1
|
Dabkevičiūtė G, Petrikaitė V. Insights into 2D and 3D cell culture models for nanoparticle-based drug delivery to glioblastoma. Biochem Pharmacol 2025; 237:116931. [PMID: 40187572 DOI: 10.1016/j.bcp.2025.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Glioblastoma (GBM) remains a formidable challenge due to its aggressive nature, protected location within the brain, and resistance to conventional treatments. Its complex tumor microenvironment (TME), coupled with the blood-brain barrier (BBB), hinders drug delivery leading to poor treatment outcomes. Nanoparticles (NPs) offer a promising solution, as they can improve the pharmacokinetic properties of anticancer agents. By functionalizing NPs with targeting molecules, researchers aim to enhance drug concentration in the brain. However, developing effective NP-based therapies requires robust in vitro models that accurately capture the complexities of GBM. Two-dimensional (2D) and three-dimensional (3D) cell culture models provide a versatile platform for studying NP-cell interactions. By customizing cell types, incorporating TME components, and adjusting flow conditions, researchers can tailor these models to specific research questions. While 2D models offer a simpler starting point, 3D models, such as multicellular spheroids and organoids, can more accurately replicate the complex TME, including the BBB and tumor heterogeneity. These models enable a more comprehensive evaluation of NP efficacy and safety, ultimately accelerating drug development and reducing reliance on animal testing.
Collapse
Affiliation(s)
- Girstautė Dabkevičiūtė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vilma Petrikaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania; Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania.
| |
Collapse
|
2
|
Wöllner A, Paul A, Arquilla M, Cao J, Lotsch C, Jungwirth G, Jassowicz L, von Deimling A, Unterberg AW, Krieg SM, Jakobs M, Warta R, Herold-Mende C. Use of Tissue Specimens from Stereotactic Biopsies for Patient-Derived GBM Organoid-Based Drug Testing. Cells 2025; 14:701. [PMID: 40422204 DOI: 10.3390/cells14100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
IDH-wildtype glioblastoma (GBM) represents the most common malignant form of brain tumor and is still incurable despite comprehensive therapeutic efforts. Due to tumor location and patient condition, open surgical resection of recurrent GBM is not always feasible. In these cases, frame-based stereotactic biopsies represent a less invasive technique to obtain tissue samples for diagnostics. However, whether this material would also be sufficient to prepare tumor organoids (TOs) and perform drug screenings has not been addressed so far. In this study, we present our highly optimized workflow for generating standardized patient-derived GBM TOs from single-cell suspensions using limited biopsy-derived material. We highlight crucial steps within the procedure, such as reliable cell counting, viable cell recovery, enzymatic digestion, and the requirement of an extracellular matrix as a scaffold. Furthermore, we showcase the potential of personalized drug testing as a promising application of GBM TOs. In conclusion, we successfully developed a robust workflow that effectively utilizes the limited material derived from stereotactic biopsies to reproducibly form standardized TOs. Moreover, we demonstrate that biopsy-derived TOs represent a valuable tool for testing drug vulnerabilities in a personalized setting, which might be especially useful in the case of non-resectable GBM.
Collapse
Affiliation(s)
- Amélie Wöllner
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Adrian Paul
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Maddalena Arquilla
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Junguo Cao
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Catharina Lotsch
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lena Jassowicz
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andreas W Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sandro M Krieg
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Martin Jakobs
- Division for Stereotactic Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Medical Faculty of Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Mao M, Lei Y, Ma X, Xie HY. Challenges and Emerging Strategies of Immunotherapy for Glioblastoma. Chembiochem 2025; 26:e202400848. [PMID: 39945240 DOI: 10.1002/cbic.202400848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
Glioblastoma (GBM) is recognized as the most lethal primary malignant tumor of the central nervous system. Although traditional treatments can somewhat prolong patient survival, the overall prognosis remains grim. Immunotherapy has become an effective method for GBM treatment. Oncolytic virus, checkpoint inhibitors, CAR T cells and tumor vaccines have all been applied in this field. Moreover, the combining of immunotherapy with traditional radiotherapy, chemotherapy, or gene therapy can further improve the treatment outcome. This review systematically summarizes the features of GBM, the recent progress of immunotherapy in overcoming GBM.
Collapse
Affiliation(s)
- Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yao Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Hai-Yan Xie
- Chemical Biology Center, Peking University, Beijing, 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
4
|
Pafitanis S, Zacharia LC, Stylianou A, Gkretsi V. In vitro models: Can they unravel the complexities of cancer cell metastasis? Biochim Biophys Acta Rev Cancer 2025; 1880:189293. [PMID: 40054754 DOI: 10.1016/j.bbcan.2025.189293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Metastasis still accounts for the majority of cancer-related deaths despite intense research efforts made worldwide to better understand the determinants involved and discover novel ways to halt it. However, studying the pathogenesis of metastasis in actual patients is indeed challenging which renders the need for the development of relevant experimental models urgent. Traditionally, several in vitro and in vivo models have been developed to study metastasis each of which having its own advantages and limitations. In the present review, we analyzed the current approaches used in cancer biology research to study cancer cell metastasis giving emphasis on the newly developed in vitro systems that take into account factors like the three-dimensional (3D) nature of the tumor, the interaction between cancer cells and the extracellular matrix or other cells present in the tumor microenvironment, and thus, better recapitulate the metastatic process. These approaches, namely 3D bioprinting, 3D tissue models, microfluidics systems, and spheroid generation are currently used separately or in combination depending on the research question and the cancer type in order to better represent the actual in vivo setting.
Collapse
Affiliation(s)
- Stefanos Pafitanis
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus
| | - Lefteris C Zacharia
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Andreas Stylianou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Mechanobiology and Applied Biophysics laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
5
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
6
|
Wang L, Gu M, Zhang X, Kong T, Liao J, Zhang D, Li J. Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413367. [PMID: 39854126 PMCID: PMC11905078 DOI: 10.1002/advs.202413367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Indexed: 01/26/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM. In this review, the underlying mechanisms of GBM pathogenesis are comprehensively discussed, emphasizing the impact of the BBB on treatment strategies. Recent advances in nanoenzyme-based approaches for GBM therapy are explored, highlighting how these nanoenzymes enhance various treatment modalities through their multifunctional capabilities and potential for precise drug delivery. Finally, the challenges and therapeutic prospects of translating nanoenzymes from laboratory research to clinical application, including issues of stability, targeting efficiency, safety, and regulatory hurdles are critically analyzed. By providing a thorough understanding of both the opportunities and obstacles associated with nanoenzyme-based therapies, future research directions are aimed to be informed and contribute to the development of more effective treatments for GBM.
Collapse
Affiliation(s)
- Liyin Wang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Min Gu
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Xiaoli Zhang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | | | - Jun Liao
- Institute of Systems BiomedicineBeijing Key Laboratory of Tumor Systems BiologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Dan Zhang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Jingwu Li
- The First Hospital of China Medical UniversityLiaoning110001China
| |
Collapse
|
7
|
Jackson GA, Adamson DC. Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets. Cells 2025; 14:171. [PMID: 39936963 PMCID: PMC11816616 DOI: 10.3390/cells14030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical process in malignant ovarian cancer metastasis. EMT involves the conversion of epithelial cells to mesenchymal cells, conferring enhanced migratory and invasive capabilities. Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor and exhibits an aggressive invasive phenotype that mimics some steps of EMT but does not undergo true metastasis, i.e., the invasion of other organ systems. This study conducts a comparative genomic analysis of EMT in ovarian cancer and invasion in GBM-two malignancies characterized by poor prognosis and limited therapies. Investigating the molecular biology in ovarian cancer and GBM demonstrates shared mechanisms of tumor progression, such as similar genetic and molecular pathways influencing cell plasticity, invasion, and resistance to therapy. The comparative analysis reveals commonalities and differences in the regulatory networks and gene expression profiles associated with EMT and invasion in these cancers. Key findings include the identification of core EMT regulators, such as TWIST1, SNAIL, and ZEB1, which are upregulated in both ovarian cancer and GBM, promoting mesenchymal phenotypes and metastasis. Additionally, the analysis uncovers EMT-related pathways, such as the PI3K/AKT and TGF-β signaling, which are critical in both cancers but exhibit distinct regulatory dynamics. Understanding the intricacies of EMT in ovarian cancer and invasion in GBM provides valuable insights into their aggressive behavior and identifies potential common therapeutic targets. The findings stress the importance of targeting EMT/invasion transitions to develop effective treatments to halt progression and improve patient outcomes in these malignancies.
