1
|
He Y, Ge J, Zhao S, Zhou F, Zou W, Gao Y, Liu S, Zhang W. METTL3-mediated NFAT5 Upregulation Promotes Cervical Cancer Progression Through Enhancing the Mitochondrial Function by Transcriptional Regulation of PRDX1. J Biochem Mol Toxicol 2025; 39:e70162. [PMID: 39925026 DOI: 10.1002/jbt.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Nuclear factor of activated T-cells 5 (NFAT5) is recognized as an oncogene in a variety of tumors. However, the role of NFAT5 in cervical cancer (CC) cell phenotypic alterations remains to be elucidated. Here, we demonstrated that NFAT5 expression was elevated in CC samples and cells using quantitative real-time reverse transcription PCR, Western blot analysis, and immunohistochemistry assays, and high NFAT5 expression showed a poor prognosis. After C-33A cells were transfected with pcDNA-NFAT5 or NFAT5-short hairpin RNA (shRNA), cell proliferation, invasion, and apoptosis were evaluated using CCK-8 and EdU assays, transwell assays, and flow cytometry, respectively. Biomarkers indicating mitochondrial function, including the expression of the d-loop, ATP levels, and mitochondrial membrane potential, were detected. NFAT5 knockdown restrained cell proliferation and invasion, impaired mitochondrial function, and increased the ratio of cell apoptosis; however, NFAT5 overexpression showed the opposite results. RNA immunoprecipitation (RIP) and methylated RIP (MeRIP) assays were performed to identify interactions among NFAT5, methyltransferase-like 3 (METTL3), and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). Chromatin immunoprecipitation and dual-luciferase reporter gene assays demonstrated that NFAT5 binds to the peroxiredoxin 1 (PRDX1) promoter to drive PRDX1 transcription. METTL3 enhanced NFAT5 mRNA stability through IGF2BP3-mediated N6-Methyladenosine (m6A) modification, and NFAT5 transcriptionally regulated PRDX1 expression. Moreover, the reintroduction of METTL3 or PRDX1 promoted cell growth and mitochondrial function damage in NFAT5-silenced cells. In vivo experiments further demonstrated that NFAT5 promotes CC tumor growth. Taken together, NFAT5 upregulation mediated by the METTL3/IGF2BP3 complex in an m6A-dependent manner facilitates CC cell growth by transcriptionally regulating PRDX1 expression, providing a novel target for CC therapy.
Collapse
Affiliation(s)
- Yanli He
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Junli Ge
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Fuxing Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Wei Zou
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Yan Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Shujuan Liu
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University (The First Affiliated Hospital of the Air Force Medical University), Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Li L, Li J, Lu Y, Li W, Yang J, Wang M, Miao C, Tian Z, Zhang M, Tang X. Conditional knockout mouse model reveals a critical role of peroxiredoxin 1 in oral leukoplakia carcinogenesis. Heliyon 2024; 10:e31227. [PMID: 38818156 PMCID: PMC11137383 DOI: 10.1016/j.heliyon.2024.e31227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Peroxiredoxin 1 (Prx1) is an antioxidant protein that may promote the carcinogenesis in oral leukoplakia (OLK). To investigate the effect of Prx1 on the oral mucosal epithelium of OLK, we generated a Prx1 conditional knockout (cKO) mouse model. The mRNA and gRNA were generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technique. An infusion cloning method was used to construct a homologous recombination vector. To obtain the F0 generation mice, fertilized eggs of C57BL/6J mice were microinjected with Cas9 mRNA, gRNA, and a donor vector. Polymerase chain reaction (PCR) amplification and sequencing were used to identify F1 generation mice. Using the cyclization recombination-enzyme-locus of the X-overP1 (Cre-loxP) system, we created a Prx1 cKO mouse model, and