1
|
Ranbhor R. Advancing Monoclonal Antibody Manufacturing: Process Optimization, Cost Reduction Strategies, and Emerging Technologies. Biologics 2025; 19:177-187. [PMID: 40226587 PMCID: PMC11994081 DOI: 10.2147/btt.s515078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Purpose This review examines recent advances in monoclonal antibody (mAb) manufacturing, focusing on process optimization, cost reduction strategies, and emerging technologies. The analysis addresses critical challenges in current manufacturing processes while evaluating innovative solutions to improve production efficiency and economic viability. Methods We conducted a comprehensive analysis of recent literature on mAb manufacturing, examining traditional batch processing, continuous processing, and hybrid systems. The review evaluates cost optimization strategies, including media development and process integration, while assessing the impact of emerging technologies, such as machine learning and advanced analytics, on manufacturing efficiency. Results Recent studies demonstrate that continuous processing can achieve up to 35% cost savings compared to traditional batch processing to meet an annual production demand of 100-500 kg, though this gain diminishes at larger scales. Hybrid facilities show accelerated break-even points, reaching profitability 2-2.5 years earlier than traditional facilities. Advanced media optimization strategies, incorporating novel tripeptide delivery methods, have demonstrated up to 35% improvement in mAb titers. Integration of machine learning and advanced analytics has significantly enhanced process control and optimization capabilities. Conclusion The evolution of mAb manufacturing technologies offers promising pathways for improving production efficiency and reducing costs. Scale-dependent considerations remain crucial in selecting optimal manufacturing strategies, while emerging technologies present new opportunities for process optimization. Future developments in continuous processing, advanced analytics, and cell line engineering will be essential in meeting growing global demand while ensuring economic viability and accessibility of mAb therapeutics.
Collapse
|
2
|
Esteves SC, Viana MC, Achermann APP, Santi D. Human chorionic gonadotropin-based clinical treatments for infertile men with non-obstructive azoospermia. Andrology 2025. [PMID: 39901824 DOI: 10.1111/andr.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
Spermatogenesis is primarily controlled by follicle-stimulating hormone and luteinizing hormone-driven testosterone. Luteinizing hormone acts on the Leydig cells, stimulating steroid production, predominantly testosterone, and activating critical inter-related spermatogenesis regulatory pathways. Despite evidence that exogenous gonadotropins containing luteinizing hormone activity, particularly human chorionic gonadotropin, can effectively restore spermatogenesis in azoospermic males with hypogonadotropic hypogonadism, the use of these drugs to treat other forms of non-obstructive azoospermia is the subject of an ongoing debate. In this review, we delve into the molecular properties and functions of human chorionic gonadotropin in spermatogenesis regulation and explore available preparations for therapeutic use. We examine the evidence regarding the effectiveness of human chorionic gonadotropin in treating infertility in men with pre-testicular or testicular non-obstructive azoospermia and, additionally, identify the main areas for future research. Our review highlights the critical role of luteinizing hormone activity in spermatogenesis and emphasizes the potential of human chorionic gonadotropin in treating male infertility. The variation in the characteristics of patients with non-obstructive azoospermia underscores the importance of assessing hormonal profiles when contemplating hormonal treatment for these patients. A novel stratification of male infertility patients, the APHRODITE criteria, which considers clinical and laboratory indicators, may assist in identifying individuals who could benefit from human chorionic gonadotropin therapy. While accumulating evidence suggests promising venues for pharmacological treatment in male infertility, including non-obstructive azoospermia, further research is required to completely elucidate the mechanisms underlying the effects of exogenous gonadotropins with luteinizing hormone activity on sperm production and to establish the most effective dosages and treatment durations.
