0.05). Blood urea concentration of animals in the LC group was significantly lower than the control (p < 0.05). The mRNA expression of toll-like receptor 4 was evidently lower in animals supplemented with LC than the control (p < 0.05). Both lambing and fecundity rates in the LC group tended to be higher compared with the control. LC supplementation showed potential to alter certain metabolites in the ewes. A tendency for higher lambing rate may partly be driven by dams efficient energy partitioning to support foetal growth and maintaining pregnancy.
Collapse
Affiliation(s)
- Maziar Masoomi
- Small Ruminant Research Centre, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Kheirandish
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hooman Izadi
- Small Ruminant Research Centre, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Danesh Mesgaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Su G, Huang S, Jiang S, Chen L, Yang F, Liu Z, Wang G, Huang J. Porcine β-Defensin 114: Creating a Dichotomous Response to Inflammation. Int J Mol Sci 2024; 25:1016. [PMID: 38256090 PMCID: PMC10816359 DOI: 10.3390/ijms25021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine β-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 μg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 μg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 μg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 μg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.
Collapse
Affiliation(s)
- Guoqi Su
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Sheng Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Shan Jiang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
6
|
Serbetci I, González-Grajales LA, Herrera C, Ibanescu I, Tekin M, Melean M, Magata F, Malama E, Bollwein H, Scarlet D. Impact of negative energy balance and postpartum diseases during the transition period on oocyte quality and embryonic development in dairy cows. Front Vet Sci 2024; 10:1328700. [PMID: 38249554 PMCID: PMC10797029 DOI: 10.3389/fvets.2023.1328700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Transition period is a critical time for dairy cows because a large proportion of clinical and subclinical diseases are observed in the first month after parturition. Occurrence of negative energy balance is associated with depressed immunity and these conditions can affect oocyte quality and further embryonic development. The aim of this study was to assess the effects of negative energy balance-associated disorders on in vitro embryo production (IVP) in dairy cattle. We hypothesized that subclinical metabolic and/or inflammatory disorders have a negative effect on oocyte developmental competence and morphokinetic parameters of the resulting embryos. The study was conducted on 30 lactating Holstein-Friesian cows which were assigned into four groups: healthy (HEAL, n = 6), metabolic disease (META, n = 8), inflammatory disease (INFL, n = 8), or combined metabolic and inflammatory disease (COMB, n = 8). Ovum pick-up (OPU) was performed twice weekly on all cows over a period of four weeks (n = 8 OPU sessions/cow) starting on the fifth week postpartum, and the collected oocytes were subjected to routine IVP. Donor's health status did not affect the number of oocytes/OPU or the recovery rate (p > 0.05). The number of quality 1 oocytes collected from INFL and COMB cows was lower compared to HEAL cows (p < 0.05). Also, the percentage of quality 1 embryos was reduced in META and COMB compared to HEAL cows (p < 0.05). Cleavage, blastocyst and hatching rates were similar among groups (p > 0.05). Presence of disease did not affect the time required by zygotes to reach specific developmental stages, as recorded by means of time-lapse monitoring. Nevertheless, there was a higher probability of direct cleavage after IVF in oocytes of COMB cows compared to those of HEAL cows (p < 0.05). In conclusion, oocytes and embryos derived from dairy cows diagnosed with subclinical metabolic and/or inflammatory diseases during the transition period showed reduced quality but similar developmental potential and morphokinetics when compared to healthy cows. These results shed light on the consequences of subclinical disease on embryonic development in dairy cows which might be important for embryo transfer programs.