the effectiveness of the knockout was confirmed through immunohistochemistry. We examined the influence of Prx1 knockout on the occurrence of OLK in mice by constructing a model of tongue mucosa carcinogenesis induced by 4-nitroquinoline-1-oxide (4NQO). Prx1 modification was present in the F1 generation, as evidenced by PCR amplification and sequencing. Prx1flox/flox: Cre + mice exhibited normal growth and fertility. Immunohistochemical analysis revealed that tongue epithelial cells in Prx1flox/flox: Cre + mice displayed a distinct deletion of Prx1. An examination of the heart, liver, spleen, lung, and kidney tissues revealed no visible histological changes. Histological analysis showed a reduction in the occurrence of the malignant transformation of OLK in the tongue tissues of Prx1flox/flox: Cre + mice. Ki67 immunostaining showed that Prx1 knockout significantly inhibited cell proliferation in the tongue epithelial. Our research developed a conditional knockout mouse model for Prx1. The obtained results provide insights into the function of Prx1 in the development of oral cancer and emphasize its potential as a therapeutic target for precancerous oral lesions.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Oral Pathology, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Wenjing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Yang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Min Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Congcong Miao
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenchuan Tian
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Gu S, Yasen Y, Wang M, Huang B, Zhou Y, Wang W. NEK2 promotes the migration, invasion, proliferation of ESCC and mediates ESCC immunotherapy. Heliyon 2024; 10:e29682. [PMID: 38707418 PMCID: PMC11066149 DOI: 10.1016/j.heliyon.2024.e29682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose Esophageal squamous cell carcinoma (ESCC) is a disease with a high incidence rate and high mortality worldwide. The Never in Mitosis A (NIMA) family member NIMA-related kinase 2 (NEK2) plays an important role in mitosis. However, the role of NEK2 in the pathogenesis of ESCC remains unclear. Patients and methods The expression and function of NEK2 in TCGA and GEO data sets were analyzed by bioinformatics. We verified the expression of NEK2 in ESCC tissues and cell lines by Western blotting and immunohistochemical methods and further explored the relationship between tumor stage and NEK2 expression. The differences in NEK2 expression and survival in patients with EC were verified by bioinformatics analysis. ESCC cell lines with stable knockdown of NEK2 were established by lentivirus-mediated shRNA delivery. The effects of NEK2 on ESCC cells were analyzed on the cytological level with assays including CCK-8, EdU, cell scratch, Transwell migration and invasion, colony formation, flow cytometry and apoptosis assays. Tumor growth was measured in a mouse xenograft model. Results We found that NEK2 is highly expressed in ESCC tissues and ESCC cells and that the high expression of NEK2 is associated with poor tumor healing. Knockdown of the NEK2 gene inhibits the migration, proliferation, invasion and cell cycle of ESCC cells. Biologic analysis shows that NEK2 is involved in biological processes such as progression and apoptosis of esophageal cancer, and is related to E2F.Mechanistically, NEK2 knockdown decreases the expression levels of E2F1 and IGF2. NEK2 competes with the transcription factor E2F1 to bind CDC20, resulting in decreased degradation and increased expression of E2F1. IGF2 expression is also increased, which promotes the expression of thymidylate synthase, further promoting the drug resistance of ESCC cells. NEK2 is associated with immune infiltration in esophageal cancer. Conclusion NEK2 is highly expressed in ESCC and can promote the migration, proliferation and invasion of ESCC cells. NEK2 mediates ESCC immunotherapy.
