1
|
Nong Y, Sugarman J, York JP, Levy-Hacham O, Nadora D, Mizrahi R, Galati A, Gallo RL, Sivamani RK. Effect of Topical Microencapsulated Benzoyl Peroxide on the Skin Microbiome in Rosacea: A Randomized, Double-Blind, Crossover, Vehicle-Controlled Clinical Trial. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:19-26. [PMID: 39148964 PMCID: PMC11324191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Objective We sought to evaluate changes in microbiome biodiversity and physical properties of the skin after eight weeks of once-daily topical microencapsulated benzoyl peroxide (E-BPO) compared to vehicle cream in participants with rosacea. Methods This was a randomized, double-blind, crossover, single-center, vehicle-controlled evaluation of E-BPO on the skin microbiome in rosacea. Participants had facial rosacea with global severity of 3 or 4 on the Investigator Global Assessment (IGA) scale. In the Treatment 1-2 group, participants received E-BPO for eight weeks then switched to vehicle cream for four weeks. In the Treatment 2-1 group, participants received vehicle cream for eight weeks, then E-BPO for four weeks. Results Thirty-one participants were enrolled and randomly assigned to either group. Demographic characteristics were comparable between the treatment groups. After eight weeks of E-BPO treatment, there was a marked reduction in the relative abundance of Staphylococcus accompanied by an increase in Cutibacterium. At the species level, there was an increase in the relative abundance of C. acnes and a decrease in abundance of S. epidermidis. No noticeable difference was detected at the genus or species level at Week 8 in the 2-1 group. Sebum level, IGA, lesion counts, facial erythema, and inflammatory scores were improved with E-BPO versus vehicle cream. Adverse events were mild or moderate in severity. Limitations The study included a small number of subjects and only surface-swabs were used for microbiome sampling. Conclusion E-BPO shifted the skin microbiome in rosacea and demonstrated improvements in clinical symptoms and skin physical properties and a well-tolerated safety profile. US National Library of Medicine; Trial ID: NCT05675501]; URL: clinicaltrials.gov.
Collapse
Affiliation(s)
- Yvonne Nong
- Dr. Nong is with Integrative Skin Science and Research in Sacramento, California; the Pacific Skin Institute in Sacramento, California; and the Department of Dermatology at the University of California, Davis in Sacramento, California
| | - Jeffrey Sugarman
- Dr. Sugarman is with the University of California San Francisco in San Francisco, California
| | | | - Ofra Levy-Hacham
- Dr. Levy-Hacham is with Sol-Gel Technologies in Ness Ziona, Israel
| | - Dawnica Nadora
- Ms. Nadora is with Integrative Skin Science and Research in Sacramento, California
| | - Rinat Mizrahi
- Ms. Mizrahi is with Sol-Gel Technologies in Ness Ziona, Israel
| | - Aidan Galati
- Ms. Galati is with Pacific Skin Institute, Sacramento, California, and Integrative Skin Science and Research in Sacramento, California
| | - Richard L Gallo
- Dr. Gallo is with the Department of Dermatology at University of California in San Diego, California
| | - Raja K Sivamani
- Dr. Sivamani is with Integrative Skin Science and Research in Sacramento, California; the Pacific Skin Institute in Sacramento, California; and the Department of Dermatology at the University of California, Davis in Sacramento, California
| |
Collapse
|
2
|
Lo Piccolo L, Wongkummool W, Jantaree P, Daroontum T, Chaowattanapanit S, Choonhakarn C, Amornpinyo W, Chaiwarith R, Kiratikanon S, Rujiwetpongstorn R, Tovanabutra N, Chiewchanvit S, Ngamphiw C, Intachai W, Kantaputra P, Chuamanochan M. Rare Filaggrin Variants Are Associated with Pustular Skin Diseases in Asians. Int J Mol Sci 2024; 25:6466. [PMID: 38928170 PMCID: PMC11203790 DOI: 10.3390/ijms25126466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive pustular eruptions (RPEs) can manifest in a variety of conditions, including pustular psoriasis (PP) and adult-onset immunodeficiency syndrome due to anti-interferon-γ autoantibody (AOID). These RPEs can be attributed to different causes, one of which is genetic factors. However, the genetic basis for pustular skin diseases remains poorly understood. In our study, we conducted whole-exome sequencing on a cohort of 17 AOID patients with pustular reactions (AOID-PR) and 24 PP patients. We found that 76% and 58% of the AOID-PR and PP patients, respectively, carried rare genetic variations within the filaggrin (FLG) gene family. A total of 12 out of 21 SNPs on FLG had previously received clinical classifications, with only p.Ser2706Ter classified as pathogenic. In contrast, none of the FLG3 SNPs identified in this study had prior clinical classifications. Overall, these variations had not been previously documented in cases of pustular disorders, and two of them were entirely novel discoveries. Immunohistochemical analysis of skin biopsies revealed that FLG variants like p.Ser860Trp, p.Gly3903Ter, p.Gly2440Glu, and p.Glu2133Asp caused reductions in FLG levels similar to the pathogenic FLG p.Ser2706Ter. These results highlight rare FLG variants as potential novel genetic risk factors contributing to pustule formation in both AOID and PP.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.L.P.); (W.W.); (P.J.)
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.L.P.); (W.W.); (P.J.)
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (L.L.P.); (W.W.); (P.J.)
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Suteeraporn Chaowattanapanit
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (C.C.)
| | - Charoen Choonhakarn
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (C.C.)
| | - Warayuwadee Amornpinyo
- Division of Dermatology, Department of Internal Medicine, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen 40002, Thailand;
| | - Romanee Chaiwarith
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Salin Kiratikanon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Rujira Rujiwetpongstorn
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Napatra Tovanabutra
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Siri Chiewchanvit
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand;
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (W.I.); (P.K.)
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (W.I.); (P.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mati Chuamanochan
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.K.); (R.R.); (N.T.); (S.C.)
| |
Collapse
|
3
|
Lim JJ, Liu MH, Chew FT. Dietary Interventions in Atopic Dermatitis: A Comprehensive Scoping Review and Analysis. Int Arch Allergy Immunol 2024; 185:545-589. [PMID: 38442688 PMCID: PMC11151999 DOI: 10.1159/000535903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND This scoping review aims to critically assess gaps in the current literature on atopic dermatitis (AD) by evaluating the overall effectiveness of dietary interventions. Through a comprehensive analysis that follows the Preferred Reporting Item for Systematic Review and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines, we conducted a thorough search on the Web of Science database in May 2023 using specific search strategies to identify all relevant studies on the research topic. SUMMARY A total of 104 full-text articles were included for review. Our synthesis identified seven notable categories of dietary interventions for AD, showcasing the diversity of interventions utilized. This includes vitamin supplementation, probiotic and prebiotic supplementation, dietary fat, biological compounds, foods from natural sources, major nutrients, and diet-related approaches. Further analyses stratified by targeted populations revealed a predominant focus on pediatrics, particularly in probiotic supplementation, and on adults, with an emphasis on vitamin D and E supplementation. KEY MESSAGES Despite most dietary interventions demonstrating overall effectiveness in improving AD severity and its subjective symptoms, several significant gaps were identified. There was a scarcity of studies on adults and whole-diet interventions, a prevalence of short-term interventions, heterogeneity in study outcomes, designs, and population, occasional disparity between statistical significance and clinical relevance, and a lack of a comprehensive multidisciplinary approach. Nonetheless, these findings offer valuable insights for future AD research, guiding additional evidence-driven dietary interventions and informing healthcare professionals, researchers, and individuals, advancing both understanding and management of AD.