Collapse
Affiliation(s)
- Idil Serbetci
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Carolina Herrera
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Iulian Ibanescu
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Muhittin Tekin
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Manuel Melean
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fumie Magata
- Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Dragos Scarlet
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Sarvari A, Niasari-Naslaji A, Shirazi A, Heidari B, Boroujeni SB, Moradi MH, Naderi MM, Behzadi B, Mehrazar MM, Dehghan MM. Effect of Intra-ovarian Injection of Mesenchymal Stem Cells or its Conditioned Media on Repeated OPU-IVEP Outcomes in Jersey Heifers and Its Relationship with Follicular Fluid Inflammatory Markers. Avicenna J Med Biotechnol 2024; 16:16-28. [PMID: 38605741 PMCID: PMC11005394 DOI: 10.18502/ajmb.v16i1.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 04/13/2024] Open
Abstract
Background Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.
Collapse
Affiliation(s)
- Ali Sarvari
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Niasari-Naslaji
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Banafsheh Heidari
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Sara Borjian Boroujeni
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - Mohammad-Mahdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Bahareh Behzadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad-Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Rivera-Concha R, Moya C, León M, Uribe P, Schulz M, Prado A, Taubert A, Hermosilla C, Sánchez R, Zambrano F. Effect of different sperm populations on neutrophils extracellular traps (NETs) formation in cattle. Res Vet Sci 2023; 164:105028. [PMID: 37804665 DOI: 10.1016/j.rvsc.2023.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
In cattle, clinical and subclinical inflammation in the bovine female reproductive tract (FRT) significantly reduces fertility. PMN participate in this FRT-associated inflammation by eliminating pathogens by eliciting various defense mechanisms, with the release of neutrophil extracellular traps NETs) being the latest process discovered. Consistently, human-, bovine- and porcine-derived spermatozoa induce release of NETs in exposed PMN of the same species origin, and thereby decreasing sperm motility through NETs-mediated entrapment. The release of NETs in the presence of different sperm sub-populations is evaluated in this work. Cryopreserved bovine sperm were selected and different sperm populations were used: viable sperm, sperm with oxidative stress, capacitated sperm, and sperm with loss of viability. Isolated PMN of dairy cows were co-incubated with these sperm populations for 4 h. Neutrophil elastase (NE) and DNA were detected by fluorescence microscopy analysis. It was noted that exposed bovine PMN released NETs in the presence of sperm. Moreover, sperm-triggered NETosis resulted different phenotypes of NETs, i. e. spread NETs (sprNETs), diffused NETs (diffNETs) and aggregated NETs (aggNETs). Viable/motile spermatozoa induced a higher proportion of NETotic cells at 15, 60 and 120 min in comparison to controls. In conclusion, all bovine sperm populations in co-culture with PMN generated NETs extrusion while viable sperm activated NETotic cells to a greater extent. With this being an early event in the activation of bovine PMN.
Collapse
Affiliation(s)
- Rodrigo Rivera-Concha
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Ph.D. Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Marion León
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Aurora Prado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| |
Collapse
|
9
|
Etchevers L, Renna MS, Belotti EM, Diaz PU, Salvetti NR, Ortega HH, Amweg AN. ACTH impairs the migratory and secretory profile of mononuclear cells during proestrus in cattle. Res Vet Sci 2023; 164:105031. [PMID: 37804664 DOI: 10.1016/j.rvsc.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The aim was to evaluate the effect of ACTH on the mechanisms involved in peripheral blood mononuclear cells (PBMCs) infiltration into the ovary during dairy cattle proestrus. Regarding this, proper expression pattern of adhesion molecules must take place both in PBMCs and in endothelial cells. Argentinian Holstein cows (n = 12) were treated with 100 IU of ACTH every 12 h for 4 days before ovulation when ovariectomy was performed (day 18). Blood samples were taken on day 15 (0 h) and immediately before (72 h) and after (74 h) the last ACTH administration. In PBMCs, flow cytometry was performed to analyze CD44, CD11b and CD62-L expression along with gene expression of chemokines' receptors. Interleukin (IL)-4 and tumor necrosis factor-α (TNF-α) production was analyzed by flow cytometry after exposing PBMCs to autologous follicular fluid. In ovarian blood vessels, expression of the vascular endothelium cell adhesion-1 (VCAM-1) and the platelet endothelial cell adhesion molecule-1 was evaluated by immunohistochemistry. In T-lymphocytes, the expression of CD44 and CD11b was lower at 72 h in ACTH-treated cows (P < 0.05). In monocytes, the expression of CD11b and CD62-L was lower at 72 h in ACTH-treated cows (P < 0.05). Also, the percentage of IL-4+ cells was higher in ACTH-treated cows, meanwhile, the percentage TNF-α+ cells was lower in ACTH-treated cows (P < 0.05). Finally, in the vessels associated with the preovulatory follicle VCAM-1 immunoexpression was lower in ACTH-treated cows (P < 0.05). Here, we present novel insights into the effect of stress during the preovulatory period on the inflammatory pathway necessary for ovulation.
