1
|
Zheng K, Jin G, Cao R, Gao Y, Xu J, Chai R, Kang Y. Targeting on the PI3K/mTOR: a potential treatment strategy for clear cell ovarian carcinoma. Cancer Chemother Pharmacol 2025; 95:21. [PMID: 39792198 PMCID: PMC11723846 DOI: 10.1007/s00280-024-04748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Ovarian clear cell carcinoma is a highly malignant gynecological tumor characterized by a high rate of chemotherapy resistance and poor prognosis. The PI3K/AKT/mTOR pathway is well-known to be closely related to the progression of various malignancies, and recent studies have indicated that this pathway may play a critical role in the progression and worsening of OCCC. METHODS In this study, we investigated the combined effects of WX390, a dual inhibitor of PI3K/mTOR, and cisplatin on OCCC through both in vitro and in vivo experiments to further elucidate their therapeutic effects. RESULTS WX390 significantly inhibited the proliferation of human OCCC cell lines ES2 and OVISE, while promoting apoptosis. Furthermore, the combination of WX390 with CDDP exhibited a synergistic effect, markedly increasing the sensitivity of OCCC cells to chemotherapeutic agents and significantly suppressing tumor growth in PDX models. Western blot and RNA-seq analyses revealed that WX390 robustly inhibited the PI3K/AKT/mTOR pathway, interrupt autophagy, altered cell cycle dynamics, and induced apoptosis. CONCLUSION This study comprehensively assessed the efficacy of WX390 across multiple models of OCCC, laying a solid foundation for the development of new therapeutic strategies for this challenging malignancy.
Collapse
Affiliation(s)
- Kewei Zheng
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Guanqin Jin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Rui Cao
- Department of Gynecology, Dalian Obstetrics and Gynecology Hospital, Dalian, 116033, China
| | - Yi Gao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Ranran Chai
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yu Kang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
2
|
Yang F, Yang M, Liu Y, Zhou C, Chen Y, Wu J, Zhang X, Xiao S. PDLIM7 Promotes Tumor Metastasis in Papillary Thyroid Carcinoma via Stabilizing Focal Adhesion Kinase Protein. Thyroid 2024; 34:598-610. [PMID: 38243825 DOI: 10.1089/thy.2023.0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Background: As an actin cytoskeleton interactor, PDZ (postsynaptic density 65-discs large-zonula occludens 1) and LIM (abnormal cell lineage 11-isket 1-mechanosensory abnormal 3) domain protein 7 (PDLIM7) was supposed to play an essential role modulating cytoskeleton. Focal adhesions (FAs), which are located at the cytomembrane terminus of actin cytoskeleton, function as a force sensor and can transform the mechanical signal to a biochemical signal. Focal adhesion kinase (FAK) localizes to and regulates signal transduction in FAs, which play an essential role in cell polarity, migration, and invasion. However, whether PDLIM7 is involved in FAs-associated signal transduction and its role in tumor invasion and metastasis remains largely unknown. Methods: A cohort of 80 patients with papillary thyroid carcinoma (PTC) at The Second Affiliated Hospital of Guilin Medical University, as well as 512 PTC samples from The Cancer Genome Atlas thyroid cancer database was utilized to analyze the expression of PDLIM7 and its association with prognosis. Survival data were assessed using Kaplan-Meier curves, whereas clinicopathological characteristics such as age, sex, tumor size, multilocality, extrathyroidal extension, lymph metastases, Hashimoto's thyroiditis, distant metastasis, and TNM stage were considered. Functional assays were performed in vitro and in a xenograft mouse model to assess the role of PDLIM7 in PTC cell lines. The colocalization of PDLIM7 with FAK and integrin alpha V (ITGAV) was determined using immunofluorescence assay and immunoprecipitation assay. Protein expression levels in cell and tissue biopsies were measured through Western blotting and immunohistochemistry. Results: (1) The PDLIM7 protein frequently upregulated in both PTC tissues and cells, and overexpression of PDLIM7 is associated with advanced clinicopathological characteristics. (2) Knockdown of PDLIM7 effectively inhibits cell proliferation, migration, and invasion in PTC cell lines in vitro. (3) Knockdown of PDLIM7 hinders the growth and metastasis of TPC-1 xenografts in vivo. (4) PDLIM7 demonstrates colocalization with both FAK and the FA molecule ITGAV and the knockdown of PDLIM7 resulted in disassembly of FAs and proteosome-dependent degradation of FAK in PTC cell lines. Conclusions: PDLIM7 function as an oncoprotein in PTC to promote metastasis, and a novel underlying mechanism is proposed that PDLIM7 keeps FAK protein from proteosome-dependent degradation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Mingqing Yang
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yi Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin, China
| | - Chen Zhou
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yongbei Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jiacai Wu
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
3
|
Xiao M, Cui X, Xu C, Xin L, Zhao J, Yang S, Hong B, Tan Y, Zhang J, Li X, Li J, Kang C, Fang C. Deep-targeted gene sequencing reveals ARID1A mutation as an important driver of glioblastoma. CNS Neurosci Ther 2024; 30:e14698. [PMID: 38600891 PMCID: PMC11007544 DOI: 10.1111/cns.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.