Collapse
Affiliation(s)
- Jun Jie Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Mei Hui Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Portocarrero Huang G, Idkowiak-Baldys J, Liebel F, Jones C, Haxaire C, DiNatale L, Bayat A, Glynn JR. L-4-thiazolylalanine (Protinol), a novel non-proteinogenic amino acid, demonstrates epidermal and dermal efficacy with clinically observable benefits. Int J Cosmet Sci 2024; 46:24-38. [PMID: 37562497 DOI: 10.1111/ics.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Facial skin undergoes major structural and functional changes as a result of intrinsic and extrinsic factors. The goal of the current work is to demonstrate L-4-thiazolylalaine (L4, Protinol), a non-proteinogenic amino acid shown to stimulate the production of dermal proteins by fibroblasts, is an alternative efficacious topical ingredient for visible signs of ageing. METHODS In vitro studies using 3D human skin tissue models were performed to show changes in protein and gene expression of key dermal markers in samples treated with 0.3% L4 compared to vehicle control. In vivo evaluation of skin turnover was measured in volunteers after treatment with L4 compared to retinol. Skin biopsies (n = 30) were taken to investigate epidermal and dermal changes in cases treated with L4 and compared to retinol. Finally, a clinical evaluation (n = 28) was conducted to assess the efficacy of L4 over a base formulation using various ageing parameters within a population of women 46-66 years old with mild-to-moderate wrinkles. RESULTS In vitro studies on 3D tissues displayed significant changes in the dermal matrix via an increase in HA and pro-collagen I production and a decrease in the expression of inflammatory genes. In vivo biopsy studies demonstrated that L4 and retinol independently increased epidermal thickness and collagen remodelling significantly more compared with the base formula. Clinical evaluation showed firmer and smoother skin at day 28 post-treatment with L4 over the vehicle control without causing side effects such as redness or irritation. CONCLUSION L4 is a novel, multi-functional ingredient which offers a superior alternative to currently available technologies for improving epidermal and dermal parameters that change during ageing and photodamage.
Collapse
Affiliation(s)
- Gloria Portocarrero Huang
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Jolanta Idkowiak-Baldys
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Frank Liebel
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Constantina Jones
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Coline Haxaire
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Lisa DiNatale
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - Ardeshir Bayat
- MRC Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - John R Glynn
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| |
Collapse
|
5
|
Chu AWL, Wong MM, Rayner DG, Guyatt GH, Díaz Martinez JP, Ceccacci R, Zhao IX, McMullen E, Srivastava A, Wang J, Wen A, Wang FC, Brignardello-Petersen R, Izcovich A, Oykhman P, Wheeler KE, Wang J, Spergel JM, Singh JA, Silverberg JI, Ong PY, O'Brien M, Martin SA, Lio PA, Lind ML, LeBovidge J, Kim E, Huynh J, Greenhawt M, Gardner DD, Frazier WT, Ellison K, Chen L, Capozza K, De Benedetto A, Boguniewicz M, Smith Begolka W, Asiniwasis RN, Schneider LC, Chu DK. Systemic treatments for atopic dermatitis (eczema): Systematic review and network meta-analysis of randomized trials. J Allergy Clin Immunol 2023; 152:1470-1492. [PMID: 37678577 DOI: 10.1016/j.jaci.2023.08.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory skin condition with multiple systemic treatments and uncertainty regarding their comparative impact on AD outcomes. OBJECTIVE We sought to systematically synthesize the benefits and harms of AD systemic treatments. METHODS For the 2023 American Academy of Allergy, Asthma & Immunology and American College of Allergy, Asthma, and Immunology Joint Task Force on Practice Parameters AD guidelines, we searched MEDLINE, EMBASE, CENTRAL, Web of Science, and GREAT databases from inception to November 29, 2022, for randomized trials addressing systemic treatments and phototherapy for AD. Paired reviewers independently screened records, extracted data, and assessed risk of bias. Random-effects network meta-analyses addressed AD severity, itch, sleep, AD-related quality of life, flares, and harms. The Grading of Recommendations Assessment, Development and Evaluation approach informed certainty of evidence ratings. This review is registered in the Open Science Framework (https://osf.io/e5sna). RESULTS The 149 included trials (28,686 patients with moderate-to-severe AD) evaluated 75 interventions. With high-certainty evidence, high-dose upadacitinib was among the most effective for 5 of 6 patient-important outcomes; high-dose abrocitinib and low-dose upadacitinib were among the most effective for 2 outcomes. These Janus kinase inhibitors were among the most harmful in increasing adverse events. With high-certainty evidence, dupilumab, lebrikizumab, and tralokinumab were of intermediate effectiveness and among the safest, modestly increasing conjunctivitis. Low-dose baricitinib was among the least effective. Efficacy and safety of azathioprine, oral corticosteroids, cyclosporine, methotrexate, mycophenolate, phototherapy, and many novel agents are less certain. CONCLUSIONS Among individuals with moderate-to-severe AD, high-certainty evidence demonstrates that high-dose upadacitinib is among the most effective in addressing multiple patient-important outcomes, but also is among the most harmful. High-dose abrocitinib and low-dose upadacitinib are effective, but also among the most harmful. Dupilumab, lebrikizumab, and tralokinumab are of intermediate effectiveness and have favorable safety.
Collapse
Key Words
- Atopic dermatitis (eczema)
- Janus kinase (JAK) inhibitors (upadacitinib, abrocitinib, baricitinib), patient-important outcomes and adverse events or adverse reactions, disease severity, itch, sleep, itch and sleep disturbance quality of life
- network meta-analysis (comparative effectiveness, multiple treatment comparison)
- systemic treatments and phototherapy (light therapy, immunosuppressants, immunomodulators, DMARDs, cyclosporine, methotrexate, azathioprine, mycophenolate, cortiosteroids, narrow-band UVB), biologics (dupilumab, lebrikizumab, tralokinumab, nemolizumab)
Collapse
Affiliation(s)
- Alexandro W L Chu
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Melanie M Wong
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Daniel G Rayner
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Gordon H Guyatt
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Juan Pablo Díaz Martinez
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Renata Ceccacci
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Irene X Zhao
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Eric McMullen
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Archita Srivastava
- Evidence in Allergy Group, McMaster University, Hamilton, Canada; Department of Internal Medicine, Western University, London, Canada
| | - Jason Wang
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Aaron Wen
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | - Fang Chi Wang
- Evidence in Allergy Group, McMaster University, Hamilton, Canada; Schulich School of Medicine & Dentistry, Western University, London, Canada
| | | | - Ariel Izcovich
- Servicio de Clínica Médica, Hospital Aleman, Buenos Aires, Argentina
| | - Paul Oykhman
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada
| | | | - Julie Wang
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jonathan M Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa; Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jasvinder A Singh
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Ala
| | - Jonathan I Silverberg
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Peck Y Ong
- Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, Los Angeles, Calif; Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, Calif
| | | | | | - Peter A Lio
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Mary Laura Lind
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Ariz
| | - Jennifer LeBovidge
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | | | - Joey Huynh
- Sepulveda VA Medical Center, North Hills, Calif
| | - Matthew Greenhawt
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo; Section of Allergy and Immunology, Children's Hospital Colorado, Aurora, Colo
| | | | | | | | - Lina Chen
- Evidence in Allergy Group, McMaster University, Hamilton, Canada; Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Korey Capozza
- Global Parents for Eczema Research, Santa Barbara, Calif
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Mark Boguniewicz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo; Division of Pediatric Allergy and Clinical Immunology, National Jewish Health, Denver, Colo
| | | | - Rachel N Asiniwasis
- Department of Dermatology, University of Saskatchewan, Regina, Saskatchewan, Canada
| | | | - Derek K Chu
- Department of Medicine, McMaster University, Hamilton, Canada; Evidence in Allergy Group, McMaster University, Hamilton, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; The Research Institute of St. Joe's Hamilton, Hamilton, Canada.