Collapse
Affiliation(s)
- Shaorui Gu
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - YakuFujiang Yasen
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - Mengying Wang
- Department of Anesthesiology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Baiqing Huang
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - Yongxin Zhou
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| | - Wenli Wang
- Department of Cardiothoracic Surgery, Shanghai Tongji Hospital Affiliated With Tongji University, Shanghai, 200065, PR China
| |
Collapse
|
4
|
Song C, Song Y, Wan X, Zhao Z, Geng Q. Carcinogenic Role and Clinical Significance of Histone H3-H4 Chaperone Anti-silencing Function 1 B (ASF1B) in Lung Adenocarcinoma. J Cancer 2024; 15:218-231. [PMID: 38164276 PMCID: PMC10751675 DOI: 10.7150/jca.88777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 01/03/2024] Open
Abstract
Histone H3-H4 chaperone anti-silencing function 1 (ASF1) plays an important role in the polymerization, transport, and modification of histones. However, the significance of ASF1B in lung adenocarcinoma (LUAD) is largely overlooked. We investigated the aberrant expression of ASF1B in LUAD and its potential link to patient survival using multiple databases. ASF1B-overexpressing and knockdown cell lines were constructed to explore its effects on the biological behavior of lung cancer cells. ssGSEA, TMB, TIDE and IMvigor210 cohort were used to explore and validate the association of ASF1B to tumor immunity. Our data suggested that ASF1B was overexpressed in LUAD, and was associated with poor prognosis. ASF1B promoted the proliferation, migration, and invasion of lung cancer cells by regulating the phosphorylation of AKT in vitro. ASF1B was associated with tumor immunity. In summary, ASF1B may promote malignant behavior of LUAD cells, and its overexpression correlates with worse prognosis and better immunotherapy effect.
Collapse
Affiliation(s)
- Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaolin Song
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, China
| | - Xiaoxia Wan
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, China
| | - Zhihong Zhao
- Department of Thoracic Surgery, Ezhou Central Hospital, Ezhou, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Ye M, Liu T, Liu S, Tang R, Liu H, Zhang F, Luo S, Li M. Peroxiredoxin 1 regulates crosstalk between pyroptosis and autophagy in oral squamous cell carcinoma leading to a potential pro-survival. Cell Death Discov 2023; 9:425. [PMID: 38007535 PMCID: PMC10676359 DOI: 10.1038/s41420-023-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023] Open
Abstract
Peroxiredoxin 1 (Prdx1), a vital antioxidant enzyme, has been proven to play an important role in the occurrence and development of cancers, but its effects on oral squamous cell carcinoma (OSCC) remain unclear. Here, we performed bioinformatics analysis and immunohistochemical (IHC) staining to confirm that Prdx1 was higher in OSCC tissues than in normal tissues. Consistently, RT-PCR and Western blot showed elevated Prdx1 expression in OSCC cell lines compared to human oral keratinocytes (HOK), which could be knockdown by small interfering RNA (siRNA) and Lentiviral vector delivery of short hairpin RNA (shRNA). Prdx1 silencing significantly blocked OSCC cell proliferation and metastasis, as evidenced by the CCK8, colony formation, in vivo tumorigenesis experiment, wound healing, transwell assays, and changes in migration-related factors. siPrdx1 transfection increased intracellular reactive oxygen species (ROS) levels and provoked pyroptosis, proved by the upregulation of pyroptotic factors and LDH release. Prdx1 silencing ROS-independently blocked autophagy. Mature autophagosome failed to form in the siPrdx1 group. Up-regulated autophagy limited pyroptosis triggered by Prdx1 deficiency, and down-regulated pyroptosis partly reversed siPrdx1-induced autophagy defect. Collectively, Prdx1 regulated pyroptosis in a ROS-dependent way and modulated autophagy in a ROS-independent way, involving the crosstalk between pyroptosis and autophagy.
Collapse
Affiliation(s)
- Meilin Ye
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Ting Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Fan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China.