Collapse
Affiliation(s)
- Menglin Xiao
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Xiaoteng Cui
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Can Xu
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Lei Xin
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Jixing Zhao
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Shixue Yang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Biao Hong
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yanli Tan
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Zhang
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Xiang Li
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Li
- Department of ProteomicsTianjin Enterprise Key Laboratory of Clinical Multi‐omicsTianjinChina
| | - Chunsheng Kang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Chuan Fang
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| |
Collapse
|
4
|
Xing B, Zhang X, Gu X, Xiang L, Wang C, Jin Y. Explore the alterations of downstream molecular pathways caused by ARID1A mutation/knockout in human endometrial cancer cells. J Cancer Res Clin Oncol 2023; 149:17529-17541. [PMID: 37906351 DOI: 10.1007/s00432-023-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE As one of the most common gynecologic malignancies, endometrial cancer (EC) is driven by multiple genetic alterations that may be targeted for treatments. AT-rich interaction domain 1A (ARID1A) gene mutations were reported as early events in endometrial carcinogenesis. METHODS To explore the alterations of downstream molecular pathways caused by ARID1A mutations and the associated therapeutic implications, we edited ARID1A gene in human endometrial cancer cell line Ishikawa using the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-Associated Proteins (CRISPR/Cas9) technology. We successfully constructed a stable Ishikawa cell line with a confirmed 10 bp deletion on the ARID1A gene, which resulted in a code-shift mutation and gene knockout. RESULTS Compared with unedited wild-type cells, ARID1A knockout (KO) led to reduced apoptosis, accelerated transformation from G0/G1 to S phase, and enhanced cell proliferation. ARID1A deficiency would reduce the protein levels of p21, caspase 7, and caspase 9 in Ishikawa endometrial cancer cells compared with the wild-type cells. In addition, ARID1A KO resulted in high levels of microsatellite instability (MSI-H). Moreover, transcriptomic analyses showed that ARID1A KO can lead to activated phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Furthermore, experimental analyses demonstrated that ARID1A KO cells had reduced expression of genetic instability-associated markers mutL homologue 1 (MLH1) and progesterone receptor B (PR) and increased p-Akt expression. CONCLUSION These findings support further exploration of ARID1A as a therapeutic target for EC and provide insight into developing more effective treatments in EC, such as the combinatory use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Baoling Xing
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Xiaoying Zhang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xia Gu
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Lintao Xiang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Cuiping Wang
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yueling Jin
- Management Department of Scientific Research, Shanghai Science and Technology Museum, Shanghai, 200127, China
| |
Collapse
|
5
|
Chaluts D, Dullea JT, Ali M, Vasan V, Devarajan A, Rutland JW, Gill CM, Ellis E, Kinoshita Y, McBride RB, Bederson J, Donovan M, Sebra R, Umphlett M, Shrivastava RK. ARID1A mutation associated with recurrence and shorter progression-free survival in atypical meningiomas. J Cancer Res Clin Oncol 2023; 149:5165-5172. [PMID: 36348021 DOI: 10.1007/s00432-022-04442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The oncologic outcomes for atypical meningiomas can be poor. Generally, patients that have had a prior recurrence have a substantially elevated risk of a future recurrence. Additionally, certain tumor genomic profiles have been shown as markers of poor prognosis. We sought to characterize the genomic differences between primary and recurrent tumors as well as assess if those differences had implications on recurrence. METHODS We identified primary and recurrent gross totally resected WHO grade II meningiomas with > 30 days of post-surgical follow-up at our institution. For genes with a prevalence of > 5% in the cohort, we compared the mutational prevalence in primary and recurrent tumors. For a gene of interest, we assessed the time to radiographic recurrence using adjusted cox-regression. RESULTS We identified 88 meningiomas (77 primary, 16 recurrent) with a median follow-up of 5.33 years. Mutations in ARID1A found in association with recurrent tumors (7/16 recurrent tumors vs 5/72 primary tumors, p < 0.001). In the whole cohort, mutations in ARID1A were not associated with alterations in time to recurrence after adjusting for recurrence status (p = 0.713). When restricted to primary tumors, ARID1A is associated with a 625% increase in the hazard of recurrence (HR = 7.26 [1.42-37.0]; p = 0.017). CONCLUSION We demonstrate mutations in ARID1A, a chromatin remodeling gene, in a higher prevalence in recurrent tumors. We further demonstrate that when mutations in ARID1A are present in primary atypical meningiomas, these tumors tend to have worse prognosis. Further prospective study may validate ARID1A as a prognostic marker.
Collapse
Affiliation(s)
- Danielle Chaluts
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Jonathan T Dullea
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA.
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Vikram Vasan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Alex Devarajan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - John W Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Corey M Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Ethan Ellis
- Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Russell B McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, A Mount Sinai Venture, Stamford, CT, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue; Floor 8, New York, NY, 10129, USA
| |
Collapse
|
6
|
Liao LJ, Hsu WL, Chen CJ, Chiu YL. Feature Reviews of the Molecular Mechanisms of Nasopharyngeal Carcinoma. Biomedicines 2023; 11:1528. [PMID: 37371623 DOI: 10.3390/biomedicines11061528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is rare in most parts of the world but endemic in southern Asia. Here, we describe the molecular abnormalities in NPC and point out potential molecular mechanisms for future therapy. This article provides a brief up-to-date review focusing on the molecular pathways of NPC, which may improve our knowledge of this disease, and we also highlight some issues for further research. In brief, some heritable genes are related to NPC; therefore, people with a family history of NPC have an increased risk of this disease. Carcinogenic substances and Epstein-Barr virus (EBV) exposure both contribute to tumorigenesis through the accumulation of multiple genomic changes. In recent years, salted fish intake has decreased the impact on NPC, which implies that changing exposure to carcinogens can modify the risk of NPC. Eradication of cancer-associated viruses potentially eradicates cancer, and EBV vaccines might also prevent this disease in the future. Screening patients by using an EBV antibody is feasible in the high-risk group; plasma EBV DNA measurement could also be conducted for screening, prognosis, and monitoring of this disease. Understanding the molecular mechanisms of NPC can further provide novel information for health promotion, disease screening, and precision cancer treatment.
Collapse
Affiliation(s)
- Li-Jen Liao
- Department of Otolaryngology Head and Neck Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan
| | - Wan-Lun Hsu
- Master Program of Big Data Analysis in Biomedicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-Ling Chiu
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
7
|
Yakovlev VA, Sullivan SA, Fields EC, Temkin SM. PARP inhibitors in the treatment of ARID1A mutant ovarian clear cell cancer: PI3K/Akt1-dependent mechanism of synthetic lethality. Front Oncol 2023; 13:1124147. [PMID: 36910637 PMCID: PMC9992988 DOI: 10.3389/fonc.2023.1124147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme involved in the repair of DNA single-strand breaks (SSB). The recent development of poly(ADP-ribose) polymerase inhibitors (PARPi) results from over 45 years of studies. When the activity of PARP1 or PARP2 is compromised, DNA SSB lesions are unresolved and can be converted to DNA double-strand breaks (DSBs) by the cellular transcription mechanisms. ARID1A (also called BAF250a) is an important component of the mammalian Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex. ARID1A gene demonstrates >50% of mutation rate in ovarian clear-cell carcinomas (OCCC). Mutated or downregulated ARID1A significantly compromises the Homologous Recombination Repair (HRR) of DNA DSB. Results The present study demonstrated that downregulated or mutated ARID1A attenuates DNA HRR through stimulation of the PI3K/Akt1 pathway and makes tumor cells highly sensitive to PARPi and PARPi/ionizing radiation (IR) combination. We showed that PI3K/Akt1 pathway plays an important role in the sensitization of cancer cell lines with compromised function of ARID1A to PARPi treatment. Discussion We believe that using of PARPi monotherapy or in combination with radiation therapy is an appealing strategy for treating ARID1A-mutated cancers, as well as many other types of PI3K/Akt1-driven cancers.