| |
Collapse
|
6
|
Rajkumar J, Chandan N, Lio P, Shi V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol Physiol 2023; 36:174-185. [PMID: 37717558 DOI: 10.1159/000534136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The anatomic layers of the skin are well-defined, and a functional model of the skin barrier has recently been described. Barrier disruption plays a key role in several skin conditions, and moisturization is recommended as an initial treatment in conditions such as atopic dermatitis. This review aimed to analyze the skin barrier in the context of the function model, with a focus on the mechanisms by which moisturizers support each of the functional layers of the skin barrier to promote homeostasis and repair. SUMMARY The skin barrier is comprised of four interdependent layers - physical, chemical, microbiologic, and immunologic - which maintain barrier structure and function. Moisturizers target disruption affecting each of these four layers through several mechanisms and were shown to improve transepidermal water loss in several studies. Occlusives, humectants, and emollients occlude the surface of the stratum corneum (SC), draw water from the dermis into the epidermis, and assimilate into the SC, respectively, in order to strengthen the physical skin barrier. Acidic moisturizers bolster the chemical skin barrier by supporting optimal enzymatic function, increasing ceramide production, and facilitating ideal conditions for commensal microorganisms. Regular moisturization may strengthen the immunologic skin barrier by reducing permeability and subsequent allergen penetration and sensitization. KEY MESSAGES The physical, chemical, microbiologic, and immunologic layers of the skin barrier are each uniquely impacted in states of skin barrier disruption. Moisturizers target each of the layers of the skin barrier to maintain homeostasis and facilitate repair.
Collapse
Affiliation(s)
- Jeffrey Rajkumar
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Neha Chandan
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Peter Lio
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vivian Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Alaska, USA
| |
Collapse
|
7
|
Zhou J, Pi N, Guo Y, He X, Wang J, Luo R, Wang M, Yu H. The mechanism of action of Ophiocordyceps sinensis mycelia for prevention of acute lung injury based on non-targeted serum metabolomics. PLoS One 2023; 18:e0287331. [PMID: 37327224 PMCID: PMC10275419 DOI: 10.1371/journal.pone.0287331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023] Open
Abstract
Ophiocordyceps sinensis is a fungus with medicinal value in treating lung diseases, but no study has reported how to prevent acute lung injury using this fungus. The mice were divided into normal, model, positive control, and O. sinensis groups to observe lung histopathological sections and transmission electron microscopy, along with liquid chromatography-mass spectrometry and hematoxylin and eosin (H&E) staining to closely identify structural differences resulting from destruction between the groups. The results of the H&E staining showed that, compared with the normal group, the model group showed alveolar collapse. Compared with the model group, the infiltration of inflammatory cells in the alveolar cavity of the O. sinensis group was significantly reduced. Mitochondrial plate-like cristae were observed in type II alveolar cells of the normal group, with normal coloration of the mitochondrial matrix. Type II alveolar cells in the model group showed obvious edema. The statuses of type II alveolar cells in the O. sinensis and positive groups were similar to that in the normal group. Twenty-nine biomarkers and 10 related metabolic pathways were identified by serum metabolomics screening. The results showed that O. sinensis mycelia had a significant effect on the prevention of lipopolysaccharide-induced inflammation.
Collapse
Affiliation(s)
- Jinna Zhou
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
- School of Ecology and Environment, Tibet University, Lhasa City, China
| | - Na Pi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xinyi He
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Jinhu Wang
- School of Ecology and Environment, Tibet University, Lhasa City, China
| | - Run Luo
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Mu Wang
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Hong Yu
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Xu H, Xu J, Liu X, Song W, Lyu X, Guo X, Hu W, Yang H, Wang L, Pan H, Chen J, Xing X, Zhu H, Sun W, Gong F. Serum metabolomics profiling of improved metabolic syndrome is characterized by decreased pro-inflammatory biomarkers: A longitudinal study in Chinese male adults. Nutr Res 2023; 115:13-25. [PMID: 37216838 DOI: 10.1016/j.nutres.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Metabolic syndrome (MetS) is a serious global health concern. The objective of this study is to dynamically investigate the changes of metabolic profiles and metabolites in Chinese male MetS subjects after an 18 months diet and exercise intervention. Fifty male MetS patients defined according to International Diabetes Federation 2005 guidelines were subjected to diet and exercise counseling for 18 months. Serum samples were taken at baseline, 12 months, and 18 months, respectively, for clinical evaluation and metabolomics analyses. Diet and exercise intervention for 18 months achieved significant improvements in the metabolic profiles of all participants. Nineteen subjects (38.0%) exhibited MetS remission at the end of the study. A total of 812 relative features were characterized and 61 were successfully identified. Furthermore, 17 differential metabolites were of significance at both time points (baseline-12 months, baseline-18 months) and presented nonlinear trends through time. Eight metabolites (47.1%) were predominantly converged to inflammation and oxidative stress. Pro-inflammatory biomarkers were remarkably decreased after 18 months of intervention, and prostaglandin E2, neuroprotectin D1, and taxiphyllin in combination were firstly found to demonstrate a fair discriminative power (area under curve = 0.911) to predict the improvement of MetS undergone diet and exercise intervention. The significant shift of metabolomic profiling after 18 months of lifestyle counseling provide a novel insight and reveal that earlier inflammation control may be of potential benefit in MetS management.
Collapse
Affiliation(s)
- Hanyuan Xu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiyu Xu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyan Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Song
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xiaorui Lyu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaonan Guo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wenjing Hu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jichun Chen
- Nutrition Department, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Wei Sun
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
9
|
Salazar A, von Hagen J. Circadian Oscillations in Skin and Their Interconnection with the Cycle of Life. Int J Mol Sci 2023; 24:ijms24065635. [PMID: 36982706 PMCID: PMC10051430 DOI: 10.3390/ijms24065635] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Periodically oscillating biological processes, such as circadian rhythms, are carefully concerted events that are only beginning to be understood in the context of tissue pathology and organismal health, as well as the molecular mechanisms underlying these interactions. Recent reports indicate that light can independently entrain peripheral circadian clocks, challenging the currently prevalent hierarchical model. Despite the recent progress that has been made, a comprehensive overview of these periodic processes in skin is lacking in the literature. In this review, molecular circadian clock machinery and the factors that govern it have been highlighted. Circadian rhythm is closely linked to immunological processes and skin homeostasis, and its desynchrony can be linked to the perturbation of the skin. The interplay between circadian rhythm and annual, seasonal oscillations, as well as the impact of these periodic events on the skin, is described. Finally, the changes that occur in the skin over a lifespan are presented. This work encourages further research into the oscillating biological processes occurring in the skin and lays the foundation for future strategies to combat the adverse effects of desynchrony, which would likely have implications in other tissues influenced by periodic oscillatory processes.