Collapse
Affiliation(s)
- Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
- Department of Surgery (Division of Urology), State University of Campinas (UNICAMP), Campinas, Brazil
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marina C Viana
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, Brazil
| | - Arnold P P Achermann
- Department of Surgery (Division of Urology), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniele Santi
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero - University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Goumenou A, Chendo C, Combès A, Fournier T, Pichon V, Delaunay N. Evaluation of Jacalin lectin sorbents for the extraction of the human chorionic gonadotropin glycoforms prior to analysis by nano liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2025; 252:116525. [PMID: 39447420 DOI: 10.1016/j.jpba.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Human chorionic gonadotropin (hCG) is a dimeric, highly glycosylated hormone with a total of 4 N- and 4 O-glycosylation sites in its two subunits, hCGα and hCGβ. Recently, we developed a novel nano liquid chromatography coupled to high resolution mass spectrometry (nanoLC-HRMS) method for the analysis and thus the detection of the intact glycoforms of hCG. Here, a sorbent functionalized with the Jacalin lectin was evaluated in solid-phase extraction (SPE) for its potential to fractionate the hCG glycoforms prior to their nanoLC-HRMS analysis at the intact level, which may facilitate the detection of low-abundance glycoforms and may lead to a more detailed characterization of the hormone glycosylation. A commercial sorbent based on Jacalin immobilized on Sepharose and having a lectin density of 4.5 mg per ml of gel was selected to carry out SPE and its capacity was estimated to be of some tens of μg of hCG per ml of lectin sorbent. Next, the SPE protocol was modified to improve the extraction recoveries. Especially, it was noticed that an extensive pre-conditioning procedure prior to the first use of a cartridge was necessary to remove the residual non-grafted lectins. Indeed, if non-grafted lectins are not eliminated, they may bind a part of hCG glycoforms preventing their retention by the sorbent, leading to low extraction recoveries (around 10 %). With the extensive pre-conditioning procedure, the average extraction recoveries for both hCGα and hCGβ glycoforms were about 50 %, with either recombinant or urinary hCG. Qualitatively, the fractionation of hCG glycoforms between the washing and elution fractions was achieved with the urinary hCG sample by determining the number of glycoforms detected in each fraction. It appears that 12 hCGα glycoforms have a low affinity (detected only in the washing fraction), 1 a low-medium affinity (detected in washing and elution 1 fractions), 16 a medium affinity (detected in washing, elution 1 and 2 fractions), and 12 a high affinity (detected only in elution 1 and 2 fractions). For the hCGβ glycoforms, similarly, 3 have a low affinity and 12 a low-medium affinity. Additionally, the 3 hCGβ glycoforms were detected better. A different behavior was observed with the recombinant hCG sample, which indicates glycosylation differences between the two hCG samples. This shows the potential of lectin-based affinity fractionation before nanoLC-HRMS analysis to better characterize the glycosylation state of hCG at the intact level.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Christophe Chendo
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- "Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota", UMR-S 1139, Université Paris Cité, INSERM, Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Byambaragchaa M, Park SH, Kim SG, Shin MG, Kim SK, Park MH, Kang MH, Min KS. Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells. Int J Mol Sci 2024; 25:7282. [PMID: 39000389 PMCID: PMC11242883 DOI: 10.3390/ijms25137282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to produce single-chain recombinant Anguillid eel follicle-stimulating hormone (rec-eel FSH) analogs with high activity in Cricetulus griseus ovary DG44 (CHO DG44) cells. We recently reported that an O-linked glycosylated carboxyl-terminal peptide (CTP) of the equine chorionic gonadotropin (eCG) β-subunit contributes to high activity and time-dependent secretion in mammalian cells. We constructed a mutant (FSH-M), in which a linker including the eCG β-subunit CTP region (amino acids 115-149) was inserted between the β-subunit and α-subunit of wild-type single-chain eel FSH (FSH-wt). Plasmids containing eel FSH-wt and eel FSH-M were transfected into CHO DG44 cells, and single cells expressing each protein were isolated from 10 and 7 clones. Secretion increased gradually during the cultivation period and peaked at 4000-5000 ng/mL on day 9. The molecular weight of eel FSH-wt was 34-40 kDa, whereas that of eel FSH-M increased substantially, with two bands at 39-46 kDa. Treatment with PNGase F to remove the N glycosylation sites decreased the molecular weight remarkably to approximately 8 kDa. The EC50 value and maximal responsiveness of eel FSH-M were approximately 1.23- and 1.06-fold higher than those of eel FSH-wt, indicating that the mutant showed slightly higher biological activity. Phosphorylated extracellular-regulated kinase (pERK1/2) activation exhibited a sharp peak at 5 min, followed by a rapid decline. These findings indicate that the new rec-eel FSH molecule with the eCG β-subunit CTP linker shows potent activity and could be produced in massive quantities using the stable CHO DG44 cell system.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sei Hyen Park
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.H.P.); (S.-G.K.)