Collapse
Affiliation(s)
| | - David Cory Adamson
- Neurosurgery Section, Atlanta VA Healthcare System, School of Medicine, Mercer University, Georgia Neurosurgical Institute, Macon, GA 31207, USA;
| |
Collapse
|
8
|
Horta M, Soares P, Leite Pereira C, Lima RT. Emerging Approaches in Glioblastoma Treatment: Modulating the Extracellular Matrix Through Nanotechnology. Pharmaceutics 2025; 17:142. [PMID: 40006509 PMCID: PMC11859630 DOI: 10.3390/pharmaceutics17020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma's (GB) complex tumor microenvironment (TME) promotes its progression and resistance to therapy. A critical component of TME is the extracellular matrix (ECM), which plays a pivotal role in promoting the tumor's invasive behavior and aggressiveness. Nanotechnology holds significant promise for GB treatment, with the potential to address challenges posed by both the blood-brain barrier and the GB ECM. By enabling targeted delivery of therapeutic and diagnostic agents, nanotechnology offers the prospect of improving treatment efficacy and diagnostic accuracy at the tumor site. This review provides a comprehensive exploration of GB, including its epidemiology, classification, and current treatment strategies, alongside the intricacies of its TME. It highlights nanotechnology-based strategies, focusing on nanoparticle formulations such as liposomes, polymeric nanoparticles, and gold nanoparticles, which have shown promise in GB therapy. Furthermore, it explores how different emerging nanotechnology strategies modulate the ECM to overcome the challenges posed by its high density, which restricts drug distribution within GB tumors. By emphasizing the intersection of nanotechnology and GB ECM, this review underscores an innovative approach to advancing GB treatment. It addresses the limitations of current therapies, identifies new research avenues, and emphasizes the potential of nanotechnology to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Leite Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.H.); (P.S.)
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP—Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
9
|
Haydo A, Schmidt J, Crider A, Kögler T, Ertl J, Hehlgans S, Hoffmann ME, Rathore R, Güllülü Ö, Wang Y, Zhang X, Herold-Mende C, Pampaloni F, Tegeder I, Dikic I, Dai M, Rödel F, Kögel D, Linder B. BRAT1 - a new therapeutic target for glioblastoma. Cell Mol Life Sci 2025; 82:52. [PMID: 39833546 PMCID: PMC11747058 DOI: 10.1007/s00018-024-05553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Glioblastoma (GBM), the most malignant primary brain tumor in adults, has poor prognosis irrespective of therapeutic advances due to its radio-resistance and infiltrative growth into brain tissue. The present study assessed functions and putative druggability of BRCA1-associated ATM activator 1 (BRAT1) as a crucial factor driving key aspects of GBM, including enhanced DNA damage response and tumor migration. By a stable depletion of BRAT1 in GBM and glioma stem-like (GSC) cell lines, we observed a delay in DNA double-strand break repair and increased sensitivity to radiation treatment, corroborated by in vitro and in vivo studies demonstrating impaired tumor growth and invasion. Proteomic and phosphoproteomic analyses further emphasize the role of BRAT1's cell migration and invasion capacity, with a notable proportion of downregulated proteins associated with these processes. In line with the genetic manipulation, we found that treatment with the BRAT1 inhibitor Curcusone D (CurD) significantly reduced GSC migration and invasion in an ex vivo slice culture model, particularly when combined with irradiation, resulting in a synergistic inhibition of tumor growth and infiltration. Our results reveal that BRAT1 contributes to GBM growth and invasion and suggest that therapeutic inhibition of BRAT1 with CurD or similar compounds might constitute a novel approach for anti-GBM directed treatments.
Collapse
Affiliation(s)
- Alicia Haydo
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany.
| | - Jennifer Schmidt
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Alisha Crider
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Tim Kögler
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| | - Johanna Ertl
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
- Radiation Biology and DNA Repair, Darmstadt, TU, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
| | - Marina E Hoffmann
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Rajeshwari Rathore
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Ömer Güllülü
- Department of Radiotherapy and Oncology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, USA
| | - Yecheng Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiangke Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590, Frankfurt am Main, Germany
| | - Mingji Dai
- Department of Chemistry and Winship Cancer Institute, Emory University, Atlanta, GA, 30022, USA
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, 60590, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120, Heidelberg, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120, Heidelberg, Germany
| | - Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, Goethe University Frankfurt, 60528, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Horta M, Soares P, Sarmento B, Leite Pereira C, Lima RT. Nanostructured lipid carriers for enhanced batimastat delivery across the blood-brain barrier: an in vitro study for glioblastoma treatment. Drug Deliv Transl Res 2025:10.1007/s13346-024-01775-8. [PMID: 39760929 DOI: 10.1007/s13346-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment. NLCs were prepared by ultrasonicator-assisted hot homogenization, followed by surface functionalization with EGF and the construct though carbodiimide chemistry. The construct was successfully conjugated with an efficiency of 81%. Two functionalized NLC formulations, fMbat and fNbat, differing in the surfactant amount, were characterized. fMbat had a size of 302 nm, a polydispersity index (PDI) of 0.298, a ζ-potential (ZP) of -27.1 mV and an 85% functionalization efficiency (%FE), whereas fNbat measured 285 nm, with a PDI of 0.249, a ZP of -28.6 mV and a %FE of 92%. Both formulations achieved a drug loading of 0.42 μg/mg. In vitro assays showed that fNbat was cytotoxic and failed to cross the BBB, while fMbat showed cytocompatibility at concentrations 10 times higher than the drug's IC50. Additionally, fMbat inhibited MMP-2 activity between 11 and 62% across different cell lines and achieved a three-fold increase in BBB penetration upon functionalization. Our results suggest that the fMbat formulation has potential for enhancing GB treatment by overcoming current drug delivery limitations and may be combined with other therapeutic strategies for improved outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - Raquel T Lima
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| |
Collapse
|
11
|
Pucci C, De Pasquale D, Degl'Innocenti A, Montorsi M, Desii A, Pero M, Martinelli C, Bartolucci M, Petretto A, Ciofani G. Chlorin e6-Loaded Nanostructured Lipid Carriers Targeted by Angiopep-2: Advancing Photodynamic Therapy in Glioblastoma. Adv Healthc Mater 2025; 14:e2402823. [PMID: 39344523 DOI: 10.1002/adhm.202402823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor known for its resistance to standard treatments. Despite surgery being a primary option, it often leads to incomplete removal and high recurrence rates. Photodynamic therapy (PDT) holds promise as an adjunctive treatment, but safety concerns and the need for high-power lasers have limited its widespread use. This research addresses these challenges by introducing a novel PDT approach, using chlorin e6 (Ce6) enclosed in nanostructured lipid carriers (Ang-Ce6-NLCs) and targeted to GBM with the angiopep-2 peptide. Remarkably, a single 5-min irradiation session with LEDs at 660 nm and low power density (10 mW cm- 2) proves effective against GBM, while reducing safety risks associated with high-power lasers. Encapsulation improves Ce6 stability and performance in physiological environments, while angiopep-2 targeting enhances delivery to GBM cells, maximizing treatment efficacy and minimizing off-target effects. The findings demonstrate that Ang-Ce6-NLCs-mediated PDT brings about a significant reduction in GBM cell viability, increases oxidative stress, reduces tumor migration, and enhances apoptosis. Overall, such treatment holds potential as a safe and efficient intraoperative removal of GBM infiltrating cells that cannot be reached by surgery, using low-power LED light to minimize harm to surrounding healthy tissue while maximizing tumor treatment.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
- Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Marta Pero
- Politecnico di Torino, DIMEAS, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| | - Martina Bartolucci
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Andrea Petretto
- IRCCS Istituto Giannina Gaslini, Core Facilities-Clinical Proteomics and Metabolomics, Via Gerolamo Gaslini 5, Genova, 16147, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, 56025, Italy
| |
Collapse
|
12
|
Ambele MA, Maebele LT, Mulaudzi TV, Kungoane T, Damane BP. Advances in nano-delivery of phytochemicals for glioblastoma treatment. DISCOVER NANO 2024; 19:216. [PMID: 39718730 DOI: 10.1186/s11671-024-04172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone. Phytochemicals have shown promising anticancer activity in in-vitro studies and are being investigated as potential treatments for various cancers, including GBM. However, some phytochemicals have failed to translate their efficacy to pre-clinical studies due to limited penetration into the tumor microenvironment, leading to high toxicity. Thus, combining phytochemicals with nanotechnology has emerged as a promising alternative for treating GBM. This review explores the potential of utilizing specific nanoparticles to deliver known anticancer phytochemicals directly to tumor cells. This method has demonstrated potential in overcoming the challenges of the complex GBM microenvironment, including the tight blood-brain barrier while minimizing damage to healthy brain tissue. Therefore, employing this interdisciplinary approach holds significant promise for developing effective phyto-nanomedicines for GBM and improving patient outcomes.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa.