Collapse
Affiliation(s)
- Vasily A Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stephanie A Sullivan
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Emma C Fields
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah M Temkin
- Gynecologic Oncology Division, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Gu Y, Meng J, Ju Y, You X, Sun T, Lu J, Guan Y. Case report: Unique FLT4 variants associated with differential response to anlotinib in angiosarcoma. Front Oncol 2022; 12:1027696. [PMID: 36452496 PMCID: PMC9702819 DOI: 10.3389/fonc.2022.1027696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 01/19/2024] Open
Abstract
Angiosarcoma (AS) is a rare, clinically aggressive tumor with limited treatment options and a poor prognosis. Mutations involving the angiogenesis-related genesTP53, PTPRB, PLCG1, KDR as well as FLT4 amplification have been observed in AS. There is a potential therapeutic value of inhibition of the VEGF pathway against angiosarcoma. Our case first described a patient with two sites of cutaneous angiosarcomas (cASs) that responded differently to anlotinib. And genetic analysis revealed that those two sites had different FLT4 variants, suggesting that FLT4 amplification could be the cause of anlotinib non-response.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Meng
- Department of Medical Oncology, The Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yongzhi Ju
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Xia You
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Jun Lu
- Department of Pathology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yin Guan
- Department of Medical Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Li R, Xiong G, Zhao J, Yang L. Targeting the alterations of ARID1A in pancreatic cancer: tumorigenesis, prediction of treatment, and prognostic value. Am J Transl Res 2022; 14:5952-5964. [PMID: 36247295 PMCID: PMC9556451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
The chromatin remodeling gene AT-rich interactive domain 1A (ARID1A), encoding a subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is one of the most frequently mutated chromatin regulators across a broad spectrum of cancers. Most of the ARID1A alterations are inactivating, leading to the loss or reduced expression of the protein. Recently, ARID1A has been demonstrated as a tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC), as its inactive alterations attribute to carcinogenesis. Importantly, ARID1A alterations are revealed as predictive biomarkers for the selection of targeted therapy and immune checkpoint blockade (ICB) therapy. In PDAC, the application of ARID1A alterations in stratifying patients for precise treatment has also been widely explored in preclinical and early clinic studies with encouraging preliminary results. Furthermore, the prognostic value of ARID1A mutations in PDAC has been suggested by various studies. In this review, we focus on the functions of ARID1A alterations in PDAC, particularly their functions during carcinogenesis and their predictive value in treatment selection and prognosis, to provide a comprehensive overview on our current understanding of ARID1A alterations in PDAC.
Collapse
Affiliation(s)
- Ruichao Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jun Zhao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
10
|
Levatić J, Salvadores M, Fuster-Tormo F, Supek F. Mutational signatures are markers of drug sensitivity of cancer cells. Nat Commun 2022; 13:2926. [PMID: 35614096 PMCID: PMC9132939 DOI: 10.1038/s41467-022-30582-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Genomic analyses have revealed mutational footprints associated with DNA maintenance gone awry, or with mutagen exposures. Because cancer therapeutics often target DNA synthesis or repair, we asked if mutational signatures make useful markers of drug sensitivity. We detect mutational signatures in cancer cell line exomes (where matched healthy tissues are not available) by adjusting for the confounding germline mutation spectra across ancestries. We identify robust associations between various mutational signatures and drug activity across cancer cell lines; these are as numerous as associations with established genetic markers such as driver gene alterations. Signatures of prior exposures to DNA damaging agents - including chemotherapy - tend to associate with drug resistance, while signatures of deficiencies in DNA repair tend to predict sensitivity towards particular therapeutics. Replication analyses across independent drug and CRISPR genetic screening data sets reveal hundreds of robust associations, which are provided as a resource for drug repurposing guided by mutational signature markers.
Collapse
Affiliation(s)
- Jurica Levatić
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Marina Salvadores
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Francisco Fuster-Tormo
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain
- MDS Group, Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles s/n, 08916, Badalona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, C/ Baldiri Reixac 10, 08028, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
11
|
Wang X, Lu X, Wang P, Chen Q, Xiong L, Tang M, Hong C, Lin X, Shi K, Liang L, Lin J. SRSF9 promotes colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related manner. J Transl Med 2022; 20:198. [PMID: 35509101 PMCID: PMC9066907 DOI: 10.1186/s12967-022-03399-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Serine/arginine-rich splicing factor 9 (SRSF9) is a classical RNA-binding protein that is essential for regulating gene expression programs through its interaction with target RNA. Whether SRSF9 plays an essential role in colorectal cancer (CRC) progression and can serve as a therapeutic target is largely unknown. Here, we highlight new findings on the role of SRSF9 in CRC progression and elucidate the underlying mechanism. Methods CRC cell lines and clinical tissue samples were used. qRT-PCR, Western blotting, immunohistochemistry (IHC), gain- and loss-of-function assays, animal xenograft model studies, bioinformatic analysis, methylated single-stranded RNA affinity assays, gene-specific m6A quantitative qRT-PCR, dual-luciferase reporter assays and RNA stability assays were performed in this study. Results The expression level of SRSF9 was higher in CRC cell lines than that in an immortal human intestinal epithelial cell line. Overexpression of SRSF9 was positively associated with lymph node metastasis and Dukes stage. Functionally, SRSF9 promoted cell proliferation, migration and invasion in vitro and xenograft growth. The results of bioinformatic analysis indicated that DSN1 was the downstream target of SRSF9. In CRC cells and clinical tissue samples, the expression of SRSF9 was positively associated with the expression of DSN1. Knockdown of DSN1 partially inhibited the SRSF9-induced phenotype in CRC cells. Mechanistically, we further found that SRSF9 is an m6A-binding protein and that m6A modifications were enriched in DSN1 mRNA in CRC cells. Two m6A modification sites (chr20:36773619–36773620 and chr20:36773645–chr20:36773646) in the SRSF9-binding region (chr20:36773597–36773736) of DSN1 mRNA were identified. SRSF9 binds to DSN1 in an m6A motif- and dose-dependent manner. SRSF9 modulates the expression of DSN1 in CRC cells. Such expression regulation was largely impaired upon methyltransferase METTL3 knockdown. Moreover, knockdown of SRSF9 accelerated DSN1 mRNA turnover, while overexpression of SRSF9 stabilized DSN1 mRNA in CRC cells. Such stabilizing was also weakened upon METTL3 knockdown. Conclusion Overexpression of SRSF9 was associated with lymph node metastasis and Dukes stage in CRC. Knockdown of DSN1 eliminated the effects by SRSF9 overexpression in CRC. Our results indicated that SRSF9 functions as an m6A-binding protein (termed “reader”) by enhancing the stability of DSN1 mRNA in m6A-related manner. Our study is the first to report that SRSF9-mediated m6A recognition has a crucial role in CRC progression, and highlights SRSF9 as a potential therapeutic target for CRC management. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03399-3.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiansheng Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ping Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qiaoyu Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Le Xiong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chang Hong