| | - Sang-Gwon Kim
- Graduate School of Animal Biosciences, Hankyong National University, Anseong 17579, Republic of Korea; (S.H.P.); (S.-G.K.)
| | - Min Gyu Shin
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | - Shin-Kwon Kim
- Aquaculture Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (M.G.S.); (S.-K.K.)
| | | | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Republic of Korea;
| | - Kwan-Sik Min
- Carbon-Neutral Resources Research Center, Hankyong National University, Anseong 17579, Republic of Korea;
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Division of Animal BioScience, School of Animal Life Convergence Sciences, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
5
|
Goumenou A, Chendo C, Combès A, Fournier T, Pichon V, Delaunay N. Characterization of Concanavalin A-based lectin sorbents for the extraction of the human chorionic gonadotropin glycoforms prior to analysis by nano liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 242:116022. [PMID: 38354538 DOI: 10.1016/j.jpba.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Human chorionic gonadotropin (hCG) is constituted of the hCGα and hCGβ subunits and is a highly glycosylated protein. Affinity supports based on immobilized Concanavalin A (Con A) lectin were used in solid phase extraction (SPE) to fractionate the hCG glycoforms according to their glycosylation state. For the first time, the lectin SPE fractions were off-line analysed by a nano liquid chromatography - high-resolution mass spectrometry (nanoLC-HRMS) method keeping the glycoforms intact. For this, home-made Con A sorbents were prepared by immobilizing lectin on Sepharose with a mean grafting yield of 98.2% (relative standard deviation (RSD) of 3.5%, n = 15). A capacity of about 100 μg of purified urinary hCG (uhCG) per ml of sorbent, grafted with a density of 10 mg of Con A per ml, was estimated. Average extraction yields of around 60% for both hCGα and hCGβ glycoforms were obtained after optimization of the extraction protocol. Intra- and inter-assay evaluation led to average RSD values of around 10%, indicating a repeatable extraction procedure. Similar results were obtained with commercial Con A-based sorbents but only after their 3rd use or after an extensive pre-conditioning step. Finally, the Con A SPE led to the fractionation of some glycoforms of uhCG, allowing the detection of an hCGα glycoform with two tetra-antennary N-glycans that couldn't be detected by direct analysis in nanoLC-HRMS without Con A SPE. Regarding a recombinant hCG, a fractionation was also observed leading to the detection of unretained hCGα glycoforms with tri-antennary N-glycans. Therefore, the combination of lectin SPE with intact protein analysis by nanoLC-HRMS can contribute to a more detailed glycosylation characterization of the hCG protein.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Christophe Chendo
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Audrey Combès
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France
| | - Thierry Fournier
- Université Paris Cité, INSERM, "Pathophysiology & Pharmacotoxicology of the Human Placenta, pre & postnatal Microbiota", 3PHM, F-75006 Paris, France
| | - Valérie Pichon
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France; Sorbonne Université, Paris, France
| | - Nathalie Delaunay
- Laboratory of Analytical, Bioanalytical Sciences and Miniaturization, Chemistry, Biology and Innovation (CBI) UMR 8231, ESPCI Paris PSL, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Physicochemical Characterization of a Recombinant eCG and Comparative Studies with PMSG Commercial Preparations. Protein J 2023; 42:24-36. [PMID: 36652139 DOI: 10.1007/s10930-023-10092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Equine chorionic gonadotropin (eCG) is a glycoprotein hormone widely used in timed artificial ovulation (TAI) and superovulation protocols to improve the reproductive performance in livestock. Until recently, the only eCG products available in the market for veterinary use consisted in partially purified preparations of pregnant mare serum gonadotropin (PMSG). Here, a bioactive recombinant eCG (reCG) produced in suspension CHO-K1 cells was purified employing different chromatographic methods (hydrophobic interaction chromatography and reverse-phase (RP)-HPLC) and compared with a RP-HPLC-purified PMSG. To gain insight into the structural and functional characteristics of reCG, a bioinformatics analysis was performed. An exhaustive characterization comprising the determination of the purity degree, aggregates and nicked forms through SDS-PAGE, RP-HPLC and SEC-HPLC was performed. Higher order structures were studied by fluorescence spectroscopy and SEC-HPLC. Isoforms profile were analyzed by isoelectric focusing. Glycosylation analysis was performed through pulsed amperometric detection and PNGase F treatment following SDS-PAGE and weak anion exchange-HPLC. Slight differences between the purified recombinant hormones were found. However, recombinant molecules and PMSG exhibited variations in the glycosylation pattern. In fact, differences in sialic acid content between two commercial preparations of PMSG were also obtained, which could lead to differences in their biological potency. These results show the importance of having a standardized production process, as occurs in a recombinant protein bioprocess. Besides, our results reflect the importance of the glycan moieties on eCG conformation and hence in its biological activity, preventing denaturing processes such as aggregation.