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 0084, Gezina, South Africa.
| | - Lorraine Tshegofatso Maebele
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Tsholofelo Kungoane
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, P.O. Box 1266, Pretoria, 0001, South Africa
| | - Botle Precious Damane
- Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
| |
Collapse
|
13
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
14
|
van den Elshout R, Ariëns B, Esmaeili M, Akkurt B, Mannil M, Meijer FJA, van der Kolk AG, Scheenen TWJ, Henssen D. Distinguishing glioblastoma progression from treatment-related changes using DTI directionality growth analysis. Neuroradiology 2024; 66:2143-2151. [PMID: 39153088 PMCID: PMC11611950 DOI: 10.1007/s00234-024-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND It is difficult to distinguish between tumor progression (TP) and treatment-related abnormalities (TRA) in treated glioblastoma patients via conventional MRI, but this distinction is crucial for treatment decision making. Glioblastoma is known to exhibit an invasive growth pattern along white matter architecture and vasculature. This study quantified lesion development patterns in treated glioblastoma lesions and their relation to white matter microstructure to distinguish TP from TRA. MATERIALS AND METHODS Glioblastoma patients with confirmed TP or TRA with T1-weighted contrast-enhanced and DTI MR scans from two posttreatment follow-up timepoints were reviewed. The contrast-enhancing regions were segmented, and the regions were coregistered to the DTI data. Lesion increase vectors were categorized into two groups: parallel (0-20 degrees) and perpendicular (70-90 degrees) to white matter. FA-values were also extracted. To test for a statistically significant difference between the TP and TRA groups, a Mann‒Whitney U test was performed. RESULTS Of 73 glioblastoma patients, fifteen were diagnosed with TRA, whereas 58 patients suffered TP. TP had a 25.8% (95% CI 24.1%-27.6%) increase in parallel lesions, and TRA had a 25.4% (95% CI 20.9%-29.9%) increase in parallel lesions. The perpendicular increase was 14.7% for TP (95% CI 13.0%-16.4%) and 18.0% (95% CI 13.5%-22.5%) for TRA. These results were not significantly different (p = 0.978). FA value for TP showed to be 0.248 (SD = 0.054) and for TRA it was 0.231 (SD = 0.075), showing no statistically significant difference (p = 0.121). CONCLUSIONS Based on our results, quantifying posttreatment contrast-enhancing lesion development directionality with DTI in glioblastoma patients does not appear to effectively distinguish between TP and TRA.
Collapse
Affiliation(s)
- R van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands.
| | - B Ariëns
- AmsterdamUMC, Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - M Esmaeili
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - B Akkurt
- University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Muenster, Germany
| | - M Mannil
- University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Muenster, Germany
| | - F J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - A G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - T W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - D Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| |
Collapse
|
15
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
16
|
Paquette B, Oweida A. Combination of radiotherapy and immunotherapy in duality with the protumoral action of radiation. Cancer Radiother 2024; 28:484-492. [PMID: 39304400 DOI: 10.1016/j.canrad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
Radiotherapy is widely used to treat various cancers. Its combination with immune checkpoint inhibitors is intensively studied preclinically and clinically. Although the first results were very encouraging, the number of patients who respond positively remains low, and the therapeutic benefit is often temporary. This review summarizes how radiation can stimulate an antitumor immune response and its combination with immunotherapy based on inhibiting immune checkpoints. We will provide an overview of radiotherapy parameters that should be better controlled to avoid downregulating the antitumor immune response. The low response rate of combining radiotherapy and immunotherapy could, at least in part, be caused by the stimulation of cancer cell invasion and metastasis development that occur at similar doses and number of radiation fractions. To end on a positive note, we explore how a targeted inhibition of the inflammatory cytokines induced by radiation with a cyclooxygenase-2 inhibitor could both support an antitumor immune response and block radiation-induced metastasis formation.
Collapse
Affiliation(s)
- Benoît Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Ayman Oweida
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
17
|
Adiguzel S, Karamese M, Kugu S, Kacar EA, Esen MF, Erdogan H, Tasoglu S, Bacanli MG, Altuntas S. Doxorubicin-loaded liposome-like particles embedded in chitosan/hyaluronic acid-based hydrogels as a controlled drug release model for local treatment of glioblastoma. Int J Biol Macromol 2024; 278:135054. [PMID: 39187114 DOI: 10.1016/j.ijbiomac.2024.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.
Collapse
Affiliation(s)
- Seyfure Adiguzel
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Molecular Biology and Genetics, Department of Molecular Biology and Genetics, University of Health Sciences, Istanbul 34668, Turkiye
| | - Miray Karamese
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Senanur Kugu
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Elif Ayse Kacar
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Muhammed Fevzi Esen
- Department of Health Information Systems, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Faculty of Science, Koc University, Istanbul, Turkiye.
| | - Merve Güdül Bacanli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| |
Collapse
|
18
|
Pudełek M, Ryszawy D, Piwowarczyk K, Lasota S, Madeja Z, Kędracka-Krok S, Czyż J. Metabolic reprogramming of poly(morpho)nuclear giant cells determines glioblastoma recovery from doxorubicin-induced stress. J Transl Med 2024; 22:757. [PMID: 39135106 PMCID: PMC11318163 DOI: 10.1186/s12967-024-05541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress. METHODS Long-term proteomic and metabolic cell profiling was applied to trace the phenotypic dynamics of GBM populations subjected to pulse DOX treatment in vitro, with a particular focus on PGC formation and its metabolic background. The links between metabolic reprogramming, drug resistance and drug retention capacity of PGCs were assessed, along with their significance for GBM recovery from DOX-induced stress. RESULTS Pulse DOX treatment triggered the transient formation of PGCs, followed by the appearance of small expanding cell (SEC) clusters. Development of PGCs was accompanied by the mobilization of their metabolic proteome, transient induction of oxidative phosphorylation (OXPHOS), and differential intracellular accumulation of NADH, NADPH, and ATP. The metabolic background of PGC formation was confirmed by the attenuation of GBM recovery from DOX-induced stress following the chemical inhibition of GSK-3β, OXPHOS, and the pentose phosphate pathway. Concurrently, the mobilization of reactive oxygen species (ROS) scavenging systems and fine-tuning of NADPH-dependent ROS production systems in PGCs was observed. These processes were accompanied by perinuclear mobilization of ABCB1 and ABCG2 transporters and DOX retention in the perinuclear PGC compartments. CONCLUSIONS These data demonstrate the cooperative pattern of GBM recovery from DOX-induced stress and the crucial role of metabolic reprogramming of PGCs in this process. Metabolic reprogramming enhances the efficiency of self-defense systems and increases the DOX retention capacity of PGCs, potentially reducing DOX bioavailability in the proximity of SECs. Consequently, the modulation of PGC metabolism is highlighted as a potential target for intervention in glioblastoma treatment.
Collapse
Affiliation(s)
- Maciej Pudełek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Sławomir Lasota
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| |
Collapse
|
19
|
Ye Z, Zhong Y, Zhang Z. Pan-cancer multi-omics analysis of PTBP1 reveals it as an inflammatory, progressive and prognostic marker in glioma. Sci Rep 2024; 14:14584. [PMID: 38918441 PMCID: PMC11199703 DOI: 10.1038/s41598-024-64979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
PTBP1 is an oncogene that regulates the splicing of precursor mRNA. However, the relationship between PTBP1 expression and gene methylation, cancer prognosis, and tumor microenvironment remains unclear. The expression profiles of PTBP1 across various cancers were derived from the TCGA, as well as the GTEx and CGGA databases. The CGGA mRNA_325, CGGA mRNA_301, and CGGA mRNA_693 datasets were utilized as validation cohorts. Immune cell infiltration scores were approximated using the TIMER 2.0 tool. Functional enrichment analysis for groups with high and low PTBP1 expression was conducted using Gene Set Enrichment Analysis (GSEA). Methylation data were predominantly sourced from the SMART and Mexpress databases. Linked-omics analysis was employed to perform functional enrichment analysis of genes related to PTBP1 methylation, as well as to conduct protein functional enrichment analysis. Single-cell transcriptome analysis and spatial transcriptome analysis were carried out using Seurat version 4.10. Compared to normal tissues, PTBP1 is significantly overexpressed and hypomethylated in various cancers. It is implicated in prognosis, immune cell infiltration, immune checkpoint expression, genomic variation, tumor neoantigen load, and tumor mutational burden across a spectrum of cancers, with particularly notable effects in low-grade gliomas. In the context of gliomas, PTBP1 expression correlates with WHO grade and IDH1 mutation status. PTBP1 expression and methylation play an important role in a variety of cancers. PTBP1 can be used as a marker of inflammation, progression and prognosis in gliomas.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, Guangdong, China
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Zhong
- People's Hospital of Dongxihu District, Wuhan, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
White J, White MPJ, Wickremesekera A, Peng L, Gray C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J Transl Med 2024; 22:540. [PMID: 38844944 PMCID: PMC11155041 DOI: 10.1186/s12967-024-05301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024] Open
Abstract
The adaptability of glioblastoma (GBM) cells, encouraged by complex interactions with the tumour microenvironment (TME), currently renders GBM an incurable cancer. Despite intensive research, with many clinical trials, GBM patients rely on standard treatments including surgery followed by radiation and chemotherapy, which have been observed to induce a more aggressive phenotype in recurrent tumours. This failure to improve treatments is undoubtedly a result of insufficient models which fail to incorporate components of the human brain TME. Research has increasingly uncovered mechanisms of tumour-TME interactions that correlate to worsened patient prognoses, including tumour-associated astrocyte mitochondrial transfer, neuronal circuit remodelling and immunosuppression. This tumour hijacked TME is highly implicated in driving therapy resistance, with further alterations within the TME and tumour resulting from therapy exposure inducing increased tumour growth and invasion. Recent developments improving organoid models, including aspects of the TME, are paving an exciting future for the research and drug development for GBM, with the hopes of improving patient survival growing closer. This review focuses on GBMs interactions with the TME and their effect on tumour pathology and treatment efficiency, with a look at challenges GBM models face in sufficiently recapitulating this complex and highly adaptive cancer.