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xiaowen Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Kaixi Shi
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Heinze K, Nazeran TM, Lee S, Krämer P, Cairns ES, Chiu DS, Leung SC, Kang EY, Meagher NS, Kennedy CJ, Boros J, Kommoss F, Vollert HW, Heitze F, du Bois A, Harter P, Grube M, Kraemer B, Staebler A, Kommoss FK, Heublein S, Sinn HP, Singh N, Laslavic A, Elishaev E, Olawaiye A, Moysich K, Modugno F, Sharma R, Brand AH, Harnett PR, DeFazio A, Fortner RT, Lubinski J, Lener M, Tołoczko-Grabarek A, Cybulski C, Gronwald H, Gronwald J, Coulson P, El-Bahrawy MA, Jones ME, Schoemaker MJ, Swerdlow AJ, Gorringe KL, Campbell I, Cook L, Gayther SA, Carney ME, Shvetsov YB, Hernandez BY, Wilkens LR, Goodman MT, Mateoiu C, Linder A, Sundfeldt K, Kelemen LE, Gentry-Maharaj A, Widschwendter M, Menon U, Bolton KL, Alsop J, Shah M, Jimenez-Linan M, Pharoah PD, Brenton JD, Cushing-Haugen KL, Harris HR, Doherty JA, Gilks B, Ghatage P, Huntsman DG, Nelson GS, Tinker AV, Lee CH, Goode EL, Nelson BH, Ramus SJ, Kommoss S, Talhouk A, Köbel M, Anglesio MS. Validated biomarker assays confirm that ARID1A loss is confounded with MMR deficiency, CD8 + TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas. J Pathol 2022; 256:388-401. [PMID: 34897700 PMCID: PMC9544180 DOI: 10.1002/path.5849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Karolin Heinze
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Tayyebeh M. Nazeran
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Sandra Lee
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Pauline Krämer
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Evan S. Cairns
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
| | - Derek S. Chiu
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Samuel C.Y. Leung
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Eun Young Kang
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Nicola S. Meagher
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Catherine J. Kennedy
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Jessica Boros
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Friedrich Kommoss
- Medizin Campus Bodensee, Institute of Pathology, Friedrichshafen, Germany
| | - Hans-Walter Vollert
- Medizin Campus Bodensee, Department of Gynecology and Obstetrics, Friedrichshafen, Germany
| | - Florian Heitze
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Andreas du Bois
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Marcel Grube
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Bernhard Kraemer
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Annette Staebler
- University Hospital Tübingen, Institute of Pathology and Neuropathology, Tübingen, Germany
| | - Felix K.F. Kommoss
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Sabine Heublein
- University Hospital Heidelberg and National Center for Tumor Diseases, Department of Obstetrics and Gynecology, Heidelberg, Germany
| | - Hans-Peter Sinn
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Naveena Singh
- Barts Health National Health Service Trust, Department of Pathology, London, UK
| | - Angela Laslavic
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Esther Elishaev
- University of Pittsburgh School of Medicine, Department of Pathology, PA, USA
| | - Alex Olawaiye
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Kirsten Moysich
- Roswell Park Cancer Institute, Department of Cancer Prevention and Control, Buffalo, NY, USA
| | - Francesmary Modugno
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Raghwa Sharma
- Westmead Hospital, Tissue Pathology and Diagnostic Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Western Sydney University, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Paul R. Harnett
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- Westmead Hospital, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Renée T. Fortner
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jan Lubinski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Marcin Lener
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Aleksandra Tołoczko-Grabarek
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Cezary Cybulski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Helena Gronwald
- Pomeranian Medical University, Department of Propaedeutics, Physical Diagnostics and Dental Physiotherapy, Szczecin, Poland
| | - Jacek Gronwald
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Penny Coulson
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Mona A El-Bahrawy
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, London, UK
| | - Michael E. Jones
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Minouk J. Schoemaker
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Anthony J. Swerdlow
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Institute of Cancer Research, Division of Breast Cancer Research, London, UK
| | - Kylie L. Gorringe
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Women’s Cancer Program, Melbourne, Australia
| | - Ian Campbell
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Cancer Genetics Laboratory, Research Division, Melbourne, Australia
| | - Linda Cook
- The University of New Mexico, Division of Epidemiology and Biostatistics, Albuquerque, NM, USA
| | - Simon A. Gayther
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Los Angeles, CA, USA
| | - Michael E. Carney
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Department of Obstetrics and Gynecology, HI, USA
| | - Yurii B. Shvetsov
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Lynne R. Wilkens
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | - Marc T. Goodman
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Los Angeles, CA, USA
| | - Constantina Mateoiu
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Anna Linder
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Linda E. Kelemen
- Medical University of South Carolina, Hollings Cancer Center and Department of Public Health Sciences, Charleston, SC, USA
| | - Aleksandra Gentry-Maharaj
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
- University College London, Department of Women’s Cancer, Institute for Women’s Health, London, UK
| | | | - Usha Menon
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Kelly L. Bolton
- Washington University School of Medicine, Department of Hematology and Oncology, Division of Oncology, St. Louis, MO, USA
| | - Jennifer Alsop
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Mitul Shah
- Addenbrookes Hospital, Department of Histopathology, Cambridge, UK
| | | | - Paul D.P. Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - James D. Brenton
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Kara L. Cushing-Haugen
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Holly R. Harris
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Jennifer A. Doherty
- University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, Salt Lake City, UT, USA
| | - Blake Gilks
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Prafull Ghatage
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - David G. Huntsman
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Gregg S. Nelson
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - Anna V. Tinker
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
- University of British Columbia, Department of Medicine, Vancouver, BC, Canada
| | - Cheng-Han Lee
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB, Canada