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| |
Collapse
|
6
|
Zhang Z, Zhou P, Liu M, Pei B. Expression And Prognostic Role of PRDX1 In Gastrointestinal Cancers. J Cancer 2023; 14:2895-2907. [PMID: 37781072 PMCID: PMC10539570 DOI: 10.7150/jca.86568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/23/2023] [Indexed: 10/03/2023] Open
Abstract
Esophageal, gastric, liver, and colorectal cancers represent four prevalent gastrointestinal cancers that pose substantial threats to global health due to their high morbidity and mortality rates. Peroxiredoxin 1 (PRDX1), a significant component of the PRDXs family, primarily functions to counteract the peroxides produced by metabolic activities in the body, thereby maintaining the dynamic equilibrium of peroxides in vivo. Intriguingly, PRDX1 expression correlates strongly with cancer's onset, progression, and prognosis. This study mainly applied bioinformatics methods to analyze PRDX1's expression, diagnosis, and prognosis in gastrointestinal cancers and to summarize current research advancements. Evidence from the bioinformatics database suggested that the high expression of PRDX1 was a prominent characteristic of these four gastrointestinal cancers, with this observation reaching statistical significance. The high expression of PRDX1 in gastrointestinal cancer cells also confirms this result. Notably, the primary alteration in PRDX1 within these cancers is the presence of genetic mutations. PRDX1 demonstrated the highest diagnostic efficacy for colorectal cancer. Nevertheless, elevated PRDX1 levels only significantly diminished the survival time of liver cancer patients, exerting no statistically significant impact on the survival duration of patients afflicted by the other three types of gastrointestinal cancers. Recent research has indicated variability in PRDX1 expression across different cancer types, with high expression being predominantly observed in these four gastrointestinal cancers and, in most instances, unfavorable prognosis. These findings broadly align with the results derived from bioinformatics. This research underscores the high expression of PRDX1 in gastrointestinal cancers, its relevance to the diagnosis and prognosis monitoring of these cancers, and its potential to guide clinical treatment for these cancers.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Clinical Laboratory, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province, 214000, China
| | - Pengli Zhou
- College of Basic Medicine, China Medical University, Shenyang, Liaoning province 110000, China
| | - Mingyue Liu
- Department of Ultrasound, Wuxi No.2 People's Hospital; Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu province 214002, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, 223800, China
| |
Collapse
|
7
|
Liu Y, Wang P, Hu W, Chen D. New insights into the roles of peroxiredoxins in cancer. Biomed Pharmacother 2023; 164:114896. [PMID: 37210897 DOI: 10.1016/j.biopha.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023] Open
Abstract
Oxidative stress is one of the hallmarks of cancer. Tumorigenesis and progression are accompanied by elevated reactive oxygen species (ROS) levels and adaptive elevation of antioxidant expression levels. Peroxiredoxins (PRDXs) are among the most important antioxidants and are widely distributed in a variety of cancers. PRDXs are involved in the regulation of a variety of tumor cell phenotypes, such as invasion, migration, epithelial-mesenchymal transition (EMT) and stemness. PRDXs are also associated with tumor cell resistance to cell death, such as apoptosis and ferroptosis. In addition, PRDXs are involved in the transduction of hypoxic signals in the TME and in the regulation of the function of other cellular components of the TME, such as cancer-associated fibroblasts (CAFs), natural killer (NK) cells and macrophages. This implies that PRDXs are promising targets for cancer treatment. Of course, further studies are needed to realize the clinical application of targeting PRDXs. In this review, we highlight the role of PRDXs in cancer, summarizing the basic features of PRDXs, their association with tumorigenesis, their expression and function in cancer, and their relationship with cancer therapeutic resistance.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Pu Wang
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
8
|
Song C, Xiong G, Yang S, Wei X, Ye X, Huang W, Zhang R. PRDX1 stimulates non-small-cell lung carcinoma to proliferate via the Wnt/β-Catenin signaling. Panminerva Med 2023; 65:37-42. [PMID: 32881473 DOI: 10.23736/s0031-0808.20.03978-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Previous studies have shown that PRDX1 is upregulated in some types of malignant tumors. The role of PRDX1 in non-small-cancer lung carcinoma (NSCLC) remains unclear. This study aims to identify the role of PRDX1 in influencing in-vitro biological functions of NSCLC and the molecular mechanism. METHODS We collected 50 cases of fresh NSCLC and adjacent non-tumoral tissues for detecting differential expressions of PRDX1 by quantitative real-time polymerase chain reaction (qRT-PCR). Survival time of NSCLC patients, defined as the period from the operation to the latest follow-up or death due to recurrence or metastasis, was recorded for assessing the relationship between PRDX1 and prognosis in NSCLC. Using lentivirus transfection, PRDX1 level was downregulated in NSCLC cells. Subsequently, proliferative and apoptotic abilities, and expression levels of vital genes in the Wnt/β-Catenin signaling were examined. Finally, the significance of activated Wnt/β-Catenin signaling during PRDX1-regulated NSCLC proliferation was explored. RESULTS Using GEPIA database and NSCLC tissues we collected, PRDX1 was detected to be upregulated in NSCLC samples than controls. PRDX1 level was related to tumor staging and prognosis in NSCLC. Knockdown of PRDX1 attenuated proliferative ability and stimulated apoptosis in NSCLC. Protein levels of Wnt5A was downregulated in H1299 and SPC-A1 cells with PRDX1 knockdown. Overexpression of β-Catenin enhanced proliferative ability and inhibited apoptosis in NSCLC cells with PRDX1 knockdown. CONCLUSIONS PRDX1 is upregulated in NSCLC samples, and linked to tumor staging and prognosis. It stimulates NSCLC to proliferate by activating the Wnt/β-Catenin signaling.