Collapse
Affiliation(s)
- Andrew Salazar
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Correspondence:
| | - Jörg von Hagen
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
- Department of Life Science Engineering, University Applied Sciences, Wiesenstrasse 14, 35390 Gießen, Germany
- ryon—GreenTech Accelerator Gernsheim GmbH, Mainzer Str. 41, 64579 Gernsheim, Germany
| |
Collapse
|
10
|
Take a fresh look at diet and atopic dermatitis. DRUGS & THERAPY PERSPECTIVES 2023. [DOI: 10.1007/s40267-022-00977-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
KITAURA Y, HAYAMIZU K, WADA E, PETROVA B, NAGAO K. “Nutrient-Repositioning”—Unexpected Amino Acid Functions—. J Nutr Sci Vitaminol (Tokyo) 2022; 68:S134-S136. [DOI: 10.3177/jnsv.68.s134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Eri WADA
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University
| | | | - Kenji NAGAO
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc
| |
Collapse
|
12
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
13
|
Cho YJ, Kim T, Croll D, Park M, Kim D, Keum HL, Sul WJ, Jung WH. Genome of Malassezia arunalokei and Its Distribution on Facial Skin. Microbiol Spectr 2022; 10:e0050622. [PMID: 35647654 PMCID: PMC9241646 DOI: 10.1128/spectrum.00506-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Malassezia is a fungal genus found on the skin of humans and warm-blooded animals, with 18 species reported to date. In this study, we sequenced and annotated the genome of Malassezia arunalokei, which is the most recently identified Malassezia species, and compared it with Malassezia restricta, the predominant isolate from human skin. Additionally, we reanalyzed previously reported mycobiome data sets with a species-level resolution to investigate M. arunalokei distribution within the mycobiota of human facial skin. We discovered that the M. arunalokei genome is 7.24 Mbp in size and encodes 4,117 protein-coding genes, all of which were clustered with M. restricta. We also found that the average nucleotide identity value of the M. arunalokei genome was 93.5, compared with the genomes of three M. restricta strains, including M. restricta KCTC 27527. Our findings demonstrate that they indeed belong to different species and that M. arunalokei may have experienced specific gene loss events during speciation. Furthermore, our study showed that M. arunalokei was diverged from M. restricta approximately 7.1 million years ago and indicated that M. arunalokei is the most recently diverged species in the Malassezia lineage to date. Finally, our analysis of the facial mycobiome of previously recruited cohorts revealed that M. arunalokei abundance is not associated with seborrheic dermatitis/dandruff or acne, but was revealed to be more abundant on the forehead and cheek than on the scalp. IMPORTANCEMalassezia is the fungus predominantly residing on the human skin and causes various skin diseases, including seborrheic dermatitis and dandruff. To date, 18 species have been reported, and among them, M. restricta is the most predominant on human skin, especially on the scalp. In this study, we sequenced and analyzed the genome of M. arunalokei, which is the most recently identified Malassezia species, and compared it with M. restricta. Moreover, we analyzed the fungal microbiome to investigate the M. arunalokei distribution on human facial skin. We found that M. arunalokei may have experienced specific gene loss events during speciation. Our study also showed that M. arunalokei was diverged from M. restricta approximately 7.1 million years ago and indicated that M. arunalokei is the most recently diverged species in the Malassezia lineage. Finally, our analysis of the facial mycobiome revealed that M. arunalokei has higher relative abundance on the forehead and cheek than the scalp.
Collapse
Affiliation(s)
- Yong-Joon Cho
- School of Biological Sciences and Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Taeyune Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Donghyeun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
14
|
Gkantiri AM, Tsiasioti A, Zacharis CK, Tzanavaras PD. HPLC method with post-column derivatization for the analysis of endogenous histidine in human saliva validated using the total-error concept. Amino Acids 2022; 54:399-409. [PMID: 35182245 DOI: 10.1007/s00726-022-03135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
Histidine (His) is an essential amino acid that plays an important biological role and associated with various pathological conditions. A simple and reliable method for the determination of endogenous histidine in human saliva was optimized and validated. The analyte was separated from the saliva matrix by cation exchange chromatography and detected fluorimetrically (λex/λem = 360/440 nm) after online, specific post-column derivatization (PCD) reaction with o-phthalaldehyde. The chemical and instrumental variables of the post-column reaction were optimized using Box-Behnken experimental design to achieve maximum sensitivity. Method validation was carried out employing the total-error concept. Histidine could be analyzed reliably in the range of 0.5-5.0 μΜ, with an LOD (S/N = 3) of 50 nM. Monte Carlo simulations and capability analysis were used to investigate the ruggedness of the PCD reaction. The sampling strategy, sample preparation and stability were also investigated. Seventeen saliva samples were successfully analyzed with histidine levels being in the range of 2.7-19.5 μΜ.
Collapse
Affiliation(s)
- Anna-Maria Gkantiri
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Apostolia Tsiasioti
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
15
|
Ballell-Hosa L, González-Mira E, Santana H, Morla-Folch J, Moreno-Masip M, Martínez-Prieto Y, Revuelta A, Di Mauro PP, Veciana J, Sala S, Ferrer-Tasies L, Ventosa N. DELOS Nanovesicles-Based Hydrogels: An Advanced Formulation for Topical Use. Pharmaceutics 2022; 14:pharmaceutics14010199. [PMID: 35057095 PMCID: PMC8779640 DOI: 10.3390/pharmaceutics14010199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Topical delivery has received great attention due to its localized drug delivery, its patient compliance, and its low risk for side effects. Recent developments have focused on studying new drug delivery systems as a strategy for addressing the challenges of current topical treatments. Here we describe the advances on an innovative drug delivery platform called DELOS nanovesicles for topical drug delivery. Previously, the production of DELOS nanovesicles demonstrated potentiality for the topical treatment of complex wounds, achieving well-tolerated liquid dispersions by this route. Here, research efforts have been focused on designing these nanocarriers with the best skin tolerability to be applied even to damaged skin, and on exploring the feasibility of adapting the colloidal dispersions to a more suitable dosage form for topical application. Accordingly, these drug delivery systems have been efficiently evolved to a hydrogel using MethocelTM K4M, presenting proper stability and rheological properties. Further, the integrity of these nanocarriers when being gellified has been confirmed by cryo-transmission electron microscopy and by Förster resonance energy transfer analysis with fluorescent-labeled DELOS nanovesicles, which is a crucial characterization not widely reported in the literature. Additionally, in vitro experiments have shown that recombinant human Epidermal Growth Factor (rhEGF) protein integrated into gellified DELOS nanovesicles exhibits an enhanced bioactivity compared to the liquid form. Therefore, these studies suggest that such a drug delivery system is maintained unaltered when hydrogellified, becoming the DELOS nanovesicles-based hydrogels, an advanced formulation for topical use.
Collapse
Affiliation(s)
- Lídia Ballell-Hosa
- Nanomol Technologies S.L., 08193 Cerdanyola del Vallès, Spain; (L.B.-H.); (S.S.)
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Hector Santana
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue between 158 and 190 Streets, Cubanacán, Playa, Havana 10600, Cuba; (H.S.); (Y.M.-P.)
| | - Judit Morla-Folch
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Marc Moreno-Masip
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
| | - Yaima Martínez-Prieto
- Center for Genetic Engineering and Biotechnology (CIGB), 31st Avenue between 158 and 190 Streets, Cubanacán, Playa, Havana 10600, Cuba; (H.S.); (Y.M.-P.)
| | - Albert Revuelta
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
| | - Primiano Pio Di Mauro
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Santi Sala
- Nanomol Technologies S.L., 08193 Cerdanyola del Vallès, Spain; (L.B.-H.); (S.S.)
| | - Lidia Ferrer-Tasies
- Nanomol Technologies S.L., 08193 Cerdanyola del Vallès, Spain; (L.B.-H.); (S.S.)
- Correspondence: (L.F.-T.); (N.V.)
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain; (E.G.-M.); (J.M.-F.); (M.M.-M.); (A.R.); (P.P.D.M.); (J.V.)
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (L.F.-T.); (N.V.)
| |
Collapse
|
16
|
The Role of Diet Modification in Atopic Dermatitis: Navigating the Complexity. Am J Clin Dermatol 2022; 23:27-36. [PMID: 34687433 DOI: 10.1007/s40257-021-00647-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Diet has long been understood to have an intricate association with atopic dermatitis, although much remains unelucidated. Skin barrier dysfunction with dysbiosis and consequent impairment of immune tolerance likely underly the pathogenesis of coincident atopic dermatitis and food allergy. There is a wide range of possible skin reactions to food, complicating the diagnosis and understanding of food allergies. Many patients, parents, and providers incorrectly suspect diet as causative of atopic dermatitis symptoms and many have tried elimination diets. This frequently leads to inaccurate labeling of food allergies, contributing to a dangerous spiral of inappropriate testing, referrals, and dietary changes, while neglecting established atopic dermatitis treatment essentials. Alternatively, certain dietary supplements or the introduction of certain foods may be beneficial for atopic dermatitis management or prevention. Greater consensus on the role of diet among providers of patients with atopic dermatitis is strongly encouraged to improve the management of atopic dermatitis.