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, MN, USA
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Susan J. Ramus
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Stefan Kommoss
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Aline Talhouk
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Martin Köbel
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Michael S. Anglesio
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| |
Collapse
|
13
|
Co-existing TP53 and ARID1A mutations promote aggressive endometrial tumorigenesis. PLoS Genet 2021; 17:e1009986. [PMID: 34941867 PMCID: PMC8741038 DOI: 10.1371/journal.pgen.1009986] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
TP53 and ARID1A are frequently mutated across cancer but rarely in the same primary tumor. Endometrial cancer has the highest TP53-ARID1A mutual exclusivity rate. However, the functional relationship between TP53 and ARID1A mutations in the endometrium has not been elucidated. We used genetically engineered mice and in vivo genomic approaches to discern both unique and overlapping roles of TP53 and ARID1A in the endometrium. TP53 loss with oncogenic PIK3CAH1047R in the endometrial epithelium results in features of endometrial hyperplasia, adenocarcinoma, and intraepithelial carcinoma. Mutant endometrial epithelial cells were transcriptome profiled and compared to control cells and ARID1A/PIK3CA mutant endometrium. In the context of either TP53 or ARID1A loss, PIK3CA mutant endometrium exhibited inflammatory pathway activation, but other gene expression programs differed based on TP53 or ARID1A status, such as epithelial-to-mesenchymal transition. Gene expression patterns observed in the genetic mouse models are reflective of human tumors with each respective genetic alteration. Consistent with TP53-ARID1A mutual exclusivity, the p53 pathway is activated following ARID1A loss in the endometrial epithelium, where ARID1A normally directly represses p53 pathway genes in vivo, including the stress-inducible transcription factor, ATF3. However, co-existing TP53-ARID1A mutations led to invasive adenocarcinoma associated with mutant ARID1A-driven ATF3 induction, reduced apoptosis, TP63+ squamous differentiation and invasion. These data suggest TP53 and ARID1A mutations drive shared and distinct tumorigenic programs in the endometrium and promote invasive endometrial cancer when existing simultaneously. Hence, TP53 and ARID1A mutations may co-occur in a subset of aggressive or metastatic endometrial cancers, with ARID1A loss promoting squamous differentiation and the acquisition of invasive properties. Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States, with annual incidence continuing to rise. Although the majority of endometrial cancer patients have an excellent overall prognosis if the disease is confined to the endometrium, myometrial invasion and metastasis to other sites correlate with poor survival. Here, we used genetically engineered mice, in vivo genomics, and public cancer patient data to understand the relationship between TP53 and ARID1A, two of the most commonly mutated genes in endometrial cancer, in the context of mutant PIK3CA. Mutations in TP53 and ARID1A change different aspects of endometrial cell health but also share some similarities. ARID1A mutations specifically promote cancer cells to invade nearby tissue, a hallmark of metastasis, associated with squamous differentiation. Mice with co-existing TP53 and ARID1A mutations developed more invasive disease. Our studies suggest that co-existing TP53 and ARID1A tumor mutations may promote invasion and metastasis.
Collapse
|
14
|
Qadir J, Majid S, Khan MS, Rashid F, Wani MD, Bhat SA. Implication of ARID1A Undercurrents and PDL1, TP53 Overexpression in Advanced Gastric Cancer. Pathol Oncol Res 2021; 27:1609826. [PMID: 34924820 PMCID: PMC8677663 DOI: 10.3389/pore.2021.1609826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022]
Abstract
AT-rich interactive domain-containing protein 1A (ARID1A), TP53 and programmed cell death-ligand 1 (PDL1) are involved in several protein interactions that regulate the expression of various cancer-related genes involved in the progression of the cell cycle, cell proliferation, DNA repair, and apoptosis. In addition, gene expression analysis identified some common downstream targets of ARID1A and TP53. It has been established that tumors formed by ARID1A-deficient cancer cells exhibited elevated PDL1 expression. However, the aberrations in these molecules have not been studied in this population especially in Gastric Cancer (GC). In this backdrop we aimed to investigate the role of the ARID1A mutation and expression of ARID1A, TP53 and PDL1 genes in the etiopathogenesis of Gastric Cancer (GC) in the ethnic Kashmiri population (North India). The study included 103 histologically confirmed GC cases. The mutations, if any, in exon-9 of ARID1A gene was analysed by Polymerase Chain Reaction (PCR) followed by Sanger sequencing. The mRNA expression of the ARID1A, TP53 and PDL1 genes was analysed by Quantitative real time-PCR (qRT-PCR). We identified a nonsense mutation (c.3219; C > T) in exon-9 among two GC patients (∼2.0%), which introduces a premature stop codon at protein position 1073. The mRNA expression of the ARID1A, TP53 and PDL1 gene was significantly reduced in 25.3% and elevated in 47.6 and 39.8% of GC cases respectively with a mean fold change of 0.63, 2.93 and 2.43. The data revealed that reduced mRNA expression of ARID1A and elevated mRNA expression of TP53 and PDL1 was significantly associated with the high-grade and advanced stage of cancer. Our study proposes that ARAD1A under-expression and overexpression of TP53 and PDL1 might be crucial for tumor progression with TP53 and PDL1 acting synergistically.
Collapse
Affiliation(s)
- Jasiya Qadir
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Mosin Saleem Khan
- Department of Biochemistry, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, India
| | - Mumtaz Din Wani
- Department of Surgery, Government Medical College Srinagar and Associated Hospitals, Srinagar, India
| | | |
Collapse
|
15
|
Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J Nutr Biochem 2021; 101:108924. [PMID: 34843932 DOI: 10.1016/j.jnutbio.2021.108924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Amino acids can activate mTOR to promote milk synthesis in mammary epithelial cells (MECs), but the underlying molecular mechanism is still largely unknown. The objective is to investigate the regulatory mechanism of amino acids (Met and Leu) in stimulating mRNA expression of mTOR in MECs. We found that the protein abundance of AT-rich interaction domain 1A (ARID1A) was poorly expressed in mouse mammary gland tissues of lactating period. ARID1A knockdown and gene activation experiments detected whether ARID1A negatively regulated milk protein and fat synthesis in bovine MECs, cell proliferation and the expression and activation of mTOR. ChIP-PCR detected that ARID1A, H3K27ac, H3K27me3 and H3K4me3 all bound to the mTOR promoter at -548∼-793 nt. Knockdown or gene activation of ARID1A enhanced or weakened the binding of H3K27ac on the mTOR promoter, respectively. The stimulation of Met and Leu on mTOR expression and phosphorylation were eliminated by ARID1A gene activation. Furthermore, Met and Leu decreased the protein level of ARID1A through ubiquitination and proteasomal degradation. TRIM21 bound to ARID1A, and TRIM21 knockdown blocked the stimulation of Met and Leu on ARID1A degradation. In summary, these data reveal that ARID1A blocks Met and Leu signaling to mTOR gene transcription through inhibiting H3K27ac deposition on its promoter, and Met and Leu decrease ARID1A protein level through TRIM21-mediated ubiquitination and proteasomal degradation. Our findings uncover that Met and Leu promote mTOR expression for milk synthesis through the TRIM21-ARID1A signaling pathway, providing a novel theoretical basis for the application of amino acids in milk production.