Collapse
Affiliation(s)
- Jasmine White
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | | | - Agadha Wickremesekera
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
21
|
Castro-Ribeiro ML, Castro VIB, Vieira de Castro J, Pires RA, Reis RL, Costa BM, Ferreira H, Neves NM. The Potential of the Fibronectin Inhibitor Arg-Gly-Asp-Ser in the Development of Therapies for Glioblastoma. Int J Mol Sci 2024; 25:4910. [PMID: 38732135 PMCID: PMC11084566 DOI: 10.3390/ijms25094910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.
Collapse
Affiliation(s)
- Maria L. Castro-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Vânia I. B. Castro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Joana Vieira de Castro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Ricardo A. Pires
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Bruno M. Costa
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| |
Collapse
|
22
|
Lim S, Kwak M, Kang J, Cesaire M, Tang K, Robey RW, Frye WJE, Karim B, Butcher D, Lizak MJ, Dalmage M, Foster B, Nuechterlein N, Eberhart C, Cimino PJ, Gottesman MM, Jackson S. Ibrutinib disrupts blood-tumor barrier integrity and prolongs survival in rodent glioma model. Acta Neuropathol Commun 2024; 12:56. [PMID: 38589905 PMCID: PMC11003129 DOI: 10.1186/s40478-024-01763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/24/2024] [Indexed: 04/10/2024] Open
Abstract
In malignant glioma, cytotoxic drugs are often inhibited from accessing the tumor site due to the blood-tumor barrier (BTB). Ibrutinib, FDA-approved lymphoma agent, inhibits Bruton tyrosine kinase (BTK) and has previously been shown to independently impair aortic endothelial adhesion and increase rodent glioma model survival in combination with cytotoxic therapy. Yet additional research is required to understand ibrutinib's effect on BTB function. In this study, we detail baseline BTK expression in glioma cells and its surrounding vasculature, then measure endothelial junctional expression/function changes with varied ibrutinib doses in vitro. Rat glioma cells and rodent glioma models were treated with ibrutinib alone (1-10 µM and 25 mg/kg) and in combination with doxil (10-100 µM and 3 mg/kg) to assess additive effects on viability, drug concentrations, tumor volume, endothelial junctional expression and survival. We found that ibrutinib, in a dose-dependent manner, decreased brain endothelial cell-cell adhesion over 24 h, without affecting endothelial cell viability (p < 0.005). Expression of tight junction gene and protein expression was decreased maximally 4 h after administration, along with inhibition of efflux transporter, ABCB1, activity. We demonstrated an additive effect of ibrutinib with doxil on rat glioma cells, as seen by a significant reduction in cell viability (p < 0.001) and increased CNS doxil concentration in the brain (56 ng/mL doxil alone vs. 74.6 ng/mL combination, p < 0.05). Finally, Ibrutinib, combined with doxil, prolonged median survival in rodent glioma models (27 vs. 16 days, p < 0.0001) with brain imaging showing a - 53% versus - 75% volume change with doxil alone versus combination therapy (p < 0.05). These findings indicate ibrutinib's ability to increase brain endothelial permeability via junctional disruption and efflux inhibition, to increase BTB drug entry and prolong rodent glioma model survival. Our results motivate the need to identify other BTB modifiers, all with the intent of improving survival and reducing systemic toxicities.
Collapse
Affiliation(s)
- Sanghee Lim
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Minhye Kwak
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Jeonghan Kang
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Melissa Cesaire
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kayen Tang
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, 20892, USA
| | - William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, 20892, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory, Leidos Biomedical Research, Frederick, MD, 21702, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory, Leidos Biomedical Research, Frederick, MD, 21702, USA
| | - Martin J Lizak
- NIH MRI Research Facility and Mouse Imaging Facility, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, MD, 20814, USA
| | - Mahalia Dalmage
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brandon Foster
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Nicholas Nuechterlein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Eberhart
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Bethesda, MD, 20892, USA
| | - Patrick J Cimino
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, 20892, USA
| | - Sadhana Jackson
- Develomental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurologic Disorders and Stroke (NINDS), NIH, Building 10, Room 7D45, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Simsek Ozek N. Exploring the in vitro potential of royal jelly against glioblastoma and neuroblastoma: impact on cell proliferation, apoptosis, cell cycle, and the biomolecular content. Analyst 2024; 149:1872-1884. [PMID: 38349213 DOI: 10.1039/d3an01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Neuroblastoma and glioblastoma are the most commonly seen nervous system tumors, and their treatment is challenging. Relatively safe and easy acquisition of nutraceutical natural products make them suitable candidates for anticancer research. Royal jelly (RJ), a superfood, has many biological and pharmacological activities. This study was conducted to, for the first time, elucidate its anticancer efficiency, even in high doses, on neuroblastoma and glioblastoma cell lines through cell viability, apoptosis, cell cycle and biomolecular content evaluation. We performed experiments with RJ concentrations in the range of 1.25-10 mg mL-1 for 48 h. Cell viability assays revealed a notable cytotoxic effect of RJ in a concentration-dependent manner. Treatment with a high dose of RJ significantly increased the apoptotic cell population of both cell lines. Furthermore, we observed G0-G1 phase arrest in neuroblastoma cells but G2-M arrest in glioblastoma cells. All these cellular changes are closely associated with the alterations of the macromolecular makeup of the cells, such as decreased saturated lipid, protein, DNA and RNA amounts, protein conformational changes, decreased protein phosphorylation and increased protein carbonylation. These cellular changes are associated with RJ triggered-ROS formation. The clear segregation between the control and the RJ-treated groups proved these changes, obtained from the unsupervised and supervised chemometric analysis. RJ has good anticancer activity against nervous system cancers and could be safely used with current treatment strategies.
Collapse
Affiliation(s)
- Nihal Simsek Ozek
- East Anatolia High Technology Application and Research Center (DAYTAM), Atatürk University, 25240 Erzurum, Turkey.
- Department of Biology, Faculty of Science, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
24
|
Boccacino JM, Dos Santos Peixoto R, Fernandes CFDL, Cangiano G, Sola PR, Coelho BP, Prado MB, Melo-Escobar MI, de Sousa BP, Ayyadhury S, Bader GD, Shinjo SMO, Marie SKN, da Rocha EL, Lopes MH. Integrated transcriptomics uncovers an enhanced association between the prion protein gene expression and vesicle dynamics signatures in glioblastomas. BMC Cancer 2024; 24:199. [PMID: 38347462 PMCID: PMC10863147 DOI: 10.1186/s12885-024-11914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive brain tumor that exhibits resistance to current treatment, making the identification of novel therapeutic targets essential. In this context, cellular prion protein (PrPC) stands out as a potential candidate for new therapies. Encoded by the PRNP gene, PrPC can present increased expression levels in GBM, impacting cell proliferation, growth, migration, invasion and stemness. Nevertheless, the exact molecular mechanisms through which PRNP/PrPC modulates key aspects of GBM biology remain elusive. METHODS To elucidate the implications of PRNP/PrPC in the biology of this cancer, we analyzed publicly available RNA sequencing (RNA-seq) data of patient-derived GBMs from four independent studies. First, we ranked samples profiled by bulk RNA-seq as PRNPhigh and PRNPlow and compared their transcriptomic landscape. Then, we analyzed PRNP+ and PRNP- GBM cells profiled by single-cell RNA-seq to further understand the molecular context within which PRNP/PrPC might function in this tumor. We explored an additional proteomics dataset, applying similar comparative approaches, to corroborate our findings. RESULTS Functional profiling revealed that vesicular dynamics signatures are strongly correlated with PRNP/PrPC levels in GBM. We found a panel of 73 genes, enriched in vesicle-related pathways, whose expression levels are increased in PRNPhigh/PRNP+ cells across all RNA-seq datasets. Vesicle-associated genes, ANXA1, RAB31, DSTN and SYPL1, were found to be upregulated in vitro in an in-house collection of patient-derived GBM. Moreover, proteome analysis of patient-derived samples reinforces the findings of enhanced vesicle biogenesis, processing and trafficking in PRNPhigh/PRNP+ GBM cells. CONCLUSIONS Together, our findings shed light on a novel role for PrPC as a potential modulator of vesicle biology in GBM, which is pivotal for intercellular communication and cancer maintenance. We also introduce GBMdiscovery, a novel user-friendly tool that allows the investigation of specific genes in GBM biology.