Collapse
|
17
|
Bettini S, Grover N, Ottolini M, Mattern C, Valli L, Senge MO, Giancane G. Enantioselective Discrimination of Histidine by Means of an Achiral Cubane-Bridged Bis-Porphyrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13882-13889. [PMID: 34784714 PMCID: PMC8638291 DOI: 10.1021/acs.langmuir.1c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A Langmuir film of cubane-bridged bisporphyrin (H2por-cubane-H2por) at the air/water interface was developed and characterized. The floating film was successfully employed for the chiral discrimination between l- and d-histidine. The enantioselective behavior persisted after the deposition of the film on a solid support using the Langmuir-Schaefer method. Distinct absorption and reflection spectra were observed in the presence of l- or d-histidine, revealing that conformational switching was governed by the interaction between H2por-cubane-H2por and the histidine enantiomer. The mechanism of chiral selection was investigated using an ad hoc modified nulling ellipsometer, indicating the anti-conformation was dominant in the presence of l-histidine, whereas the presence of d-histidine promoted the formation of tweezer conformation.
Collapse
Affiliation(s)
- Simona Bettini
- Department
of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, Lecce 73100, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e, Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze 50121, Italy
| | - Nitika Grover
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University
of Dublin, 152−160
Pearse Street, Dublin 2, Ireland
| | - Michela Ottolini
- Department
of Engineering of Innovation, Campus University Ecotekne, University of Salento, Via per Monteroni, Lecce 73100, Italy
| | - Cornelia Mattern
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University
of Dublin, 152−160
Pearse Street, Dublin 2, Ireland
| | - Ludovico Valli
- Department
of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, Lecce 73100, Italy
- Consorzio
Interuniversitario Nazionale per la Scienza e, Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze 50121, Italy
| | - Mathias O. Senge
- School
of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences
Institute, Trinity College Dublin, The University
of Dublin, 152−160
Pearse Street, Dublin 2, Ireland
| | - Gabriele Giancane
- Consorzio
Interuniversitario Nazionale per la Scienza e, Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze 50121, Italy
- Department
of Cultural Heritage, University of Salento, Via D. Birago, Lecce 73100, Italy
| |
Collapse
|
18
|
Khong MT, Berl V, Kuhn L, Hammann P, Lepoittevin JP. Chemical Modifications Induced by Phthalic Anhydride, a Respiratory Sensitizer, in Reconstructed Human Epidermis: A Combined HRMAS NMR and LC-MS/MS Proteomic Approach. Chem Res Toxicol 2021; 34:2087-2099. [PMID: 34370447 DOI: 10.1021/acs.chemrestox.1c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical skin and respiratory allergies are becoming a major health problem. To date our knowledge on the process of protein haptenation is still limited and mainly derived from studies performed in solution using model nucleophiles. In order to better understand chemical interactions between chemical allergens and the skin, we have investigated the reactivity of phthalic anhydride 1 (PA), a chemical respiratory sensitizer, toward reconstructed human epidermis (RHE). This study was performed using a new approach combining HRMAS NMR to investigate the in situ chemical reactivity and LC-MS/MS to identify modified epidermal proteins. In RHE, the reaction of PA appeared to be quite fast and the major product formed was phthalic acid. Two amide type adducts on lysine residues were observed and after 8h of incubation, we also observed the formation of an imide type cyclized adducts with lysine. In parallel, RHE samples topically exposed to phthalic anhydride (13C)-1 were analyzed using the shotgun proteomics method. Thus, 948 different proteins were extracted and identified, 135 of which being modified by PA, i.e., 14.2% of the extracted proteome. A total of 211 amino acids were modified by PA and validated by fragmentation spectra. We thus identified 154 modified lysines, 22 modified histidines, 30 modified tyrosines, and 5 modified arginines. The rate of modified residues, as a proportion of the total number of modifiable nucleophilic residues in RHE, was rather low (1%). At the protein level, modified proteins were mainly type I and type II keratins and other proteins which are abundant in the epidermis such as protein S100A, Caspase 14, annexin A2, serpin B3, fatty-acid binding protein 5, histone H2, H3, H4, etc. However, the most modified protein, mainly on histidine residues, was filaggrin, a protein that is of low abundance (0.0266 mol %) and rich in histidine.
Collapse
Affiliation(s)
- Minh-Thuong Khong
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67000 Strasbourg, France
| | - Valérie Berl
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67000 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FRC1589, Université de Strasbourg, F-67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FRC1589, Université de Strasbourg, F-67000 Strasbourg, France
| | | |
Collapse
|
19
|
Dębińska A. New Treatments for Atopic Dermatitis Targeting Skin Barrier Repair via the Regulation of FLG Expression. J Clin Med 2021; 10:jcm10112506. [PMID: 34198894 PMCID: PMC8200961 DOI: 10.3390/jcm10112506] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic, inflammatory skin disorders with a complex etiology and a broad spectrum of clinical phenotypes. Despite its high prevalence and effect on the quality of life, safe and effective systemic therapies approved for long-term management of AD are limited. A better understanding of the pathogenesis of atopic dermatitis in recent years has contributed to the development of new therapeutic approaches that target specific pathophysiological pathways. Skin barrier dysfunction and immunological abnormalities are critical in the pathogenesis of AD. Recently, the importance of the downregulation of epidermal differentiation complex (EDC) molecules caused by external and internal stimuli has been extensively emphasized. The purpose of this review is to discuss the innovations in the therapy of atopic dermatitis, including biologics, small molecule therapies, and other drugs by highlighting regulatory mechanisms of skin barrier-related molecules, such as filaggrin (FLG) as a crucial pathway implicated in AD pathogenesis.
Collapse
Affiliation(s)
- Anna Dębińska
- 1st Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, Chałubińskiego 2a, 50-368 Wrocław, Poland
| |
Collapse
|
20
|
Hart PH, Norval M. The Multiple Roles of Urocanic Acid in Health and Disease. J Invest Dermatol 2021; 141:496-502. [DOI: 10.1016/j.jid.2020.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
|
21
|
Parke MA, Perez-Sanchez A, Zamil DH, Katta R. Diet and Skin Barrier: The Role of Dietary Interventions on Skin Barrier Function. Dermatol Pract Concept 2021; 11:e2021132. [PMID: 33614213 DOI: 10.5826/dpc.1101a132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple research studies have examined the role of specific dietary interventions and their effects on skin barrier function. The skin barrier is one of the body's first lines of protection against environmental insults, and disruption of this natural line of defense can result in xerosis, irritation, chronic dermatitis, and other cutaneous effects. Multiple laboratory, animal, and human studies have demonstrated that certain dietary interventions have the potential to impact skin barrier function. Measurements of skin barrier function include stratum corneum hydration and transepidermal water loss. In this review, we examine this research and provide an overview of the effects of prebiotics, probiotics, fatty acids, and emerging research on other substances.