Collapse
|
16
|
Sun D, Teng F, Xing P, Li J. ARID1A serves as a receivable biomarker for the resistance to EGFR-TKIs in non-small cell lung cancer. Mol Med 2021; 27:138. [PMID: 34715776 PMCID: PMC8555283 DOI: 10.1186/s10020-021-00400-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
ARID1A is a key component of the SWI/SNF chromatin remodeling complexes which is important for the maintaining of biological processes of cells. Recent studies had uncovered the potential role of ARID1A alterations or expression loss in the therapeutic sensitivity of cancers, but the studies in this field requires to be further summarized and discussed. Therefore, we proposed a series of mechanisms related to the resistance to EGFR-TKIs induced by ARID1A alterations or expression loss and the potential therapeutic strategies to overcome the resistance based on published studies. It suggested that ARID1A alterations or expression loss might be the regulators in PI3K/Akt, JAK/STAT and NF-κB signaling pathways which are strongly associated with the resistance to EGFR-TKIs in NSCLC patients harboring sensitive EGFR mutations. Besides, ARID1A alterations or expression loss could lead to the resistance to EGFR-TKIs via a variety of processes during the tumorigenesis and development of cancers, including epithelial to mesenchymal transition, angiogenesis and the inhibition of apoptosis. Based on the potential mechanisms related to ARID1A, we summarized that the small molecular inhibitors targeting ARID1A or PI3K/Akt pathway, the anti-angiogenic therapy and immune checkpoint inhibitors could be used for the supplementary treatment for EGFR-TKIs among NSCLC patients harboring the concomitant alterations of sensitive EGFR mutations and ARID1A.
Collapse
Affiliation(s)
- Dantong Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Teng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Puyuan Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Mullen J, Kato S, Sicklick JK, Kurzrock R. Targeting ARID1A mutations in cancer. Cancer Treat Rev 2021; 100:102287. [PMID: 34619527 DOI: 10.1016/j.ctrv.2021.102287] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Genes encoding SWI/SNF chromatin remodeling complex subunits are collectively mutated in approximately 20% of human cancers. ARID1A is a SWI/SNF subunit gene whose protein product binds DNA. ARID1A gene alterations result in loss of function. It is the most commonly mutated member of the SWI/SNF complex, being aberrant in ∼6% of cancers overall, including ovarian clear cell cancers (∼45% of patients) and uterine endometrioid cancers (∼37%). ARID1A has a crucial role in regulating gene expression that drives oncogenesis or tumor suppression. In particular, ARID1A participates in control of the PI3K/AKT/mTOR pathway, immune responsiveness to cancer, EZH2 methyltransferase activity, steroid receptor modulation, DNA damage checkpoints, and regulation of p53 targets and KRAS signaling. A variety of compounds may be of benefit in ARID1A-altered cancers: immune checkpoint blockade, and inhibitors of mTOR, EZH2, histone deacetylases, ATR and/or PARP. ARID1A alterations may also mediate resistance to platinum chemotherapy and estrogen receptor degraders/modulators.
Collapse
Affiliation(s)
- Jaren Mullen
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Jason K Sicklick
- Center for Personalized Cancer Therapy, UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Surgery, Division of Surgical Oncology, UC San Diego School of Medicine, San Diego, CA, USA
| | | |
Collapse
|
18
|
Sun D, Zhu Y, Zhao H, Bian T, Li T, Liu K, Feng L, Li H, Hou H. Loss of ARID1A expression promotes lung adenocarcinoma metastasis and predicts a poor prognosis. Cell Oncol (Dordr) 2021; 44:1019-1034. [PMID: 34109546 DOI: 10.1007/s13402-021-00616-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND ARID1A is an essential subunit of SWI/SNF chromatin remodeling complexes. ARID1A gene mutations and loss of ARID1A expression have been observed in a variety of cancers, and to be correlated with invasion, immune escape and synthetic lethality. As yet, however, the biological effect of ARID1A expression and its role in the prognosis of lung adenocarcinoma (LUAD) patients have remained unclear. In this study we aimed to further elucidate the role of ARID1A expression in LUAD in vitro and in vivo and to assess its effect on the clinical prognosis of LUAD patients. METHODS ARID1A expression was detected by IHC in tissue samples from LUAD patients. After regular culturing of LUAD cell lines and constructing stable ARID1A knockdown lines, wound healing and Transwell assays were used to assess the role of ARID1A in cell migration and invasion. The effect of ARID1A knockdown on metastasis was verified in vivo. Western blotting was used to examine the expression of target proteins. Univariate and multivariate analyses were performed to assess survival and to provide variables for nomogram construction. In addition, we used the "rms" package to construct a prognostic nomogram based on a Cox regression model. RESULTS We found that ARID1A expression serves as an effective prognostic marker for LUAD patients. Loss of ARID1A expression correlated with a poor prognosis, as verified with a nomogram based on a Cox regression model. In addition, we found that ARID1A knockdown promoted LUAD cell proliferation, migration and invasion in vitro and enhanced LUAD metastasis in vivo by activating the Akt signaling pathway. CONCLUSIONS Our data indicate that loss of ARID1A expression promotes LUAD metastasis and predicts a poor prognosis in LUAD patients.