Collapse
|
7
|
Li Z, Liu K, Xu P, Yang J. Benchmarking Cleavable Biotin Tags for Peptide-Centric Chemoproteomics. J Proteome Res 2022; 21:1349-1358. [PMID: 35467356 DOI: 10.1021/acs.jproteome.2c00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Click chemistry─specifically the copper-catalyzed azide-alkyne cycloaddition─has enabled the development of a wide range of chemical probes to analyze subsets of the functional proteome. The "clickable" proteome can be selectively enriched by using diverse cleavable biotin tags, but the direct identification of probe/tag-modified peptides (or peptide-centric analysis) remains challenging. Here, we evaluated the performance of five commercially available cleavable biotin tags in three most common chemoproteomic workflows, resulting in a comparative analysis of 15 methods. An acid-cleavable biotin tag with a dialkoxydiphenylsilane moiety, in combination with the protein "click", peptide "capture" workflow, outperforms all other methods in terms of enrichment efficiency, identification yield, and reproducibility, although its performance may be slightly compromised by the formation of an unwanted formate product revealed by blind search. Despite being inferior, photocleavable, and reduction-cleavable, biotin tags can also find their applicable sceneries, especially when dealing with acid-sensitive probes or probe-derived modifications. Furthermore, the systematic comparison of LC-MS/MS characteristics of tag-modified peptides provides valuable information for the future development of cleavable biotin reagents. Taken together, our data provides a much-needed practical guidance for researchers interested in developing and/or applying an ideal cleavable biotin tag to peptide-centric chemoproteomics.
Collapse
Affiliation(s)
- Zongmin Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ping Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
8
|
Nupur N, Joshi S, Gulliarme D, Rathore AS. Analytical Similarity Assessment of Biosimilars: Global Regulatory Landscape, Recent Studies and Major Advancements in Orthogonal Platforms. Front Bioeng Biotechnol 2022; 10:832059. [PMID: 35223794 PMCID: PMC8865741 DOI: 10.3389/fbioe.2022.832059] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Biopharmaceuticals are one of the fastest-growing sectors in the biotechnology industry. Within the umbrella of biopharmaceuticals, the biosimilar segment is expanding with currently over 200 approved biosimilars, globally. The key step towards achieving a successful biosimilar approval is to establish analytical and clinical biosimilarity with the innovator. The objective of an analytical biosimilarity study is to demonstrate a highly similar profile with respect to variations in critical quality attributes (CQAs) of the biosimilar product, and these variations must lie within the range set by the innovator. This comprises a detailed comparative structural and functional characterization using appropriate, validated analytical methods to fingerprint the molecule and helps reduce the economic burden towards regulatory requirement of extensive preclinical/clinical similarity data, thus making biotechnological drugs more affordable. In the last decade, biosimilar manufacturing and associated regulations have become more established, leading to numerous approvals. Biosimilarity assessment exercises conducted towards approval are also published more frequently in the public domain. Consequently, some technical advancements in analytical sciences have also percolated to applications in analytical biosimilarity assessment. Keeping this in mind, this review aims at providing a holistic view of progresses in biosimilar analysis and approval. In this review, we have summarized the major developments in the global regulatory landscape with respect to biosimilar approvals and also catalogued biosimilarity assessment studies for recombinant DNA products available in the public domain. We have also covered recent advancements in analytical methods, orthogonal techniques, and platforms for biosimilar characterization, since 2015. The review specifically aims to serve as a comprehensive catalog for published biosimilarity assessment studies with details on analytical platform used and critical quality attributes (CQAs) covered for multiple biotherapeutic products. Through this compilation, the emergent evolution of techniques with respect to each CQA has also been charted and discussed. Lastly, the information resource of published biosimilarity assessment studies, created during literature search is anticipated to serve as a helpful reference for biopharmaceutical scientists and biosimilar developers.