Collapse
Affiliation(s)
- Changshan Song
- Department of Thoracic Surgery, Foshan Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Gang Xiong
- Department of Thoracic Surgery, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Shengli Yang
- Department of Thoracic Surgery, First People's Hospital of Foshan, Affiliated Hospital of Sun Yat-sen University in Foshan, Foshan, China
| | - Xiaoqun Wei
- Department of Respiratory Medicine, First People's Hospital of Foshan, Affiliated Hospital of Sun Yat-sen University in Foshan, Foshan, China
| | - Xiaowei Ye
- Department of Oncology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- Department of Oncology, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Riwen Zhang
- Department of Oncology, Guangdong Provincial People's Hospital's Nanhai Hospital, The Second People's Hospital Of Nanhai District, Foshan, China -
| |
Collapse
|
9
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
10
|
Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med 2022; 188:419-433. [PMID: 35803440 PMCID: PMC9341242 DOI: 10.1016/j.freeradbiomed.2022.06.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
We published the first paper to characterize GPX2 (aka GSHPx-GI) as a selenoenzyme with glutathione peroxidase activity in 1993. Among the four Se-GPX isozymes, GPX1-4, GPX1 and GPX2 are closely related in terms of structure, substrate specificities, and subcellular localization. What sets them apart are distinct patterns of gene regulation, tissue distribution and response to selenium. While we identified the digestive tract epithelium as the main site of GPX2 expression, later work has shown GPX2 is found more widely in epithelial tissues with concentration of expression in stem cell and proliferative compartments. GPX2 expression is regulated over a wide range of levels by many pathways, including NRF2, WNT, p53, RARE and this often results in attaching undue significance to GPX2 as GPX2 is only a part of a system of hydroperoxidase activities, including GPX1, peroxiredoxins and catalase. These other activities may play equal or greater roles, particularly in cell lines cultured without selenium supplementation and often with very low GPX2 levels. This could be assessed by examining levels of mRNA and protein among these various peroxidases at the outset of studies. As an example, it was found that GPX1 responds to the absence of GPX2 in mouse ileum and colon epithelium with higher expression. As such, both Gpx1 and Gpx2 had to be knocked out in mice to produce ileocolitis. However, we note that the actual role of GPX1 and GPX2 in relation to peroxiredoxin function is unclear. There may be an interdependence that requires only low amounts of GPX1 and/or GPX2 in a supporting role to maintain proper peroxiredoxin function. GPX2 levels may be prognostic for cancer progression in colon, breast, prostate and liver, however, there is no consistent trend for higher or lower levels to be favorable.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Fong-Fong Chu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| |
Collapse
|
11
|
Yang J, Liu Z, Perrett S, Zhang H, Pan Z. PES derivative PESA is a potent tool to globally profile cellular targets of PES. Bioorg Med Chem Lett 2022; 60:128553. [PMID: 35051576 DOI: 10.1016/j.bmcl.2022.