Collapse
Affiliation(s)
- L Etchevers
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E M Belotti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - P U Diaz
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - A N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
10
|
Singh H, Brar P, Honparkhe M, Singh N, Jan MH, Maharana BR, Dadarwal D. Local and systemic inflammatory response to the intrauterine infusion of enzymes during estrus in water buffaloes with subclinical endometritis. Res Vet Sci 2023; 162:104951. [PMID: 37442014 DOI: 10.1016/j.rvsc.2023.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Our objective was to determine the effects of intrauterine infusion of proteolytic enzymes in buffaloes with subclinical endometritis (SCE) at estrus on the resolution of endometrial inflammation and reproductive performance. Buffaloes at spontaneous estrus (E1) were screened for SCE by endometrial cytology to identify SCE (≥5% PMN, n = 22) and non-SCE (<5% PMNs, n = 14) animals. All buffaloes underwent uterine ultrasonographic examination, low volume uterine lavage (cytokines and acute phase proteins) and blood sampling (cytokines and acute-phase proteins) at E1. On the same day (E1), SCE buffaloes were randomly selected either for intrauterine infusion of proteolytic enzymes (ENY, n = 11) or saline (PC, n = 11). Buffaloes without SCE were kept as untreated control (NC; n = 14). All buffaloes were re-examined and re-sampled during subsequent estrus (E2), inseminated during the following estrus (E3), and assessed for fertility related outcomes. Proteolytic infusion resulted a reduction in uterine PMN (P < 0.01) in SCE buffaloes. The concentrations of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in uterus, and TNF-α and IL-10 in serum were higher (P < 0.01) at E1 in buffaloes with SCE (PC and ENY) compared to NC. After treatment, uterine IL-1β and TNF-α (P = 0.02), and serum TNF-α and IL-10 were lower within the animals of ENY group (P < 0.01). Before treatment, buffaloes with SCE had higher concentrations (P < 0.01) of serum and uterine amyloid-A and haptoglobin, which decreased (P < 0.01) after treatment in the ENY group. None of the fertility outcomes differ between the treatment groups. In conclusion, intrauterine infusion of proteolytic enzymes reduced endometrial inflammation; however, did not improve reproductive outcomes.