Collapse
Affiliation(s)
- Neh Nupur
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Srishti Joshi
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Davy Gulliarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
9
|
Luo Y, Sun L, Dong M, Zhang X, Huang L, Zhu X, Nong Y, Liu F. The best execution of the DuoStim strategy (double stimulation in the follicular and luteal phase of the same ovarian cycle) in patients who are poor ovarian responders. Reprod Biol Endocrinol 2020; 18:102. [PMID: 33059712 PMCID: PMC7566062 DOI: 10.1186/s12958-020-00655-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/24/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patients found to be poor ovarian responders (POR) are a challenging patient population for any assisted reproduction technology. Despite attempts at various controlled ovarian stimulation schemes, reproductive outcomes in this patient population have not improved. In recent years, the DuoStim protocol (both follicular and luteal phase stimulation during the same menstrual cycle) has shown a potential for use in patients with POR. METHODS This retrospective study reviewed the medical records of 304 women who were diagnosed as POR and underwent the DuoStim protocol. We compared follicular phase stimulation (FPS) data and luteal phase stimulation (LPS) data of the same patients. We also compared the effects of different trigger drugs including urine human chorionic gonadotropin (uHCG; 10,000 IU), recombinant human chorionic gonadotropin (rHCG; 250 μg), and gonadotropin-releasing hormone agonist (GnRH-a; 0.2 mg) at the FPS and LPS stages. RESULTS POR undergoing the DuoStim protocol resulted in a significantly higher number of oocytes retrieved, normal fertilised oocytes, cleaved embryos, cryopreserved embryos, and good quality embryos at the LPS stage than at the FPS stage. Trigger drugs at the FPS stage did not affect the FPS stage data. Regardless of the stage, rHCG and GnRH-a yielded significantly more cryopreserved embryos and good quality embryos than uHCG. CONCLUSION The use of GnRH-a or rHCG as the trigger drug may be better than uHCG in both the FPS and LPS stages for POR undergoing the DuoStim protocol. This will increase the number of good quality embryos at the LPS stage. We found that the LPS stage results in more oocytes (and therefore more embryos) than the FPS stage.
Collapse
Affiliation(s)
- Yanqun Luo
- grid.412601.00000 0004 1760 3828The First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Tianhe District, Guangzhou, 510630 Guangdong Province China
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Li Sun
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Mei Dong
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Xiqian Zhang
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Li Huang
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Xiulan Zhu
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Yingqi Nong
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| | - Fenghua Liu
- grid.459579.3Department of Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400 Guangdong Province China
| |
Collapse
|
10
|
Wang J, Yang T, Mei H, Yu X, Peng H, Wang R, Cai Y. Comparative Pharmacokinetics, Bioequivalence and Safety Study of Two Recombinant Human Chorionic Gonadotropin Injections in Healthy Chinese Subjects. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:435-444. [PMID: 32099328 PMCID: PMC6996485 DOI: 10.2147/dddt.s235064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/31/2019] [Indexed: 01/10/2023]
Abstract
Objective To evaluate the pharmacokinetics (PK), bioequivalence and safety profile of the recombinant human chorionic gonadotropin (r-hCG) injection formulation LZM003 (test drug) comparing with that of Ovidrel® (reference drug) in healthy Chinese subjects. Methods This is a randomized, single-blind, single-dose, two-arm and two-period crossover Phase I study. Subjects were randomized evenly to a single dose of LZM003 or reference drug injected subcutaneously, with a 10-day or longer between-treatment washout period. PK parameters, anti-drug antibodies (ADAs), and adverse events (AEs) were assessed. The primary PK endpoints were area under the curve (AUC) of the concentration-time curve from zero to last quantifiable concentration (AUC0-t), AUC from zero to infinity (AUC0-∞), and peak concentration (Cmax). Bioequivalence was determined by assessing whether the 90% confidence intervals (CIs) for the geometric mean ratio (GMR) of LZM003 to reference drug fell within predefined margins of 80% -125%. Results Forty-eight subjects (24 males and 24 females) were enrolled and one subject withdrew for personal reasons. Mean values of primary PK parameters were similar (p > 0.05) between LZM003 and the reference drug. The 90% CIs for primary PK endpoints' GMR of LZM003 to reference drug ranged between 0.9144 and 1.1845, which were within bioequivalence margins of 80-125%. Incidence of AEs was similar (p > 0.05) between the two groups. Neither LZM003 nor reference drug produced anti-drug antibody (ADA) in healthy subjects. Conclusion LZM003 and reference drug were bioequivalent. The PK and safety assessments were similar (p > 0.05) between the two formulations in healthy Chinese subjects. Trial Registration Number ChiCTR-IIR-16010158 (http://www.chictr.org.cn). Trial Registration Date December 15, 2016.