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PES (2-phenylethynesulfonamide, pifithrin-μ, PFTμ) is an electrophilic compound that exhibits anticancer properties, protects against chemotherapy-induced peripheral neuropathy in chemotherapy, and shows immunomodulatory, anti-inflammatory and anti-viral activities. PES generally shows higher cytotoxicity towards tumor cells than non-tumor cells. The mechanism of action of PES is unclear but may involve the covalent modification of proteins as PES has been found to be a covalent inhibitor of Hsp70. We developed a new PES derivative PESA with a terminal alkynyl group to perform click-reaction-assisted activity-based protein profiling (click-reaction ABPP) and used this to screen for cellular targets of PES. We found PES and its derivatives PES-Cl and PESA have comparable ability to undergo a Michael addition reaction with GSH and Hsp70, and showed similar cytotoxicity. By fluorescence imaging and proteomics studies we identified over 300 PESA-attached proteins in DOHH2 cells. Some proteins involved in cancer-related redox processes, such as peroxiredoxin 1 (PRDX1), showed higher frequency and abundance in mass spectrometry detection. Our results suggest that cytotoxicity of PES and its derivatives may be related to attack of protein thiols and cellular GSH resulting in breakdown of cellular redox homeostasis. This study provides a powerful new tool compound within the PES class of bioactive compounds and gives insight into the working mechanisms of PES and its derivatives.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China.
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
12
|
Tian Y, Tang L. Using network pharmacology approaches to identify treatment mechanisms for codonopsis in esophageal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:46-55. [PMID: 35265252 PMCID: PMC8902480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We explored codonopsis mechanisms for the treatment of esophageal cancer using a network pharmacology approach. MATERIALS AND METHODS Using the Laboratory of Systems Pharmacology website, codonopsis compounds and targets were gathered. After identifying esophageal cancer target intersections from the GeneCards website, possible codonopsis targets for esophageal cancer were screened. A protein-protein interaction (PPI) network diagram of protein targets was then constructed using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses were performed in R 3.6.0 software. A network diagram of "disease-drug-component-target-pathways" was also constructed using Cytoscape 3.7.1. RESULTS We screened 21 codonopsis compounds as possible esophageal cancer treatments and 31 drug-disease intersecting targets. GO enrichment analysis identified 778 biological process (BP) components, 15 cellular component (CC) components, and 50 molecular function (MF) components, and KEGG analyses identified 90 signaling pathways. Our analyses showed that p53 and PI3K-Akt signaling pathways (among others) were significant pathways in these processes. CONCLUSIONS Codonopsis may be used to treat esophageal cancer by multiple components, targets, and pathways.
Collapse
Affiliation(s)
- Yuan Tian
- Public Course Teaching Department, Cangzhou Medical CollegeCangzhou 061000, Hebei, China
| | - Liang Tang
- Department of Stomatology, Cangzhou Medical CollegeCangzhou 061000, Hebei, China
| |
Collapse
|
13
|
Hu DX, Sun QF, Xu L, Lu HD, Zhang F, Li ZM, Zhang MY. Knockdown of DEAD-box 51 inhibits tumor growth of esophageal squamous cell carcinoma via the PI3K/AKT pathway. World J Gastroenterol 2022; 28:464-478. [PMID: 35125830 PMCID: PMC8790558 DOI: 10.3748/wjg.v28.i4.464] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies that seriously threaten people’s health worldwide. DEAD-box helicase 51 (DDX51) is a member of the DEAD-box (DDX) RNA helicase family, and drives or inhibits tumor progression in multiple cancer types.
AIM To determine whether DDX51 affects the biological behavior of ESCC.