Collapse
Affiliation(s)
- Harpreet Singh
- Regional Centre, Lala Lajpat Rai University of Veterinary and Animal Sciences, Karnal, Haryana, India
| | - Parkash Brar
- Veterinary Gynecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Mrigank Honparkhe
- Veterinary Gynecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Narinder Singh
- Directorate of Livestock Farms, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mustafa Hassan Jan
- ICAR-Central Institute for Research on Buffaloes, Sub Campus Bir Dosanjh, Nabha, Punjab, India
| | - Biswa Ranjan Maharana
- Regional Centre, Lala Lajpat Rai University of Veterinary and Animal Sciences, Karnal, Haryana, India
| | - Dinesh Dadarwal
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Berg DK, Ledgard A, Donnison M, McDonald R, Henderson HV, Meier S, Juengel JL, Burke CR. The first week following insemination is the period of major pregnancy failure in pasture-grazed dairy cows. J Dairy Sci 2022; 105:9253-9270. [PMID: 36153157 DOI: 10.3168/jds.2021-21773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
A 60% pregnancy success for inseminations is targeted to optimize production efficiency for dairy cows within a seasonal, pasture-grazed system. Routine measures of pregnancy success are widely available but are limited, in practice, to a gestation stage beyond the first 28 d. Although some historical data exist on embryonic mortality before this stage, productivity of dairy systems and genetics of the cows have advanced significantly in recent decades. Accordingly, the aim was to construct an updated estimate of pregnancy success at key developmental stages during the first 70 d after insemination. Blood samples were collected for progesterone concentrations on d 0 and 7. A temporal series of 4 groups spanning fertilization through d 70 were conducted on 4 seasonal, pasture-grazed dairy farms (n = 1,467 cows) during the first 21 d of the seasonal breeding period. Morphological examination was undertaken on embryos collected on d 7 (group E7) and 15 (group E15), and pregnancy was diagnosed via ultrasonography on approximately d 28 and 35 (group E35) as well as d 70 (group E70). Fertilization, embryo, and fetal evaluation for viability established a pregnancy success pattern. Additionally, cow and on-farm risk factor variables associated with pregnancy success were evaluated. We estimated pregnancy success rates of 70.9%, 59.1%, 63.8%, 62.3%, and 56.7% at d 7, 15, 28, 35, and 70, respectively. Fertilization failure (15.8%) and embryonic arrest before the morula stage (10.3%) were the major developmental events contributing to first-week pregnancy failures. Embryo elongation failure of 7% contributed to pregnancy failure during the second week. The risk factors for pregnancy success that were related to the cows included interval between calving and insemination, and d-7 plasma progesterone concentrations, whereas insemination sire was associated with pregnancy outcome. Most pregnancy failure occurs during the first week among seasonal-calving pasture-grazed dairy cows.
Collapse
Affiliation(s)
- D K Berg
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand.
| | - A Ledgard
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - M Donnison
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - R McDonald
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - H V Henderson
- AgResearch Ltd., Ruakura Agricultural Centre, 10 Bisley Rd., Hamilton 3214, New Zealand
| | - S Meier
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| | - J L Juengel
- AgResearch Ltd., Invermay, Puddle Alley Rd., Mosgiel 9092, New Zealand
| | - C R Burke
- DairyNZ Ltd., Private Bag 3221, Hamilton, New Zealand
| |
Collapse
|
12
|
Lietaer L, Pascottini OB, Heirbaut S, Demeyere K, Vandaele L, Meyer E, Fievez V, Opsomer G. Quantitative and functional dynamics of circulating and endometrial polymorphonuclear leukocytes in healthy peripartum dairy cows. Theriogenology 2022; 178:50-59. [PMID: 34768144 DOI: 10.1016/j.theriogenology.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022]
Abstract