Collapse
Affiliation(s)
- Jacqueline Marcia Boccacino
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Rafael Dos Santos Peixoto
- Department of Automation and Systems, Technological Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Camila Felix de Lima Fernandes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Giovanni Cangiano
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Paula Rodrigues Sola
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Bárbara Paranhos Coelho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Mariana Brandão Prado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Maria Isabel Melo-Escobar
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Breno Pereira de Sousa
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil
| | - Shamini Ayyadhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Sueli Mieko Oba Shinjo
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory (LIM 15), Department of Neurology, Faculdade de Medicina (FMUSP), University of Sao Paulo, Sao Paulo, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology, and Parasitology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524 room 431, Sao Paulo, 05508000, Brazil.
| |
Collapse
|
25
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
26
|
He Y, Døssing KBV, Rossing M, Bagger FO, Kjaer A. uPAR (PLAUR) Marks Two Intra-Tumoral Subtypes of Glioblastoma: Insights from Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:1998. [PMID: 38396677 PMCID: PMC10889167 DOI: 10.3390/ijms25041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) encoded by the PLAUR gene is known as a clinical marker for cell invasiveness in glioblastoma multiforme (GBM). It is additionally implicated in various processes, including angiogenesis and inflammation within the tumor microenvironment. However, there has not been a comprehensive study that depicts the overall functions and molecular cooperators of PLAUR with respect to intra-tumoral subtypes of GBM. Using single-cell RNA sequencing data from 37 GBM patients, we identified PLAUR as a marker gene for two distinct subtypes in GBM. One subtype is featured by inflammatory activities and the other subtype is marked by ECM remodeling processes. Using the whole-transcriptome data from single cells, we are able to uncover the molecular cooperators of PLAUR for both subtypes without presuming biological pathways. Two protein networks comprise the molecular context of PLAUR, with each of the two subtypes characterized by a different dominant network. We concluded that targeting PLAUR directly influences the mechanisms represented by these two protein networks, regardless of the subtype of the targeted cell.
Collapse
Affiliation(s)
- Yue He
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina B. V. Døssing
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (F.O.B.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (F.O.B.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
27
|
Aggarwal Y, Vaid A, Visani A, Rane R, Joseph A, Mukherjee S, Tripathi M, Chandra PS, Doddamani R, Dixit AB, Banerjee J. Cold atmospheric plasma (CAP) treatment increased reactive oxygen and nitrogen species (RONS) levels in tumor samples obtained from patients with low-grade glioma. Biomed Phys Eng Express 2024; 10:025018. [PMID: 38241730 DOI: 10.1088/2057-1976/ad20a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Low-grade gliomas (LGGs) are a heterogeneous group of tumors with an average 10-year survival rate of 40%-55%. Current treatment options include chemotherapy, radiotherapy, and gross total resection (GTR) of the tumor. The extent of resection (EOR) plays an important role in improving surgical outcomes. However, the major obstacle in treating low-grade gliomas is their diffused nature and the presence of residual cancer cells at the tumor margins post resection. Cold Atmospheric Plasma (CAP) has shown to be effective in targeted killing of tumor cells in various glioma cell lines without affecting non-tumor cells through Reactive Oxygen and Nitrogen Species (RONS). However, no study on the effectiveness of CAP has been carried out in LGG tissues till date. In this study, we applied helium-based CAP on tumor tissues resected from LGG patients. Our results show that CAP is effective in promoting RONS accumulation in LGG tissues when CAP jet parameters are set at 4 kV voltage, 5 min treatment time and 3 lpm gas flow rate. We also observed that CAP jet is more effective in thinner slice preparations of tumor as compared to thick tumor samples. Our results indicate that CAP could prove to be an effective adjunct therapy in glioma surgery to target residual cancer cells to improve surgical outcome of patients with low-grade glioma.
Collapse
Affiliation(s)
- Yogesh Aggarwal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Akshay Vaid
- Institute of Plasma Research, Gandhinagar, Gujarat, India
| | - Anand Visani
- Institute of Plasma Research, Gandhinagar, Gujarat, India
| | | | | | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
28
|
Schonfeld E, Choi J, Tran A, Kim LH, Lim M. The landscape of immune checkpoint inhibitor clinical trials in glioblastoma: A systematic review. Neurooncol Adv 2024; 6:vdae174. [PMID: 39534539 PMCID: PMC11555435 DOI: 10.1093/noajnl/vdae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Background Glioblastoma is characterized by rapid tumor growth and high invasiveness. The tumor microenvironment of glioblastoma is highly immunosuppressive with both intrinsic and adaptive resistance mechanisms that result in disease recurrence despite current immunotherapeutic strategies. Methods In this systematic review of clinical trials involving immunotherapy for glioblastoma using ClinicalTrials.gov and PubMed databases from 2016 and onward, we explore immunotherapeutic modalities involving immune checkpoint blockade (ICB). Results A total of 106 clinical trials were identified, 18 with clinical outcomes. ICB in glioblastoma has failed to improve overall survival compared to the current standard of care, including those therapies inhibiting multiple checkpoints. Among all immune checkpoint trials, targets included programmed cell death protein-1 (PD-1) (35/48), PD-L1 (12/48), cytotoxic T-lymphocyte-associated protein-4 (6/48), TIGIT (2/48), B7-H3 (2/48), and TIM-3 (1/48). Preliminary results from combination immunotherapies (32.1% of all trials) demonstrated improved treatment efficacy compared to monotherapy, specifically those combining checkpoint therapy with another immunotherapy modality. Conclusions Clinical trials involving ICB strategies for glioblastoma have not demonstrated improved survival. Comparison of therapeutic efficacy across trials was limited due to heterogeneity in the study population and outcome operationalization. Standardization of future trials could facilitate comparison across immunotherapy modalities for robust meta-analysis. Current immunotherapy trials have shifted focus toward combination strategies; preliminary results suggest that they are more encouraging than mono-modality immunotherapies. Given the intrinsic heterogeneity of glioblastoma, the utilization of immune markers will be key for the development of future immunotherapy approaches.
Collapse
Affiliation(s)
- Ethan Schonfeld
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - John Choi
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Andrew Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
29
|
Dinevska M, Widodo SS, Mantamadiotis T. High-Throughput Multiplex Immunohistochemistry of Glioma Organoids. Methods Mol Biol 2024; 2746:57-65. [PMID: 38070079 DOI: 10.1007/978-1-0716-3585-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The invasive capacity and progression of glioblastoma cells and neoplastic cells in other are dependent on interactions with the surrounding tumor microenvironment. In particular, cancer cells form a reciprocal relationship with noncellular dysregulated extracellular matrix in the tumors. Here, we describe a protocol that can be used to model the functional relationship between tumor cells and extracellular matrix. We demonstrate how 3D organoids, including glioma tumor organoids, can be processed, embedded, and sectioned in a high-throughput setup that enables investigation of the organoids by histopathological methods, multiplex immunohistochemistry, and spatial analysis within the same section.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Rist D, DePalma T, Stagner E, Tallman MM, Venere M, Skardal A, Schultz ZD. Cancer Cell Targeting, Magnetic Sorting, and SERS Detection through Cell Surface Receptors. ACS Sens 2023; 8:4636-4645. [PMID: 37988612 PMCID: PMC10921760 DOI: 10.1021/acssensors.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Integrins are cellular surface receptors responsible for the activation of many cellular pathways in cancer. These integrin proteins can be specifically targeted by small peptide sequences that offer the potential for the differentiation of cellular subpopulations by using magnetically assisted cellular sorting techniques. By adding a gold shell to the magnetic nanoparticles, these integrin-peptide interactions can be differentiated by surface-enhanced Raman spectroscopy (SERS), providing a quick and reliable method for on-target binding. In this paper, we demonstrate the ability to differentiate the peptide-protein interactions of the small peptides CDPGYIGSR and cyclic RGDfC functionalized on gold-coated magnetic nanoparticles with the integrins they are known to bind to using their SERS signal. SW480 and SW620 colorectal cancer cells known to have the integrins of interest were then magnetically sorted using these functionalized nanoparticles, suggesting differentiation between the sorted populations and integrin populations among the two cell lines.