Collapse
Affiliation(s)
| | - Ariadna Perez-Sanchez
- Internal Medicine, University of Texas Health Science Center at San Antonio, TX, USA
| | | | - Rajani Katta
- Department of Dermatology, McGovern Medical School at UTHealth, Houston TX, USA
| |
Collapse
|
22
|
Valachova K, Svik K, Biro C, Collins MN, Jurcik R, Ondruska L, Soltes L. Impact of Ergothioneine, Hercynine, and Histidine on Oxidative Degradation of Hyaluronan and Wound Healing. Polymers (Basel) 2020; 13:polym13010095. [PMID: 33383628 PMCID: PMC7795610 DOI: 10.3390/polym13010095] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
A high-molecular weight hyaluronan is oxidatively degraded by Cu(II) ions and ascorbate—the so called Weissberger biogenic oxidative system—which is one of the most potent generators of reactive oxygen species, namely •OH radicals. Ergothioneine, hercynine, or histidine were loaded into chitosan/hyaluronan composite membranes to examine their effect on skin wound healing in ischemic rabbits. We also explored the ability of ergothioneine, hercynine, or histidine to inhibit hyaluronan degradation. Rotational viscometry showed that ergothioneine decreased the degree of hyaluronan radical degradation in a dose-dependent manner. While histidine was shown to be potent in scavenging •OH radicals, however, hercynine was ineffective. In vivo results showed that the addition of each investigated agent to chitosan/hyaluronan membranes contributed to a more potent treatment of ischemic skin wounds in rabbits compared to untreated animals and animals treated only with chitosan/hyaluronan membranes.
Collapse
Affiliation(s)
- Katarina Valachova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 84104 Bratislava, Slovakia; (K.V.); (K.S.); (L.S.)
| | - Karol Svik
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 84104 Bratislava, Slovakia; (K.V.); (K.S.); (L.S.)
| | - Csaba Biro
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Maurice N. Collins
- School of Engineering, Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
- Correspondence: ; Tel.: +353-61202867
| | - Rastislav Jurcik
- National Agricultural and Food Centre–RIAP Nitra, 95141 Luzianky, Slovakia; (R.J.); (L.O.)
| | - Lubomir Ondruska
- National Agricultural and Food Centre–RIAP Nitra, 95141 Luzianky, Slovakia; (R.J.); (L.O.)
| | - Ladislav Soltes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 84104 Bratislava, Slovakia; (K.V.); (K.S.); (L.S.)
| |
Collapse
|
23
|
Srour H, Moussallieh FM, Elbayed K, Giménez-Arnau E, Lepoittevin JP. In Situ Alkylation of Reconstructed Human Epidermis by Methyl Methanesulfonate: A Quantitative HRMAS NMR Chemical Reactivity Mapping. Chem Res Toxicol 2020; 33:3023-3030. [PMID: 33190492 DOI: 10.1021/acs.chemrestox.0c00362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Allergic contact dermatitis (ACD) is a reaction of the immune system resulting from skin sensitization to an exogenous hazardous chemical and leading to the activation of antigen-specific T-lymphocytes. The adverse outcome pathway (AOP) for skin sensitization identified four key events (KEs) associated with the mechanisms of this pathology, the first one being the ability of skin chemical sensitizers to modify epidermal proteins to form antigenic structures that will further trigger the immune system. So far, these interactions have been studied in solution using model nucleophiles such as amino acids or peptides. As a part of our efforts to better understand chemistry taking place during the sensitization process, we have developed a method based on the use of high-resolution magic angle spinning (HRMAS) NMR to monitor in situ the reactions of 13C substituted chemical sensitizers with nucleophilic amino acids of epidermal proteins in reconstructed human epidermis. A quantitative approach, developed so far for liquid NMR applications, has not been developed to our knowledge in a context of a semisolid nonanisotropic environment like the epidermis. We now report a quantitative chemical reactivity mapping of methyl methanesulfonate (MMS), a sensitizing methylating agent, in reconstructed human epidermis by quantitative HRMAS (qHRMAS) NMR. First, the haptenation process appeared to be much faster in RHE than in solution with a maximum concentration of adducts reached between 4 and 8 h. Second, it was observed that the concentration of cysteine adducts did not significantly increase with the dose (2.07 nmol/mg at 0.4 M and 2.14 nmol/mg at 1 M) nor with the incubation time (maximum of 2.27 nmol/mg at 4 h) compared to other nucleophiles, indicating a fast reaction and a potential saturation of targets. Third, when increasing the exposure dose, we observed an increase of adducts up to 12.5 nmol/mg of RHE, excluding cysteine adducts, for 3112 μg/cm2 (1 M solution) of (13C)MMS. This methodology applied to other skin sensitizers could allow for better understanding of the potential links between the amount of chemical modifications formed in the epidermis in relation to exposure and the sensitization potency.
Collapse
Affiliation(s)
- Hassan Srour
- CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, F-67000 Strasbourg, France
| | | | - Karim Elbayed
- CNRS, ICube UMR 7357, University of Strasbourg, F-67000 Strasbourg, France
| | - Elena Giménez-Arnau
- CNRS, Institute of Chemistry UMR 7177, University of Strasbourg, F-67000 Strasbourg, France
| | | |
Collapse
|
24
|
Bojanowski K, Swindell WR, Cantor S, Chaudhuri RK. Isosorbide Di-(Linoleate/Oleate) Stimulates Prodifferentiation Gene Expression to Restore the Epidermal Barrier and Improve Skin Hydration. J Invest Dermatol 2020; 141:1416-1427.e12. [PMID: 33181142 DOI: 10.1016/j.jid.2020.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/15/2022]
Abstract
The breakdown of the epidermal barrier and consequent loss of skin hydration is a feature of skin aging and eczematous dermatitis. Few treatments, however, resolve these underlying processes to provide full symptomatic relief. In this study, we evaluated isosorbide di-(linoleate/oleate) (IDL), which was generated by esterifying isosorbide with sunflower fatty acids. Topical effects of IDL in skin were compared with those of ethyl linoleate/oleate, which has previously been shown to improve skin barrier function. Both IDL and ethyl linoleate/oleate downregulated inflammatory gene expression, but IDL more effectively upregulated the expression of genes associated with keratinocyte differentiation (e.g., KRT1, GRHL2, SPRR4). Consistent with this, IDL increased the abundance of epidermal barrier proteins (FLG and involucrin) and prevented cytokine-mediated stratum corneum degradation. IDL also downregulated the expression of unhealthy skin signature genes linked to the loss of epidermal homeostasis and uniquely repressed an IFN-inducible coexpression module activated in multiple skin diseases, including psoriasis. In a double-blind, placebo-controlled trial enrolling females with dry skin, 2% IDL lotion applied over 2 weeks significantly improved skin hydration and decreased transepidermal water loss (NCT04253704). These results demonstrate mechanisms by which IDL improves skin hydration and epidermal barrier function, supporting IDL as an effective intervention for the treatment of xerotic pruritic skin.