The aim of the present study was to assess the counts, viability, and functionality of circulating and endometrial polymorphonuclear leukocytes (PMN) isolated from fourteen clinically and metabolically healthy multiparous dairy cows in the peripartum period. For this, blood samples were collected at -5, +9, +21 and + 37 days (d) relative to calving. Cytology samples were collected from the vagina, cervix, and uterus at +9, +21 and + 37 d, using the cytobrush technique. Additional vaginal samples were collected at -5 d. Cytology smears were prepared and the PMN-to-all nucleated cell proportions (PMN%) were calculated. The endometrial cytobrush samples were also used for flow cytometric assessment of endometrial PMN (ePMN) viability and functionality. Functionality tests for circulating PMN (cPMN) included phagocytosis (PC), oxidative burst, and intracellular proteolytic degradation. For ePMN, we evaluated PC only. The effect of day relative to calving on PMN viability and functionality were fitted in linear regression models, accounting for repeated measures. The endometrial PMN% were higher at +9 d (23.5 ± 0.4%; least-squares means ± standard error) and +21 d (8.5 ± 0.3%) than at +37 d (1.4 ± 0.3%). No changes in PMN% were found on either vaginal or cervical cytology along the peripartum period. The cPMN counts were higher pre- (6.2 ± 0.4 x 106/mL) than postpartum (4.9 ± 0.4 x 106/mL). Upon viability analysis, only the percentage of viable cPMN tended to be lower at -5 d (90.1 ± 1.5%) than at +37 d (94.1 ± 1.4%), and no other changes in the percentage of apoptotic and necrotic cPMN, nor in their functionality were found during the peripartum period. Analysis of ePMN viability showed that the percentage of viable ePMN did not change over time. In marked contrast, the percentage of apoptotic ePMN was higher at +9 d (37.8 ± 5.1%) than at +21 d (20.9 ± 5.1%) and +37 d (11.9 ± 5.3%), while the percentage of necrotic ePMN was lower at +9 d (27.0 ± 6.3%) than at +37 d (54.9 ± 6.6%). The percentage of ePMN PC was higher at +9 d (27.5 ± 3.4%) than at +37 d (13.3 ± 4.9%). In conclusion, during the peripartum period ePMN in the healthy postpartum uterus are highly dynamic in terms of counts, viability, and functionality compared to their circulating counterparts.
Collapse
Affiliation(s)
- Leen Lietaer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium.
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium; Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein, Wilrijk, 2610, Belgium.
| | - Stijn Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent, 9000, Belgium.
| | - Kristel Demeyere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium.
| | - Leen Vandaele
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Scheldeweg, Melle, 9090, Belgium.
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium.
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent, 9000, Belgium.
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, 9820, Belgium.
| |
Collapse
|
13
|
Extracellular Reactive Oxygen Species (ROS) Production in Fresh Donkey Sperm Exposed to Reductive Stress, Oxidative Stress and NETosis. Antioxidants (Basel) 2021; 10:antiox10091367. [PMID: 34572999 PMCID: PMC8470534 DOI: 10.3390/antiox10091367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Jenny shows a large endometrial reaction after semen influx to the uterus with a large amount of polymorphonuclear neutrophils (PMN) migrating into the uterine lumen. PMN act as a sperm selection mechanism through phagocytosis and NETosis (DNA extrudes and, together with proteins, trap spermatozoa). While a reduced percentage of spermatozoa are phagocytosed by PMN, most are found to be attached to neutrophil extracellular traps (NETs). This selection process together with sperm metabolism produces a large amount of reactive oxygen species (ROS) that influence the reproductive success. The present study aimed to determine the extracellular ROS production in both sperm and PMN. With this purpose, (1) donkey sperm were exposed to reductive and oxidative stresses, through adding different concentrations of reduced glutathione (GSH) and hydrogen peroxide (H2O2), respectively; and (2) PMN were subjected to NETosis in the presence of the whole semen, sperm, seminal plasma (SP) or other activators such as formyl-methionyl-leucyl-phenylalanine (FMLP). Extracellular ROS production (measured as H2O2 levels) was determined with the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit. Donkey sperm showed more resilience to oxidative stress than to the reductive one, and GSH treatments led to greater H2O2 extracellular production. Moreover, not only did SP appear to be the main inducer of NETosis in PMN, but it was also able to maintain the extracellular H2O2 levels produced by sperm and NETosis.