Collapse
Affiliation(s)
- Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing 100853, People's Republic of China
| | - Tianli Yang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing 100853, People's Republic of China
| | - Hekun Mei
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xueming Yu
- Livzon MabPharm Inc, Zhuhai, Guangdong 519045, People's Republic of China
| | - Hongmei Peng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, PLA General Hospital, Beijing 100853, People's Republic of China
| | - Rui Wang
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, PLA General Hospital, Beijing 100853, People's Republic of China
| |
Collapse
|
11
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
12
|
Haymond A, Davis JB, Espina V. Proteomics for cancer drug design. Expert Rev Proteomics 2019; 16:647-664. [PMID: 31353977 PMCID: PMC6736641 DOI: 10.1080/14789450.2019.1650025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Signal transduction cascades drive cellular proliferation, apoptosis, immune, and survival pathways. Proteins have emerged as actionable drug targets because they are often dysregulated in cancer, due to underlying genetic mutations, or dysregulated signaling pathways. Cancer drug development relies on proteomic technologies to identify potential biomarkers, mechanisms-of-action, and to identify protein binding hot spots. Areas covered: Brief summaries of proteomic technologies for drug discovery include mass spectrometry, reverse phase protein arrays, chemoproteomics, and fragment based screening. Protein-protein interface mapping is presented as a promising method for peptide therapeutic development. The topic of biosimilar therapeutics is presented as an opportunity to apply proteomic technologies to this new class of cancer drug. Expert opinion: Proteomic technologies are indispensable for drug discovery. A suite of technologies including mass spectrometry, reverse phase protein arrays, and protein-protein interaction mapping provide complimentary information for drug development. These assays have matured into well controlled, robust technologies. Recent regulatory approval of biosimilar therapeutics provides another opportunity to decipher the molecular nuances of their unique mechanisms of action. The ability to identify previously hidden protein hot spots is expanding the gamut of potential drug targets. Proteomic profiling permits lead compound evaluation beyond the one drug, one target paradigm.
Collapse
Affiliation(s)
- Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Justin B Davis
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| |
Collapse
|
13
|
Panić‐Janković T, Mitulović G. Human chorionic gonadotrophin pharmaceutical formulations of urinary origin display high levels of contaminant proteins-A label-free quantitation proteomics study. Electrophoresis 2019; 40:1622-1629. [PMID: 30883802 PMCID: PMC6593423 DOI: 10.1002/elps.201900087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
To determine whether there is a measurable protein background in different formulations of urinary and recombinant human chorionic gonadotropin (hCG). Primary outcome measures: identification of contaminant proteins in urinary-derived formulations of hCG; secondary outcome measures: quantitative values of contaminant proteins in different batches of urinary -derived hCG formulations. It was found that urinary-derived batches have high presence of contaminant proteins beside the active substance. The relative amount of contaminant proteins and hCG differs strongly between different batches.
Collapse
Affiliation(s)
- Tanja Panić‐Janković
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Goran Mitulović
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Proteomic Core FacilityMedical University of ViennaViennaAustria
| |
Collapse
|