Collapse
Affiliation(s)
- Krzysztof Bojanowski
- Sunny BioDiscovery, Santa Paula, California, USA; Symbionyx Pharmaceuticals, Boonton, New Jersey, USA
| | - William R Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, Ohio, USA.
| | - Shyla Cantor
- Cantor Research Laboratories, Blauvelt, New York, USA
| | - Ratan K Chaudhuri
- Symbionyx Pharmaceuticals, Boonton, New Jersey, USA; Sytheon, Boonton, New Jersey, USA
| |
Collapse
|
25
|
Gheller ME, Vermeylen F, Handzlik MK, Gheller BJ, Bender E, Metallo C, Aydemir TB, Smriga M, Thalacker-Mercer AE. Tolerance to graded dosages of histidine supplementation in healthy human adults. Am J Clin Nutr 2020; 112:1358-1367. [PMID: 32766885 DOI: 10.1093/ajcn/nqaa210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Histidine is an essential amino acid with health benefits that may warrant histidine supplementation; however, the clinical safety of histidine intake above the average dietary intake (1.52-5.20 g/d) needs to be vetted. OBJECTIVES We aimed to determine the tolerance to graded dosages of histidine in a healthy adult population. METHODS Healthy adults aged 21-50 y completed graded dosages of histidine supplement (4, 8, and 12 g/d, Study 1) (n = 20 men and n = 20 women) and/or a 16-g/d dosage of histidine (Study 2, n = 21 men and n = 19 women); 27 participants (n = 12 men and n = 15 women) completed both studies. After study enrollment and baseline measures, participants consumed encapsulated histidine for 4 wk followed by a 3-wk recovery period. Primary outcomes included vitals, select biochemical analytes, anthropometry, serum zinc, and body composition (via DXA). RESULTS No changes in vitals or body composition occurred with histidine supplementation in either study. Plasma histidine (measured in subjects who completed all dosages for Studies 1 and 2) was elevated at the 12- and 16-g/d dosages (compared with 0-8 g/d, P < 0.05) and blood urea nitrogen increased with dosage (P = 0.013) and time (P < 0.001) in Study 1 and with time in Study 2 (P < 0.001). In Study 1, mean ferritin concentrations were lower in 12 g/d (46.0 ng/mL; 95% CI: 34.8, 60.9 ng/mL) than in 4 g/d (51.6 ng/mL; 95% CI: 39.0, 68.4 ng/mL; P = 0.038). In Study 2, 16 g/d increased mean aspartate aminotransferase from baseline (19 U/L; 95% CI: 17, 22 U/L) to week 4 (24 U/L; 95% CI: 21, 27 U/L; P < 0.001) and mean serum zinc decreased from baseline (0.75 μg/dL; 95% CI: 0.71, 0.80 μg/dL) to week 4 (0.70 μg/dL; 95% CI: 0.66, 0.74 μg/dL; P = 0.011). CONCLUSIONS Although values remained within the normal reference ranges for all analytes measured, in all dosages tested, the human no-observed adverse effect level was determined to be 8 g/d owing to changes in blood parameters at the 12-g/d dosage.This trial was registered at clinicaltrials.gov as NCT04142294.
Collapse
Affiliation(s)
- Mary E Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Michal K Handzlik
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brandon J Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Erica Bender
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Christian Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Tolunay B Aydemir
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Miro Smriga
- International Council on Amino Acid Science, Brussels, Belgium
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Thalacker-Mercer AE, Gheller ME. Benefits and Adverse Effects of Histidine Supplementation. J Nutr 2020; 150:2588S-2592S. [PMID: 33000165 DOI: 10.1093/jn/nxaa229] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/02/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Histidine is a nutritionally essential amino acid with many recognized benefits to human health, while circulating concentrations of histidine decline in pathologic conditions [e.g., chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD)]. The purpose of this review is to examine the existing literature regarding the benefits of histidine intake, the adverse effects of excess histidine, and the upper tolerance level for histidine. Supplementation with doses of 4.0-4.5 g histidine/d and increased dietary histidine intake are associated with decreased BMI, adiposity, markers of glucose homeostasis (e.g., HOMA-IR, fasting blood glucose, 2-h postprandial blood glucose), proinflammatory cytokines, and oxidative stress. It is unclear from the limited number of studies in humans whether the improvements in glucoregulatory markers, inflammation, and oxidative stress are due to reduced BMI and adiposity, increased carnosine (a metabolic product of histidine with antioxidant effects), or both. Histidine intake also improves cognitive function (e.g., reduces appetite, anxiety, and stress responses and improves sleep) potentially through the metabolism of histidine to histamine; however, this relation is ambiguous in humans. At high intakes of histidine (>24 g/d), studies report adverse effects of histidine such as decreased serum zinc and cognitive impairment. There is limited research on the effects of histidine intake at doses between 4.5 and 24 g/d, and thus, a tolerable upper level has not been established. Determining tolerance to histidine supplementation has been limited by small sample sizes and, more important, a lack of a clear biomarker for histidine supplementation. The U-shaped curve of circulating zinc concentrations with histidine supplementation could be exploited as a relevant biomarker for supplemental histidine tolerance. Histidine is an important amino acid and may be necessary as a supplement in some populations; however, gaps in knowledge, which this review highlights, need to be addressed scientifically.
Collapse
Affiliation(s)
- Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary E Gheller
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Gibbs NK. l-Histidine Supplementation in Adults and Young Children with Atopic Dermatitis (Eczema). J Nutr 2020; 150:2576S-2579S. [PMID: 33000160 DOI: 10.1093/jn/nxaa200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is an incurable, inflammatory skin condition that is prevalent (∼20%) in young children. There is an unmet clinical need, particularly in children, for safe interventions that target the etiology of the disease. Deficiencies in the skin barrier protein, filaggrin (FLG) have been identified as major predisposing factors in AD. In mammals, l-histidine is rapidly incorporated into epidermal FLG and subsequent FLG proteolysis releases l-histidine as an important natural moisturizing factor (NMF). It has therefore been hypothesized that l-histidine supplementation would be a safe approach to augment both FLG and the NMF, enhance skin barrier function, and reduce AD severity. In a clinical pilot study, adult subjects (n = 24) with AD took either a placebo or 4 g oral l-histidine daily for 8 wk. Unlike the placebo, l-histidine reduced AD (34% reduction in SCORing Atopic Dermatitis scores; P < 0.003) after 4 wk. Nine and 8 adverse events (AEs), and 1 and 0 severe AEs were recorded in the l-histidine or placebo groups, respectively, with no AE being causally related to l-histidine ingestion. A survey of adults (n = 98) taking 4 g l-histidine daily reiterated a lack of causal AEs and also reported a 33% reduction in topical corticosteroid use. A placebo-controlled, clinical pilot study conducted in young children with AD (n = 49; mean age 3.5 y) taking 0.8 g l-histidine daily, showed that eczema area and severity index scores were reduced by 49% (P < 0.02) at 12 wk, whereas a placebo had no effect. The children taking l-histidine had 50 minor AEs (compared with 39 on placebo), with 78% considered as "not," 18% "unlikely," and 4% "possibly" related to l-histidine ingestion. These studies indicate that at the levels reported, oral l-histidine supplementation is well tolerated and has potential as a safe intervention for long-term use in the management of AD in all age groups.
Collapse
Affiliation(s)
- Neil K Gibbs
- Dermatological Sciences, University of Manchester, Manchester, UK; and Curapel, Stuart House, Chepstow, UK
| |
Collapse
|
28
|
Cynober L, Bier DM, Stover P, Kadowaki M, Morris SM, Elango R, Smriga M. Proposals for Upper Limits of Safe Intake for Methionine, Histidine, and Lysine in Healthy Humans. J Nutr 2020; 150:2606S-2608S. [PMID: 33000163 DOI: 10.1093/jn/nxaa231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Based on research presented during the 10th Amino Acid Assessment Workshop, no observed adverse effect levels (NOAELs) for supplemental methionine at 46 mg/(kg·d) (∼3.2 g/d), for supplemental histidine at 8.0 g/d, and for supplemental lysine at 6.0 g/d have been proposed. These NOAELs are relevant to healthy adults and are applicable only to high-purity amino acids administered in fortified foods or dietary supplements. Because individuals are exposed to the above supplemental amino acids in the context of complex combinations of essential amino acids or individually in dietary supplements for various physiologic benefits, such as body fat reduction, skin conditioning, mental energy increase, or herpes simplex treatments, the above safety recommendations will make an important contribution to regulatory and nutritional practices.