Collapse
|
14
|
Okawa H, Monniaux D, Mizokami C, Fujikura A, Takano T, Sato S, Shinya U, Kawashima C, Yamato O, Fushimi Y, Vos PLAM, Taniguchi M, Takagi M. Association between Anti-Müllerian Hormone Concentration and Inflammation Markers in Serum during the Peripartum Period in Dairy Cows. Animals (Basel) 2021; 11:1241. [PMID: 33925800 PMCID: PMC8146605 DOI: 10.3390/ani11051241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
The relationships between changes in anti-Müllerian hormone (AMH) concentration and various traits, including milk somatic cell counts (SCC), were evaluated. Blood samples were collected from 43 Holstein cows 14 days before (D-14) and 10 (D10) and 28 days after (D28) parturition, and vaginal discharge score (VDS) and polymorphonuclear leukocyte (PMNL) percentages were assessed in endometrial samples at D28. Cows were separated into four quartiles (Q1-Q4) based on changes in AMH concentration during the peripartum period (AMH ratio: D28/D-14). Correlations between AMH ratio and each parameter were evaluated and classified into high-AMH (Q4, 1.83 ± 0.12, n = 11) and low-AMH (Q1, 0.83 ± 0.05, n = 11) groups. The AMH ratio was positively correlated with magnesium and non-esterified fatty acids levels, and the albumin/globulin ratio at D10 and D28, but negatively correlated with serum amyloid A (SAA) at D10. SAA and γ-globulin levels were significantly higher in the low-AMH group at D28. There was no significant difference in VDS, PMNL percentage, and milk SCC between the two groups. The decreasing AMH ratio from the prepartum to the postpartum period corresponds to high inflammation biomarker levels. Whether it subsequently affects the reproductive prognosis of postpartum cows needs further investigations.
Collapse
Affiliation(s)
- Hiroaki Okawa
- United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan; (H.O.); (M.T.)
- Fukuoka Prefecture Dairy Cooperative Association, Fukuoka 839-0832, Japan; (C.M.); (A.F.); (T.T.)
- Guardian Co. Ltd., Kagoshima 890-0033, Japan;
| | - Danielle Monniaux
- Physiologie de la Reproduction, Centre INRA, 37380 Nouzilly, France;
| | - Chihiro Mizokami
- Fukuoka Prefecture Dairy Cooperative Association, Fukuoka 839-0832, Japan; (C.M.); (A.F.); (T.T.)
| | - Atsushi Fujikura
- Fukuoka Prefecture Dairy Cooperative Association, Fukuoka 839-0832, Japan; (C.M.); (A.F.); (T.T.)
| | - Toshihiro Takano
- Fukuoka Prefecture Dairy Cooperative Association, Fukuoka 839-0832, Japan; (C.M.); (A.F.); (T.T.)
| | - Satoko Sato
- Soo Agriculture Mutual Aid Association, Soo 899-8212, Japan; (S.S.); (U.S.)
| | - Urara Shinya
- Soo Agriculture Mutual Aid Association, Soo 899-8212, Japan; (S.S.); (U.S.)
| | - Chiho Kawashima
- Field Center of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Osamu Yamato
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
| | | | - Peter L. A. M. Vos
- Department Population Health Sciences, Farm Animal Health, Section Reproduction, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands;
| | - Masayasu Taniguchi
- United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan; (H.O.); (M.T.)
| | - Mitsuhiro Takagi
- United Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan; (H.O.); (M.T.)
| |
Collapse
|
15
|
Tsai CY, Hassan R, Hung HC, Weber T, Price WJ, Rezamand P, Huo Q. A rapid blood test to monitor the immune status change of dairy cows and to evaluate their disease risk during the periparturient period. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2020.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Abeysinghe P, Turner N, Morean Garcia I, Mosaad E, Peiris HN, Mitchell MD. The Role of Exosomal Epigenetic Modifiers in Cell Communication and Fertility of Dairy Cows. Int J Mol Sci 2020; 21:ijms21239106. [PMID: 33266010 PMCID: PMC7731370 DOI: 10.3390/ijms21239106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal uterine function affects conception rate and embryo development, thereby leading to poor fertility and reproduction failure. Exosomes are a nanosized subclass of extracellular vesicles (EV) that have important functions as intercellular communicators. They contain and carry transferable bioactive substances including micro RNA (miRNA) for target cells. Elements of the cargo can provide epigenetic modifications of the recipient cells and may have crucial roles in mechanisms of reproduction. The dairy industry accounts for a substantial portion of the economy of many agricultural countries. Exosomes can enhance the expression of inflammatory mediators in the endometrium, which contribute to various inflammatory diseases in transition dairy cows. This results in reduced fertility which leads to reduced milk production and increased cow maintenance costs. Thus, gaining a clear knowledge of exosomal epigenetic modifiers is critical to improving the breeding success and profitability of dairy farms. This review provides a brief overview of how exosomal miRNA contributes to inflammatory diseases and hence to poor fertility, particularly in dairy cows.