Collapse
Affiliation(s)
- Dantong Sun
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, 59 Haier Road, Shandong, 266000, Qingdao, China
| | - Yan Zhu
- Department of Medical Oncology, The Municipal Hospital of Qingdao, 266000, Qingdao, China
| | - Han Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Tiantian Bian
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao University, 266100, Qingdao, China
| | - Tianjun Li
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, 59 Haier Road, Shandong, 266000, Qingdao, China
| | - Kewei Liu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, 59 Haier Road, Shandong, 266000, Qingdao, China
| | - Lizong Feng
- Department of General Surgery, Qingdao Eighth People's Hospital, 266041, Qingdao, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, 59 Haier Road, Shandong, 266000, Qingdao, China.
| |
Collapse
|
19
|
Mai H, Liao Y, Luo S, Wei K, Yang F, Shi H. Histone deacetylase HDAC2 silencing prevents endometriosis by activating the HNF4A/ARID1A axis. J Cell Mol Med 2021; 25:9972-9982. [PMID: 34586697 PMCID: PMC8572779 DOI: 10.1111/jcmm.16835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is the most major cause of chronic pelvic pain in women of reproductive age. Moreover, the involvement of histone deacetylase 2 (HDAC2) has been identified in endometriosis. However, the specific mechanism of HDAC2 remains to be further elusive. Therefore, this study was designed to explore the mechanism of HDAC2 orchestrating hepatocyte nuclear factor 4α/AT‐rich interactive domain 1A (HNF4A/ARID1A) axis in endometriosis. Endometriosis cell line hEM15A and clinical endometriosis tissues were obtained, followed by gain‐ and loss‐of‐function assays in hEM15A cells. HDAC2, HNF4A and ARID1A expression was detected by immunohistochemistry and Western blot analysis. Cell viability was determined by Cell Counting Kit‐8 Assay, invasion by Transwell assay and apoptosis by flow cytometry. HDAC2 enrichment in HNF4A promoter region and HNF4A enrichment in ARID1A promoter region was detected through chromatin immunoprecipitation. Mouse models of endometriosis were established, followed by immunohistochemistry of Ki‐67 expression and TUNEL staining of apoptosis in ectopic tissues. HDAC2 was upregulated but HNF4A and ARID1A were downregulated in endometriosis tissues. HDAC2 inhibited HNF4A expression by deacetylation, and HNF4A was enriched in ARID1A promoter region to activate ARID1A. Silencing HDAC2 or overexpressing HNF4A or ARID1A diminished the viability and invasion and augmented the apoptosis of hEM15A cells. HDAC2 silencing reduced the area and weight of endometriosis tissues, suppressed endometriosis cell proliferation and accelerated endometriosis cell apoptosis. The inhibitory action of silencing HDAC2 via HNF4A/ARID1A axis was reproduced in mouse models. Collectively, HDAC2 silencing might upregulate HNF4A via repression of deacetylation to activate ARID1A, thus preventing the occurrence of endometriosis.
Collapse
Affiliation(s)
- Hong Mai
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Liao
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sufang Luo
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaiyi Wei
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Yang
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haijuan Shi
- Department of Gynecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Erfani M, Zamani M, Hosseini SY, Mostafavi-Pour Z, Shafiee SM, Saeidnia M, Mokarram P. ARID1A regulates E-cadherin expression in colorectal cancer cells: a promising candidate therapeutic target. Mol Biol Rep 2021; 48:6749-6756. [PMID: 34424445 DOI: 10.1007/s11033-021-06671-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/18/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Metastasis is a major cause of death in Colorectal cancer (CRC) patients, and the Epithelial-mesenchymal transition (EMT) has been known to be a crucial event in cancer metastasis. Downregulated expression of AT-rich interaction domain-containing protein 1A (ARID1A), a bona fide tumor suppressor gene, plays an important role in promoting EMT and CRC metastasis, but the underlying molecular mechanisms remain poorly understood. Here, we evaluated the impact of ARID1A knockdown and overexpression on the expression of EMT‑related genes, E-cadherin and β-catenin, in human CRC cells. METHODS AND RESULTS The expression levels of ARID1A, E-cadherin and β-catenin in CRC cell lines were detected via real-time quantitative PCR (qPCR) and western blot. ARID1A overexpression and shRNA-mediated knockdown were performed to indicate the effect of ARID1A expression on E-cadherin and β-catenin expression in CRC cell lines. The effect of ARID1A knockdown on the migration ability of HCT116 cells was assessed using wound-healing assay. We found that the mRNA and protein expression of adhesive protein E-cadherin was remarkably downregulated in response to shRNA-mediated ARID1A knockdown in HCT116 and HT29 cells. Conversely, overexpression of ARID1A in SW48 cells significantly increased E-cadherin expression. In addition, ARID1A silencing promoted the migration of HCT116 cells. ARID1A knockdown and overexpression did not alter the level of β-catenin expression. CONCLUSIONS Our study demonstrates that E-cadherin levels were closely correlated with ARID1A expression. Thus, ARID1A downregulation may promote CRC metastasis through decreasing EMT‑related protein E-cadherin and promoting epithelial cell movement. ARID1A could represent a promising candidate therapeutic target for CRC.
Collapse
Affiliation(s)
- Mehran Erfani
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, P.O. Box: 1167, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, P.O. Box: 1167, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, P.O. Box: 1167, Shiraz, Iran
| | - Mohammadreza Saeidnia
- Department of Hematology, School of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, P.O. Box: 1167, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Lee SA, Lee KH, Kim H, Cho JY. METTL8 mRNA Methyltransferase Enhances Cancer Cell Migration via Direct Binding to ARID1A. Int J Mol Sci 2021; 22:ijms22115432. [PMID: 34063990 PMCID: PMC8196784 DOI: 10.3390/ijms22115432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
The association of RNA modification in cancer has recently been highlighted. Methyltransferase like 8 (METTL8) is an enzyme and its role in mRNA m3C modification has barely been studied. In this study, we found that METTL8 expression was significantly up-regulated in canine mammary tumor and investigated its functional roles in the tumor process, including cancer cell proliferation and migration. METTL8 expression was up-regulated in most human breast cancer cell lines tested and decreased by Yin Yang 1 (YY1) transcription factor knockdown, suggesting that YY1 is a regulating transcription factor. The knockdown of METTL8 attenuated tumor cell growth and strongly blocked tumor cell migration. AT-rich interactive domain-containing protein 1A (ARID1A) was identified as a candidate mRNA by METTL8. ARID1A mRNA binds to METTL8 protein. ARID1A mRNA expression was not changed by METTL8 knockdown, but ARID1A protein level was significantly increased. Collectively, our study indicates that METTL8 up-regulated by YY1 in breast cancer plays an important role in cancer cell migration through the mRNA modification of ARID1A, resulting in the attenuation of its translation.