Collapse
Affiliation(s)
- David Rist
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tom DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emerie Stagner
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Miranda M Tallman
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Monica Venere
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aleksander Skardal
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Pandya Shesh B, Slagle-Webb B, Shenoy G, Khristov V, Zacharia BE, Connor JR. Uptake of H-ferritin by Glioblastoma stem cells and its impact on their invasion capacity. J Cancer Res Clin Oncol 2023; 149:9691-9703. [PMID: 37237166 PMCID: PMC11628165 DOI: 10.1007/s00432-023-04864-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Iron acquisition is key to maintaining cell survival and function. Cancer cells in general are considered to have an insatiable iron need. Iron delivery via the transferrin/transferrin receptor pathway has been the canonical iron uptake mechanism. Recently, however, our laboratory and others have explored the ability of ferritin, particularly the H-subunit, to deliver iron to a variety of cell types. Here, we investigate whether Glioblastoma (GBM) initiating cells (GICs), a small population of stem-like cells, are known for their iron addiction and invasive nature acquire exogenous ferritin, as a source of iron. We further assess the functional impact of ferritin uptake on the invasion capacity of the GICs. METHODS To establish that H-ferritin can bind to human GBM, tissue-binding assays were performed on samples collected at the time of surgery. To interrogate the functional consequences of H-ferritin uptake, we utilized two patient-derived GIC lines. We further describe H-ferritin's impact on GIC invasion capacity using a 3D invasion assay. RESULTS H-ferritin bound to human GBM tissue at the amount of binding was influenced by sex. GIC lines showed uptake of H-ferritin protein via transferrin receptor. FTH1 uptake correlated with a significant decrease in the invasion capacity of the cells. H-ferritin uptake was associated with a significant decrease in the invasion-related protein Rap1A. CONCLUSION These findings indicate that extracellular H-ferritin participates in iron acquisition to GBMs and patient-derived GICs. The functional significance of the increased iron delivery by H-ferritin is a decreased invasion capacity of GICs potentially via reduction of Rap1A protein levels.
Collapse
Affiliation(s)
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
32
|
Mendanha D, Gimondi S, Costa BM, Ferreira H, Neves NM. Microfluidic-derived docosahexaenoic acid liposomes for glioblastoma therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102704. [PMID: 37582426 DOI: 10.1016/j.nano.2023.102704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor and currently lacks an effective treatment. In this study, we utilized a microfluidic system to synthesize docosahexaenoic acid (DHA) liposomes for GBM therapy. DHA is an omega-3 (ω3) polyunsaturated fatty acid commonly found in human dietary consumption that has demonstrated potential in mitigating cancer development. The microfluidic device employed allowed for precise fine-tuning of the physicochemical properties of liposomes by adjusting the flow rate ratios, flow rates, and lipid concentrations. Three distinct-sized liposomes, ranging from 80 nm and 130 nm, were successfully internalized by GBM cells, and demonstrated the ability to reduce the viability of these cells. Furthermore, DHA liposomes proved significantly more efficient in triggering apoptotic pathways, through caspase-3-dependent mechanisms, in comparison to free DHA. Thus, the nanomedicine platform established in this study presents new opportunities in the development of liposome formulations incorporating ω3 fatty acids for cancer therapy.
Collapse
Affiliation(s)
- D Mendanha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - S Gimondi
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - B M Costa
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - H Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
33
|
Slepak TI, Guyot M, Walters W, Eichberg DG, Ivan ME. Dual role of the adhesion G-protein coupled receptor ADRGE5/CD97 in glioblastoma invasion and proliferation. J Biol Chem 2023; 299:105105. [PMID: 37517698 PMCID: PMC10481366 DOI: 10.1016/j.jbc.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
CD97, an adhesion G-protein coupled receptor highly expressed in glioblastoma (GBM), consists of two noncovalently bound domains: the N-terminal fragment (NTF) and C-terminal fragment. The C-terminal fragment contains a GPCR domain that couples to Gα12/13, while the NTF interacts with extracellular matrix components and other receptors. We investigated the effects of changing CD97 levels and its function on primary patient-derived GBM stem cells (pdGSCs) in vitro and in vivo. We created two functional mutants: a constitutively active ΔNTF and the noncleavable dominant-negative H436A mutant. The CD97 knockdown in pdGSCs decreased, while overexpression of CD97 increased tumor size. Unlike other constructs, the ΔNTF mutant promoted tumor cell proliferation, but the tumors were comparable in size to those with CD97 overexpression. As expected, the GBM tumors overexpressing CD97 were very invasive, but surprisingly, the knockdown did not inhibit invasiveness and even induced it in noninvasive U87 tumors. Importantly, our results indicate that NTF was present in the tumor core cells but absent in the pdGSCs invading the brain. Furthermore, the expression of noncleavable H436A mutant led to large tumors that invade by sending massive protrusions, but the invasion of individual tumor cells was substantially reduced. These data suggest that NTF association with CD97 GPCR domain inhibits individual cell dissemination but not overall tumor invasion. However, NTF dissociation facilitates pdGSCs brain infiltration and may promote tumor proliferation. Thus, the interplay between two functional domains regulates CD97 activity resulting in either enhanced cell adhesion or stimulation of tumor cell invasion and proliferation.
Collapse
Affiliation(s)
- Tatiana I Slepak
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Manuela Guyot
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Winston Walters
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Daniel G Eichberg
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA.
| |
Collapse
|
34
|
Peixoto J, Príncipe C, Pestana A, Osório H, Pinto MT, Prazeres H, Soares P, Lima RT. Using a Dual CRISPR/Cas9 Approach to Gain Insight into the Role of LRP1B in Glioblastoma. Int J Mol Sci 2023; 24:11285. [PMID: 37511044 PMCID: PMC10379115 DOI: 10.3390/ijms241411285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.
Collapse
Grants
- PTDC/MEC-ONC/31520/2017 FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- project "Institute for Research and Innovation in Health Sciences" (UID/BIM/04293/2019) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- "Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets"-NORTE-01-0145-FEDER-000051 Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF
- The Porto Comprehensive Cancer Center" with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC - Porto.Comprehensive Cancer Center Raquel Seruca European Regional Development Fund
- ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125 Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infra-structures of Strategic Relevance
Collapse
Affiliation(s)
- Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Pestana
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Teixeira Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
35
|
Mishra P, P S, Panda BB, Sekar A, Naik S. Bilateral Central Retinal Vein Occlusion in Recurrent Frontal Lobe Tumor. Cureus 2023; 15:e41441. [PMID: 37546071 PMCID: PMC10404118 DOI: 10.7759/cureus.41441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Systemic malignancy can induce hypercoagulation and can cause retinal vein occlusion (RVO). Although RVO has been reported in association with breast, renal, lung, prostate, and ovarian malignancies, it has not been reported in brain tumors. We are reporting a case of bilateral central retinal vein occlusion (CRVO) associated with recurrent frontal lobe gliosarcoma. The association was established after ruling out all other systemic causes that can produce bilateral CRVO. The importance of this case report lies in the fact that, while evaluating bilateral CRVO cases, these rare associations should also be kept in mind.
Collapse
Affiliation(s)
- Priyadarshini Mishra
- Ophthalmology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Shanmugasundaram P
- Ophthalmology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Bijnya B Panda
- Ophthalmology, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Arunkumar Sekar
- Neurosurgery, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Suprava Naik
- Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| |
Collapse
|
36
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
37
|
Khan ZM, Munson JM, Long TE, Vlaisavljevich E, Verbridge SS. Development of a Synthetic, Injectable Hydrogel to Capture Residual Glioblastoma and Glioblastoma Stem-Like Cells with CXCL12-Mediated Chemotaxis. Adv Healthc Mater 2023; 12:e2300671. [PMID: 37014179 PMCID: PMC11469263 DOI: 10.1002/adhm.202300671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy-resistant glioblastoma stem-like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol-Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12-mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM-hydrogel interactions in vitro are studied. With a novel dual-layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.