Collapse
|
17
|
Saint-Dizier M, Mahé C, Reynaud K, Tsikis G, Mermillod P, Druart X. Sperm interactions with the female reproductive tract: A key for successful fertilization in mammals. Mol Cell Endocrinol 2020; 516:110956. [PMID: 32712384 DOI: 10.1016/j.mce.2020.110956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Sperm migration through the female genital tract is not a quiet journey. Uterine contractions quickly operate a drastic selection, leading to a very restrictive number of sperm reaching the top of uterine horns and finally, provided the presence of key molecules on sperm, the oviduct, where fertilization takes place. During hours and sometimes days before fertilization, subpopulations of spermatozoa interact with dynamic and region-specific maternal components, including soluble proteins, extracellular vesicles and epithelial cells lining the lumen of the female tract. Interactions with uterine and oviductal cells play important roles for sperm survival as they modulate the maternal immune response and allow a transient storage before ovulation. The body of work reported here highlights the importance of sperm interactions with proteins originated from both the uterine and oviductal fluids, as well as hormonal signals around the time of ovulation for sperm acquisition of fertilizing competence.
Collapse
Affiliation(s)
- Marie Saint-Dizier
- INRAE, UMR PRC, 37380, Nouzilly, France; University of Tours, Faculty of Sciences and Techniques, 37000, Tours, France.
| | | | | | | | | | | |
Collapse
|
18
|
Morillo VA, Akthar I, Fiorenza MF, Takahashi KI, Sasaki M, Marey MA, Suarez SS, Miyamoto A. Toll-like receptor 2 mediates the immune response of the bovine oviductal ampulla to sperm binding. Mol Reprod Dev 2020; 87:1059-1069. [PMID: 32914493 DOI: 10.1002/mrd.23422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/06/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
We previously reported that sperm binding to cultured bovine oviduct epithelial cells induces an anti-inflammatory immune response. Now we have developed a differentiated explant model to focus on the oviductal ampulla, where fertilization occurs, and to study the effect of sperm capacitation on the immune response. We used heparin to stimulate bovine sperm capacitation. Fluorescence imaging showed that 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide-labeled sperm pretreated with (Hep(+) ) or without (Hep( -) ) heparin rapidly attached to the explant ciliated epithelium in similar numbers. However, only Hep(+) sperm upregulated explant messenger RNA (mRNA) transcription of TLR2, IL8, TGFB1, and PGES, without changes in TNFA and IL-10 expression, while Hep( -) sperm only upregulated PGES. The responses were primarily anti-inflammatory, with a greater response produced by Hep(+) sperm, which also produced a substantial increase in TLR2 protein expression in the epithelium. The addition of TLR1/2 (toll-like receptor 1/2) antagonist to the Hep(+) and (Hep( -) ) sperm-explant coincubations reduced sperm attachment to the epithelium and inhibited TLR2 protein expression and some of the Hep(+) sperm-induced mRNA transcription. Our observations suggest that the ampullar epithelium immunologically reacts more strongly to sperm that have undergone heparin stimulation of capacitation. This anti-inflammatory response could serve to protect capacitated sperm as they approach the oocyte in the ampulla.
Collapse
Affiliation(s)
- Vernadyn A Morillo
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Clinical Sciences, College of Veterinary Medicine, Nueva Vizcaya State University, Nueva Vizcaya, Philippines
| | - Ihshan Akthar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mariani F Fiorenza
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | | | - Motoki Sasaki
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed A Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|