Collapse
Affiliation(s)
| | | | | | - Je-Yoel Cho
- Correspondence: ; Tel.: +82-02-880-1268; Fax: +82-02-886-1268
| |
Collapse
|
22
|
Odnokoz O, Wavelet-Vermuse C, Hophan SL, Bulun S, Wan Y. ARID1 proteins: from transcriptional and post-translational regulation to carcinogenesis and potential therapeutics. Epigenomics 2021; 13:809-823. [PMID: 33890484 PMCID: PMC8738980 DOI: 10.2217/epi-2020-0414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ARID1 proteins are mutually exclusive subunits of the BRG1/BRM-associated factor (BAF) complexes that play an important role in chromatin remodeling and regulate many fundamental cell functions. The role of ARID1s is well defined as a tumor-suppressive. The cancer cells evolve different mechanisms to downregulate ARID1s and inactivate their functions. ARID1s are frequently mutated in human cancer. The recent findings of ARID1A/B downregulation at transcriptional and translational levels along with their low levels in human cancers indicate the significance of regulatory mechanisms of ARID1s in cancers. In this review, we present the current knowledge on the regulation and alterations of ARID1 protein expression in human cancers and indicate the importance of regulators of ARID1s as a prognostic marker and in potential therapeutic strategies.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cindy Wavelet-Vermuse
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shelby L Hophan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Serdar Bulun
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Department of Pharmacology & Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,Author for correspondence: Tel.: +1 312 503 2769;
| |
Collapse
|
23
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. ARID1A knockdown in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity. Int J Biol Macromol 2021; 180:1-13. [PMID: 33675830 DOI: 10.1016/j.ijbiomac.2021.02.218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
AT-rich interactive domain 1A (ARID1A) is a novel tumor suppressor gene found in several human cells and its loss/defect is commonly observed in many cancers. However, its roles in angiogenesis, which is one of the hallmarks for tumor progression, remained unclear. Herein, we demonstrated the direct effects of ARID1A knockdown in human endothelial cells by lentivirus-based short-hairpin RNA (shRNA) (shARID1A) on angiogenesis. Functional assays revealed that shARID1A significantly enhanced cell proliferation and migration/invasion and endothelial tube formation compared with the control cells transfected with scramble shRNA (shControl). Additionally, the shARID1A-transfected cells had significantly increased podosome formation and secretion of angiopoietin-2 (ANG2), a key angiogenic factor. Moreover, neutralization of ANG2 with monoclonal anti-ANG2 antibody strongly reduced cell proliferation and migration/invasion and endothelial tube formation in the shARID1A-transfected cells. These findings indicate that down-regulation of ARID1A in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
24
|
Wang L, Qu J, Zhou N, Hou H, Jiang M, Zhang X. Effect and biomarker of immune checkpoint blockade therapy for ARID1A deficiency cancers. Biomed Pharmacother 2020; 130:110626. [PMID: 32791396 DOI: 10.1016/j.biopha.2020.110626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
The AT-rich interaction domain 1A (ARID1A) are frequently mutates across a broad spectrum of cancers. The majority of ARID1A mutations are inactivating mutations and lead to loss expression of the ARID1A protein. To date, clinical applicable targeted cancer therapy based on ARID1A mutational status has not been described. With increasing number of studies reported that the ARID1A deficiency may be a novel predictive biomarker for immune checkpoint blockade (ICB) treatment. ARID1A deficiency would compromise mismatch repair pathway and increase the number of tumor-infiltrating lymphocytes, tumor mutation burden and expression of programmed cell death ligand 1 (PD-L1) in some cancers, which would suggested cooperate with ICB treatment. In this review, we summarize the relationship between ARID1A deficiency and ICB treatment including potential mechanisms, potential therapeutic combination, and the biomarker value of ARID1A deficiency.
Collapse
Affiliation(s)
- Li Wang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Jialin Qu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
25
|
Zhou C, Shen G, Yang F, Duan J, Wu Z, Yang M, Liu Y, Du X, Zhang X, Xiao S. Loss of AKR1C1 is a good prognostic factor in advanced NPC cases and increases chemosensitivity to cisplatin in NPC cells. J Cell Mol Med 2020; 24:6438-6447. [PMID: 32307891 PMCID: PMC7294127 DOI: 10.1111/jcmm.15291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin resistance is one of the main obstacles in the treatment of advanced nasopharyngeal carcinoma (NPC). AKR1C1 is a member of the Aldo-keto reductase superfamily (AKRs), which converts aldehydes and ketones to their corresponding alcohols and has been reported to be involved in chemotherapeutic resistance of multiple drugs. The expression and function of AKR1C1 in NPC have not been reported until now. The aim of this research was to investigate the expression of AKR1C1 and it is role in cisplatin resistance in NPC. AKR1C1 protein expression was detected by immunohistochemistry in human NPC tissues and by Western blot assays in NPC and immortalized nasopharyngeal epithelial cells. The effects of AKR1C1 knock-down by siRNA on proliferation, migration and invasion in NPC cells were evaluated by CCK8, wound healing and transwell assays. To evaluate the effects of AKR1C1 silencing on cisplatin sensitivity in NPC cells, CCK8 assays were used to detect cell proliferation, flow cytometry was used to detect cell cycle distribution, and flow cytometry and DAPI staining were used to detect cell apoptosis. AKR1C1 down-regulation was associated with advanced clinicopathological characters such as larger tumor size, more lymphatic nodes involvement, with metastasis and later clinical stages, while AKR1C1 down-regulation was a good prognostic factor for overall survival (OS) in NPC patients. In vitro study showed that AKR1C1 was not directly involved in the malignant biological behaviours such as proliferation, cell cycle progression and migration of NPC cells, whereas AKR1C1 knock-down could enhance cisplatin sensitivity of NPC cells. These results suggest that AKR1C1 is a potential marker for predicting cisplatin response and could serve as a molecular target to increase cisplatin sensitivity in NPC.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Guowen Shen
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Fan Yang
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Jingling Duan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Wu
- Xiangya Medical College of South Central University, Changsha, China
| | - Mingqing Yang
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Yi Liu
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xueli Du
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Xiaoling Zhang
- Department of Physiology, Faculty of Basic Medical Science, Guilin Medical University, Guilin, China
| | - Shengjun Xiao
- Department of Pathology, The Second Affiliated Hospital, Guilin Medical University, Guilin, China
| |
Collapse
|
26
|
Hu B, Lin JZ, Yang XB, Sang XT. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Prolif 2020; 53:e12791. [PMID: 32162380 PMCID: PMC7162795 DOI: 10.1111/cpr.12791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|