Collapse
Affiliation(s)
- Zerin Mahzabin Khan
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Jennifer M. Munson
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
- Fralin Biomedical Research Institute at Virginia Tech – CarillionRoanokeVA24016USA
| | - Timothy E. Long
- Biodesign Center for Sustainable Macromolecular Materials and ManufacturingArizona State UniversityTempeAZ85287USA
| | - Eli Vlaisavljevich
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
| | - Scott S. Verbridge
- Virginia Tech – Wake Forest University School of Biomedical Engineering and SciencesVirginia TechBlacksburgVA24061USA
- Wake Forest Baptist Comprehensive Cancer CenterWake Forest UniversityWinston‐SalemNC27157USA
| |
Collapse
|
38
|
Behrooz AB, Latifi-Navid H, Nezhadi A, Świat M, Los M, Jamalpoor Z, Ghavami S. Molecular mechanisms of microRNAs in glioblastoma pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119482. [PMID: 37146725 DOI: 10.1016/j.bbamcr.2023.119482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Glioblastoma (GBM) is human's most prevalent and severe brain cancer. Epigenetic regulators, micro(mi)RNAs, significantly impact cellular health and disease because of their wide range of targets and functions. The "epigenetic symphony" in which miRNAs perform is responsible for orchestrating the transcription of genetic information. The discovery of regulatory miRNA activities in GBM biology has shown that various miRNAs play a vital role in disease onset and development. Here, we summarize our current understanding of the current state-of-the-art and latest findings regarding the interactions between miRNAs and molecular mechanisms commonly associated with GBM pathogenesis. Moreover, by literature review and reconstruction of the GBM gene regulatory network, we uncovered the connection between miRNAs and critical signaling pathways such as cell proliferation, invasion, and cell death, which provides promising hints for identifying potential therapeutic targets for the treatment of GBM. In addition, the role of miRNAs in GBM patient survival was investigated. The present review, which contains new analyses of the previous literature, may lead to new avenues to explore in the future for the development of multitargeted miRNA-based therapies for GBM.
Collapse
Affiliation(s)
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Akram Nezhadi
- Cognitive Neuroscience Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Maciej Świat
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Marek Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Zahra Jamalpoor
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
39
|
Alves B, Peixoto J, Macedo S, Pinheiro J, Carvalho B, Soares P, Lima J, Lima RT. High VEGFA Expression Is Associated with Improved Progression-Free Survival after Bevacizumab Treatment in Recurrent Glioblastoma. Cancers (Basel) 2023; 15:cancers15082196. [PMID: 37190125 DOI: 10.3390/cancers15082196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GB) is one of the deadliest human cancers. Many GB patients do not respond to treatment, and inevitably die within a median of 15-18 months post-diagnosis, highlighting the need for reliable biomarkers to aid clinical management and treatment evaluation. The GB microenvironment holds tremendous potential as a source of biomarkers; several proteins such as MMP-2, MMP-9, YKL40, and VEGFA have been identified as being differentially expressed in GB patient samples. Still to date, none of these proteins have been translated into relevant clinical biomarkers. This study evaluated the expression of MMP-2, MMP-9, YKL40, and VEGFA in a series of GBs and their impact on patient outcome. High levels of VEGFA expression were significantly associated with improved progression-free survival after bevacizumab treatment, thus having potential as a tissue biomarker for predicting patients' response to bevacizumab. Noteworthily, VEGFA expression was not associated with patient outcome after temozolomide treatment. To a lesser extent, YKL40 also provided significant information regarding the extent of bevacizumab treatment. This study highlights the importance of studying secretome-associated proteins as GB biomarkers and identifies VEGFA as a promising marker for predicting response to bevacizumab.
Collapse
Affiliation(s)
- Bárbara Alves
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- School of Allied Health Sciences, Polytechnic Institute of Porto, 4200 Porto, Portugal
| | - Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
| | - Sofia Macedo
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
| | - Jorge Pinheiro
- Department of Pathology, Centro Hospitalar Universitário S. João, 4200 Porto, Portugal
| | - Bruno Carvalho
- Department of Neurosurgery, Centro Hospitalar Universitário S. João, 4200 Porto, Portugal
- FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| | - Jorge Lima
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, 4200 Porto, Portugal
- Cancer Signalling & Metabolism Group, IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, 4200 Porto, Portugal
- Department of Pathology, FMUP-Faculty of Medicine of the University of Porto, 4200 Porto, Portugal
| |
Collapse
|
40
|
Biological Evaluation and In Vitro Characterization of ADME Profile of In-House Pyrazolo[3,4- d]pyrimidines as Dual Tyrosine Kinase Inhibitors Active against Glioblastoma Multiforme. Pharmaceutics 2023; 15:pharmaceutics15020453. [PMID: 36839775 PMCID: PMC9966370 DOI: 10.3390/pharmaceutics15020453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The therapeutic use of tyrosine kinase inhibitors (TKIs) represents one of the successful strategies for the treatment of glioblastoma (GBM). Pyrazolo[3,4-d]pyrimidines have already been reported as promising small molecules active as c-Src/Abl dual inhibitors. Herein, we present a series of pyrazolo[3,4-d]pyrimidine derivatives, selected from our in-house library, to identify a promising candidate active against GBM. The inhibitory activity against c-Src and Abl was investigated, and the antiproliferative profile against four GBM cell lines was studied. For the most active compounds endowed with antiproliferative efficacy in the low-micromolar range, the effects toward nontumoral, healthy cell lines (fibroblasts FIBRO 2-93 and keratinocytes HaCaT) was investigated. Lastly, the in silico and in vitro ADME properties of all compounds were also assessed. Among the tested compounds, the promising inhibitory activity against c-Src and Abl (Ki 3.14 µM and 0.44 µM, respectively), the irreversible, apoptotic-mediated death toward U-87, LN18, LN229, and DBTRG GBM cell lines (IC50 6.8 µM, 10.8 µM, 6.9 µM, and 8.5 µM, respectively), the significant reduction in GBM cell migration, the safe profile toward FIBRO 2-93 and HaCaT healthy cell lines (CC50 91.7 µM and 126.5 µM, respectively), the high metabolic stability, and the excellent passive permeability across gastrointestinal and blood-brain barriers led us to select compound 5 for further in vivo assays.
Collapse
|
41
|
Pineda E, Domenech M, Hernández A, Comas S, Balaña C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. Onco Targets Ther 2023; 16:71-86. [PMID: 36721854 PMCID: PMC9884437 DOI: 10.2147/ott.s366371] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Virtually all glioblastomas treated in the first-line setting will recur in a short period of time, and the search for alternative effective treatments has so far been unsuccessful. Various obstacles remain unresolved, and no effective salvage therapy for recurrent glioblastoma can be envisaged in the short term. One of the main impediments to progress is the low incidence of the disease itself in comparison with other pathologies, which will be made even lower by the recent WHO classification of gliomas, which includes molecular alterations. This new classification helps refine patient prognosis but does not clarify the most appropriate treatment. Other impediments are related to clinical trials: glioblastoma patients are often excluded from trials due to their advanced age and limiting neurological symptoms; there is also the question of how best to measure treatment efficacy, which conditions the design of trials and can affect the acceptance of results by oncologists and medicine agencies. Other obstacles are related to the drugs themselves: most treatments cannot cross the blood-brain-barrier or the brain-to-tumor barrier to reach therapeutic drug levels in the tumor without producing toxicity; the drugs under study may have adverse metabolic interactions with those required for symptom control; identifying the target of the drug can be a complex issue. Additionally, the optimal method of treatment - local vs systemic therapy, the choice of chemotherapy, irradiation, targeted therapy, immunotherapy, or a combination thereof - is not yet clear in glioblastoma in comparison with other cancers. Finally, in addition to curing or stabilizing the disease, glioblastoma therapy should aim at maintaining the neurological status of the patients to enable them to return to their previous lifestyle. Here we review currently available treatments, obstacles in the search for new treatments, and novel lines of research that show promise for the future.
Collapse
Affiliation(s)
- Estela Pineda
- Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Ainhoa Hernández
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona, Spain
| | - Carmen Balaña
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain,Correspondence: Carmen Balaña, Institut Catala d’Oncologia (ICO) Badalona, Carretera Canyet s/n, Badalona, 08916, Spain, Tel +34 497 89 25, Fax +34 497 89 50, Email
| |
Collapse
|
42
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
43
|
Chen X, Tian F, Wu Z. A Genomic Instability-Associated Prognostic Signature for Glioblastoma Patients. World Neurosurg 2022; 167:e515-e526. [PMID: 35977679 DOI: 10.1016/j.wneu.2022.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genomic instability and aberrant tumor mutation burden are widely accepted hallmarks of cancer. Glioblastoma (GBM) is a common brain tumor in adults, and survival of patients with GBM is poor. This study aimed to investigate the prognostic value of genomic instability-derived genes in GBM. METHODS GBM data were downloaded from The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. Differential expression analysis of all samples with different tumor mutation burden was performed. Univariate Cox and LASSO Cox regression analyses were integrated to determine the optimal genes for constructing a risk score model. Multivariate Cox regression analysis and survival analysis determined independent prognostic indicators. Immune cell infiltration was analyzed by CIBERSORT algorithm. RESULTS In GMB patients with high and low tumor mutation burden, we identified 154 differentially expressed genes, which were significantly enriched in 47 Gene Ontology terms and 6 Kyoto Encyclopedia of Genes and Genomes pathways. To establish a risk score, 9 genes were further screened, including SDC1, CXCL1, CXCL6, RGS4, PCDHGB2, CA9, ZAR1, CHRM3, and SLN. High-risk patients had worse prognosis in two databases. The performance of a nomogram including prognostic factors (risk score and age) was good. Moreover, mast cells resting was significantly differentially infiltrated between high- and low-risk GBM samples. CONCLUSIONS The risk score constructed by 9 genomic instability-derived genes could reliably predict prognosis of GBM patients. The nomogram based on age and risk score also had a good prognostic predictive value.