Collapse
Affiliation(s)
- Luc Cynober
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Clinical Chemistry Laboratory, Cochin Hospital, AP-HP, Paris, France.,Biological Nutrition Laboratory and EA 4466, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - Dennis M Bier
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Stover
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Texas A&M AgriLife, College Station, TX, USA
| | - Motoni Kadowaki
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Department of Engineering, Niigata Institute of Technology, Niigata, Japan
| | - Sidney M Morris
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Rajavel Elango
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Miro Smriga
- International Council for Amino Acid Science (ICAAS), Brussels, Belgium
| |
Collapse
|
29
|
Petrova B, Kanarek N. Potential Benefits and Pitfalls of Histidine Supplementation for Cancer Therapy Enhancement. J Nutr 2020; 150:2580S-2587S. [PMID: 33000153 DOI: 10.1093/jn/nxaa132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary supplementation of the amino acid histidine has demonstrable benefits in various clinical conditions. Recent work in a pediatric leukemia mouse model exposed a surprising potential application of histidine supplementation for cancer therapy enhancement. These findings demand a deeper reassessment of the physiological effects and potential drawbacks of histidine supplementation. As pertinent to this question, we discuss the safety of high doses of histidine and its relevant metabolic fates in the human body. We refrain from recommendations or final conclusions because comprehensive preclinical evidence for safety and efficacy of histidine supplementation is still lacking. However, we emphasize the incentive to study the safety of histidine supplementation and its potential to improve the clinical outcome of pediatric blood cancers through a simple dietary supplementation. The need for comprehensive preclinical testing of histidine supplementation in healthy and tumor-bearing mice is fundamental, and we hope that this review will facilitate such studies.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
30
|
Holeček M. Influence of Histidine Administration on Ammonia and Amino Acid Metabolism: A Review. Physiol Res 2020; 69:555-564. [DOI: 10.33549/physiolres.934449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Histidine (HIS) is an essential amino acid investigated for therapy of various diseases, used for tissue protection in transplantation and cardiac surgery, and as a supplement to increase muscle performance. The data presented in the review show that HIS administration may increase ammonia and affect the level of several amino acids. The most common are increased levels of alanine, glutamine, and glutamate and decreased levels of glycine and branched-chain amino acids (BCAA, valine, leucine, and isoleucine). The suggested pathogenic mechanisms include increased flux of HIS through HIS degradation pathway (increases in ammonia and glutamate), increased ammonia detoxification to glutamine and exchange of the BCAA with glutamine via L-transporter system in muscles (increase in glutamine and decrease in BCAA), and tetrahydrofolate depletion (decrease in glycine). Increased alanine concentration is explained by enhanced synthesis in extrahepatic tissues and impaired transamination in the liver. Increased ammonia and glutamine and decreased BCAA levels in HIS-treated subjects indicate that HIS supplementation is inappropriate in patients with liver injury. The studies investigating the possibilities to elevate carnosine (β-alanyl-L-histidine) content in muscles show positive effects of β-alanine and inconsistent effects of HIS supplementation. Several studies demonstrate HIS depletion due to enhanced availability of methionine, glutamine, or β-alanine.
Collapse
Affiliation(s)
- M Holeček
- Charles University, Faculty of Medicine in Hradec Králové, Šimkova 870, 500 03 Hradec Králové, Czech Republic. E-mail:
| |
Collapse
|
31
|
Moro J, Tomé D, Schmidely P, Demersay TC, Azzout-Marniche D. Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients 2020; 12:E1414. [PMID: 32423010 PMCID: PMC7284872 DOI: 10.3390/nu12051414] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Histidine is an essential amino acid (EAA) in mammals, fish, and poultry. We aim to give an overview of the metabolism and physiological effects of histidine in humans and different animal species through a systematic review following the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). In humans, dietary histidine may be associated with factors that improve metabolic syndrome and has an effect on ion absorption. In rats, histidine supplementation increases food intake. It also provides neuroprotection at an early stage and could protect against epileptic seizures. In chickens, histidine is particularly important as a limiting factor for carnosine synthesis, which has strong anti-oxidant effects. In fish, dietary histidine may be one of the most important factors in preventing cataracts. In ruminants, histidine is a limiting factor for milk protein synthesis and could be the first limiting AA for growth. In excess, histidine supplementation can be responsible for eating and memory disorders in humans and can induce growth retardation and metabolic dysfunction in most species. To conclude, the requirements for histidine, like for other EAA, have been derived from growth and AA composition in tissues and also have specific metabolic roles depending on species and dietary levels.
Collapse
Affiliation(s)
- Joanna Moro
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; (J.M.); (D.T.)
| | - Daniel Tomé
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; (J.M.); (D.T.)
| | - Philippe Schmidely
- AgroParisTech, Université Paris-Saclay, INRAE, UMR0791 Mosar, 75005 Paris, France;
| | | | - Dalila Azzout-Marniche
- AgroParisTech, Université Paris-Saclay, INRAE, UMR PNCA, 75005 Paris, France; (J.M.); (D.T.)
| |
Collapse
|
32
|
Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020; 12:nu12030848. [PMID: 32235743 PMCID: PMC7146355 DOI: 10.3390/nu12030848] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 38 Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats. Amino Acids 2019; 51:1667-1680. [PMID: 31712921 DOI: 10.1007/s00726-019-02803-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Abstract
The unique capability of proton buffering is the rationale for using histidine (HIS) as a component of solutions for induction of cardiac arrest and myocardial protection in cardiac surgery. In humans, infusion of cardioplegic solution may increase blood plasma HIS from ~ 70 to ~ 21,000 µM. We examined the effects of a large intravenous dose of HIS on ammonia and amino acid concentrations and energy status of the body. Rats received 198 mM HIS intravenously (20 ml/kg) or vehicle. Samples of blood plasma, urine, liver, and soleus (SOL) and extensor digitorum longus (EDL) muscles were analysed at 2 or 24 h after treatment. At 2 h after HIS load, we found higher HIS concentration in all examined tissues, higher urea and ammonia concentrations in blood and urine, lower ATP content and higher AMP/ATP ratio in the liver and muscles, higher concentrations of almost all examined amino acids in urine, and lower glycine concentration in blood plasma, liver, and muscles when compared with controls. Changes in other amino acids were tissue dependent, markedly increased alanine and glutamate in the blood and the liver. At 24 h, the main findings were lower ATP concentrations in muscles, lower concentrations of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in blood plasma and muscles, and higher carnosine content in SOL when compared with controls. It is concluded that a load of large HIS dose results in increased ammonia levels and marked alterations in amino acid and energy metabolism. Pathogenesis is discussed in the article.
Collapse
|
34
|
Kim Y, Kim E, Kim Y. l-histidine and l-carnosine accelerate wound healing via regulation of corticosterone and PI3K/Akt phosphorylation in d-galactose-induced aging models in vitro and in vivo. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Abstract
Atopic dermatitis (AD) is a chronic pruritic inflammatory skin disease in which management with topical anti-inflammatory agents during exacerbations remains the mainstay of treatment. With no cure in sight, a significant proportion of patients elect to incorporate complementary and alternative medicine (CAM) as an adjunct to conventional treatment. Many clinicians find it difficult to provide recommendations as the field covers an extensive number of very disparate therapies, with limited quality evidence to indicate efficacy. Since publication of the last review on this topic in the Journal that compiled and analyzed randomized controlled trials (RCTs) on CAMs in 2015, several new studies have surfaced. This update aims to aggregate and review these new data. A literature search was conducted in the PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and Global Resource for EczemA Trials (GREAT) databases for RCTs on complementary and alternative therapies in AD from March 2015 through May 2018, resulting in 15 studies being included in this review. The preliminary results for many treatments such as vitamin E, East Indian Sandalwood Oil (EISO), melatonin, L-histidine, and Manuka honey show positive clinical effects, but there is currently not enough evidence to recommend their use in AD therapy. Future investigative efforts should focus on reproducing some of these studies with a larger sample size whose clinical characteristics and demographics are more reflective of the general AD population, and standardizing the process to produce reliable data.
Collapse
|