METHODS The expression of DDX51 in ESCC tumor tissues and adjacent normal tissues was detected by Immunohistochemistry (IHC) analyses and quantitative PCR (qPCR). We knocked down DDX51 in ESCC cell lines by using a small interfering RNA (siRNA) transfection. The proliferation, apoptosis, and mobility of DDX51 siRNA-transfected cells were detected. The effect of DDX51 on the phosphoinositide 3-kinase (PI3K)/AKT pathway was investigated by western blot analysis. A mouse xenograft model was established to investigate the effects of DDX51 knockdown on ESCC tumor growth.
RESULTS DDX51 exhibited high expression in ESCC tissues compared with normal tissues and represented a poor prognosis in patients with ESCC. Knockdown of DDX51 induced inhibition of ESCC cell proliferation and promoted apoptosis. Moreover, DDX51 siRNA-expressing cells also exhibited lower migration and invasion rates. Investigations into the underlying mechanisms suggested that DDX51 knockdown induced inactivation of the PI3K/AKT pathway, including decreased phosphorylation levels of phosphate and tensin homolog, PI3K, AKT, and mammalian target of rapamycin. Rescue experiments demonstrated that the AKT activator insulin-like growth factor 1 could reverse the inhibitory effects of DDX51 on ESCC malignant development. Finally, we injected DDX51 siRNA-transfected TE-1 cells into an animal model, which resulted in slower tumor growth.
CONCLUSION Our study suggests for the first time that DDX51 promotes cancer cell proliferation by regulating the PI3K/AKT pathway; thus, DDX51 might be a therapeutic target for ESCC.
Collapse
Affiliation(s)
- Dong-Xin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Qi-Feng Sun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Lin Xu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Hong-Da Lu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Fan Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Zhen-Miao Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| | - Ming-Yan Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong Province, China
| |
Collapse
|
14
|
Szeliga M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem Int 2021; 153:105256. [PMID: 34968631 DOI: 10.1016/j.neuint.2021.105256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are a histologically and molecularly heterogeneous group of neoplasms accounting for 80% of malignant primary brain tumors. Growing evidence suggests that production of reactive oxygen species (ROS) is linked to glioma pathogenesis, although it is still unclear whether it is a cause or an effect of this process. Peroxiredoxins (PRDXs), a family of six antioxidant proteins, may promote or inhibit carcinogenesis, depending on the tumor type and stage. The current knowledge on their expression, regulation and functions in glioma is scarce. In this study, a comprehensive analysis of PRDXs expression in distinct glioma subtypes and non-tumor brain tissues was conducted using gene expression data from The Cancer Genome Atlas (TCGA), REpository for Molecular BRAin NeoplasiaDaTa (REMBRANDT), The Chinese Glioma Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. The association between gene expression and patient survival was investigated. DNA methylation, mutations, copy number alterations of deregulated PRDXs as well as the correlation between gene expression and tumor-infiltrating immune cells were assessed. The analysis revealed overexpression of PRDX1, PRDX4, and PRDX6 in most histological glioma types compared to the non-tumor tissues, while PRDX2, PRDX3 and PRDX5 expression remained unaltered. The expression of PRDX4 and PRDX6 was higher in mesenchymal than proneural and classical glioma subtypes. Moreover, lower expression of PRDX1, PRDX4 and PRDX6 was observed in tumors with a glioma CpG island methylator phenotype (G-CIMP) compared to non-G-CIMP tumors, as well as in isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted gliomas compared to the wild-type counterparts. High expression of PRDX1, PRDX4 or PRDX6 correlated with poor survival of glioma patients. PRDX1 and PRDX6 displayed a positive correlation with different immune cell population in low grade gliomas and, to a lesser extent, in glioblastoma. PRDX1 expression exhibited negative correlation with DNA methylation. These results indicate that high expression of PRDX1, PRDX4 and PRDX6 is associated with poor outcome in gliomas.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
15
|