Collapse
Affiliation(s)
- Xiaodong Chen
- Neurosurgery Department, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Fen Tian
- Nephrology Department, The Affiliated Hospital of Qingdao University, Shandong, China.
| | - Zeyu Wu
- Neurosurgery Department, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
44
|
Pires J, Costa SA, da Silva KP, da Conceição AGB, Reis ÉDM, Sinhorin AP, Branco CLB, Cruz L, Ferrarini SR, Andrade CMB. Artemether-loaded polymeric lipid-core nanocapsules reduce cell viability and alter the antioxidant status of U-87 MG cells. Pharm Dev Technol 2022; 27:892-903. [PMID: 36168940 DOI: 10.1080/10837450.2022.2128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Glioblastomas are tumors that present a high mortality rate. Artemether (ART) is a lactone with antitumor properties, demonstrating low bioavailability and water solubility. In the present study, we developed lipid-core nanocapsules (LNC) containing pequi oil (Caryocar brasiliense Cambess) as the oily core for ART-loaded LNCs (LNCART) and evaluated their effect on human glioblastoma cells (U-87 MG). LNCs were developed by interfacial deposition of a preformed polymer, followed by physicochemical characterization. LNCART revealed a diameter of 0.216 µm, polydispersity index of 0.161, zeta potential of -12.0 mV, and a pH of 5.53. Furthermore, mitochondrial viability, proliferation, total antioxidant status, and antioxidant enzyme activity were evaluated. ART reduced cell viability after 24 h and proliferation after 48 h of treatment at concentrations equal to or above 40 µg . mL-1. LNCART, at 1.25 µg . mL-1, reduced these parameters after 24 h of treatment. Furthermore, superoxide dismutase (SOD) activity was elevated, while glutathione reductase (GR) activity was reduced. These findings suggest that ART loaded into LNC may be a promising alternative to improve its pharmacological action and possible application as a therapeutic agent for glioblastoma.
Collapse
Affiliation(s)
- Jader Pires
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Suéllen Alves Costa
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Karoline Paiva da Silva
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | | | - Érica de Melo Reis
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Adilson Paulo Sinhorin
- Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Carmen Lucia Bassi Branco
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Letícia Cruz
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Brazil
| | - Stela Regina Ferrarini
- Post-Graduation Program in Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Cláudia Marlise Balbinotti Andrade
- Post-Graduation Program in Health Sciences, Faculty of Medical Sciences, Federal University of Mato Grosso, Cuiabá, Brazil.,Department of Chemistry, Institute of Exact and Earth Sciences, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
45
|
Kerhervé M, Rosińska S, Trillet K, Zeinaty A, Feyeux M, Nedellec S, Gavard J. Neuropilin-1 modulates the 3D invasive properties of glioblastoma stem-like cells. Front Cell Dev Biol 2022; 10:981583. [PMID: 36204684 PMCID: PMC9530787 DOI: 10.3389/fcell.2022.981583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a rare, yet devastating, primary brain tumor in adults. Current treatments remain generally ineffective and GBM almost invariably recurs, resulting in median survival of 15 months. This high malignancy sources notably from the resilience and invasive capabilities of tumor cells. Within GBM, exists a population of self-sustaining transformed cells with stem-like properties (GSCs), which are thought to be responsible for tumor initiation, growth, and invasion, as well as recurrence. In the tumor microenvironment, GSCs might be found in the vicinity of brain endothelial cells, which provide a protective habitat. Likewise, these resistant, quiescent GSCs may accumulate in hypoxic zones, away from the perivascular niche, or travel towards the healthy brain parenchyma, by eminently co-opting neuro-vascular tracks. Herein, we established an ex vivo model to explore GSC invasive behavior. We found that patient-derived cells massively invade the collagen matrix. In addition, we described that the glycoprotein Neuropilin-1 (NRP1) contributes to GSC spreading and invasion. Indeed, both RNA interference-mediated silencing and CRISPR-mediated gene editing deletion of NRP1 strongly impaired the 3D invasive properties of patient-derived GSCs and their close localization to the brain blood vessels. Of note, other typical features of GSCs, such as expansion and self-renewal were maintained. From a mechanistic standpoint, this biological effect might rely on the expression of the β3 subunit integrin cell-extracellular matrix adhesive receptor. Our data, therefore, propose a reliable approach to explore invasive properties of patient glioma cells ex vivo and identify NRP1 as a mediator in this malignant process.
Collapse
Affiliation(s)
- Mathilde Kerhervé
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Sara Rosińska
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Kilian Trillet
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Alya Zeinaty
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
| | - Magalie Feyeux
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, Inserm, CNRS, Université D’Angers, Nantes, France
- Equipe Labellisée Ligue Contre le Cancer, Nantes, France
- Institut de Cancérologie de L’Ouest (ICO), Angers, France
- *Correspondence: Julie Gavard,
| |
Collapse
|
46
|
Szczepaniak J, Sosnowska M, Wierzbicki M, Witkowska-Pilaszewicz O, Strojny-Cieslak B, Jagiello J, Fraczek W, Kusmierz M, Grodzik M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175843. [PMID: 36079225 PMCID: PMC9457042 DOI: 10.3390/ma15175843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced β-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Barbara Strojny-Cieslak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Joanna Jagiello
- Graphene and Composites Research Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Marcin Kusmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
47
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
48
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|
49
|
Khoonkari M, Liang D, Kamperman M, Kruyt FAE, van Rijn P. Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix Stiffening. Pharmaceutics 2022; 14:pharmaceutics14051031. [PMID: 35631616 PMCID: PMC9145282 DOI: 10.3390/pharmaceutics14051031] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
The biology and physics underlying glioblastoma is not yet completely understood, resulting in the limited efficacy of current clinical therapy. Recent studies have indicated the importance of mechanical stress on the development and malignancy of cancer. Various types of mechanical stress activate adaptive tumor cell responses that include alterations in the extracellular matrix (ECM) which have an impact on tumor malignancy. In this review, we describe and discuss the current knowledge of the effects of ECM alterations and mechanical stress on GBM aggressiveness. Gradual changes in the brain ECM have been connected to the biological and physical alterations of GBM cells. For example, increased expression of several ECM components such as glycosaminoglycans (GAGs), hyaluronic acid (HA), proteoglycans and fibrous proteins result in stiffening of the brain ECM, which alters inter- and intracellular signaling activity. Several mechanosensing signaling pathways have been identified that orchestrate adaptive responses, such as Hippo/YAP, CD44, and actin skeleton signaling, which remodel the cytoskeleton and affect cellular properties such as cell–cell/ECM interactions, growth, and migration/invasion of GBM cells. In vitro, hydrogels are used as a model to mimic the stiffening of the brain ECM and reconstruct its mechanics, which we also discuss. Overall, we provide an overview of the tumor microenvironmental landscape of GBM with a focus on ECM stiffening and its associated adaptive cellular signaling pathways and their possible therapeutic exploitation.
Collapse
Affiliation(s)
- Mohammad Khoonkari
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Frank A. E. Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (M.K.); (D.L.)
- Correspondence: (F.A.E.K.); (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (F.A.E.K.); (P.v.R.)
| |
Collapse
|
50
|
Combination of DNA Vaccine and Immune Checkpoint Blockades Improves the Immune Response in an Orthotopic Unresectable Glioblastoma Model. Pharmaceutics 2022; 14:pharmaceutics14051025. [PMID: 35631612 PMCID: PMC9145362 DOI: 10.3390/pharmaceutics14051025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Combination immunotherapy has emerged as a promising strategy to increase the immune response in glioblastoma (GBM) and overcome the complex immunosuppression occurring in its microenvironment. In this study, we hypothesized that combining DNA vaccines—to stimulate a specific immune response—and dual immune checkpoint blockade (ICB)—to decrease the immunosuppression exerted on T cells—will improve the immune response and the survival in an orthotopic unresectable GL261 model. We first highlighted the influence of the insertion position of a GBM epitope sequence in a plasmid DNA vaccine encoding a vesicular stomatitis virus glycoprotein (VSV-G) (here referred to as pTOP) in the generation of a specific and significant IFN-γ response against the GBM antigen TRP2 by inserting a CD8 epitope sequence in specific permissive sites. Then, we combined the pTOP vaccine with anti-PD-1 and anti-CTLA-4 ICBs. Immune cell analysis revealed an increase in effector T cell to Treg ratios in the spleens and an increase in infiltrated IFN-γ-secreting CD8 T cell frequency in the brains following combination therapy. Even if the survival was not significantly different between dual ICB and combination therapy, we offer a new immunotherapeutic perspective by improving the immune landscape in an orthotopic unresectable GBM model.
Collapse
|