Chen J, Wang M, Wang H, Long M. Zearalenone promotes apoptosis of mouse Leydig cells by targeting phosphatase and tensin homolog and thus inhibiting the PI3K/AKT signal pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67779-67787. [PMID: 34264493 DOI: 10.1007/s11356-021-15282-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin with estrogenic activity whose main effect is to impair the reproductive systems of animals. It leads to reproductive disorders in livestock and thus causes serious losses to agriculture and animal husbandry. This study aims to examine whether ZEA induces toxicity in Leydig cells through the PI3K/AKT signaling pathway and also to investigate the role played by the upstream phosphatase and tensin homolog (PTEN) gene. An adenovirus vector model was constructed to interfere with the PTEN gene to investigate whether ZEA promotes the apoptosis of TM3 cells through the PI3K/AKT pathway. Apoptosis was detected cytometrically and the protein expression levels of PTEN, AKT, p-AKT, Bax, and Bcl-2 were evaluated via western blot analysis. The results show that ZEA induces apoptosis of TM3 cells. PTEN expression is significantly increased (P < 0.01), Bax expression is increased (P < 0.05), AKT and p-AKT expression of anti-apoptotic protein is significantly decreased (P < 0.01), and Bcl-2 protein expression is decreased (P < 0.05) in the ZEA group compared with the control group. In the shRNA+ZEA group, the expression levels of PTEN and Bax proteins are significantly decreased (P < 0.01), AKT protein is significantly increased (P < 0.01), and p-AKT protein is increased (P < 0.05) compared with the ZEA group. This study thus demonstrates that ZEA promotes apoptosis of TM3 cells by targeting PTEN and thus inhibiting the PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingyang Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hanli Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
16
|
Liu J, Xu H, Wang N, Sun M. miR-15b, a diagnostic biomarker and therapeutic target, inhibits oesophageal cancer progression by regulating the PI3K/AKT signalling pathway. Exp Ther Med 2020; 20:222. [PMID: 33363587 DOI: 10.3892/etm.2020.9352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR)-15b is an important regulator in several types of cancer, such as gastric cancer, colorectal cancer and oesophageal squamous cell carcinoma. The PI3K/AKT signalling pathway has been implicated in the growth and metastasis of oesophageal cancer (EC). The aim of the present study was to investigate the biological effects of miR-15b in EC, as well as the underlying mechanism involving the PI3K/AKT signalling pathway. The present study included 74 patients with EC and 74 healthy volunteers. The expression of miR-15b in peripheral blood mononuclear cells (PBMCs) and EC cell lines was evaluated via reverse transcription-quantitative PCR. The receiver operating characteristic curve was plotted to determine the diagnostic significance of miR-15b. EC cell viability, apoptosis, migration and invasion were analysed by conducting MTT, flow cytometry and transwell assays, respectively. Protein expression levels were analysed via western blotting. The results indicated that PBMCs isolated from patients with EC had lower miR-15b expression levels compared with PBMCs isolated from healthy volunteers. In patients with EC, miR-15b expression was strongly associated with tumour size, lymph node metastasis, TNM stage, fibrous membrane invasion and histologic grade. The results of the gain/loss-of-function in vitro experiments indicated that miR-15b inhibited EC cell viability, migration and invasion, facilitated EC cell apoptosis and attenuated the PI3K/AKT signalling pathway in EC109 and TE10 cells. Treatment of EC cells with the PI3K/AKT pathway agonist recilisib displayed the opposite effects, blocking the inhibitory function of miR-15b mimic on EC cell viability, migration and invasion. In summary, the results indicated that miR-15b suppressed EC cell viability, migration and invasion, and promoted EC cell apoptosis by inhibiting the PI3K/AKT signalling pathway.
Collapse
Affiliation(s)
- Jie Liu
- Department of Thoracic Surgery, Shandong Institute of Tumor Control, Shandong Cancer Hospital, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, P.R. China
| | - Haiyan Xu
- The Second Department of Operating Room, Binzhou People's Hospital, Binzhou, Shandong 256610, P.R. China
| | - Nan Wang
- Laboratory Department, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261031, P.R. China
| | - Mingyan Sun
- Laboratory Department, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261031, P.R. China
| |
Collapse
|