1
|
Ferro C, Matos AI, Serpico L, Fontana F, Chiaro J, D'Amico C, Correia A, Koivula R, Kemell M, Gaspar MM, Acúrcio RC, Cerullo V, Santos HA, Florindo HF. Selenium Nanoparticles Synergize with a KRAS Nanovaccine against Breast Cancer. Adv Healthc Mater 2025; 14:e2401523. [PMID: 39205539 PMCID: PMC11834378 DOI: 10.1002/adhm.202401523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment. All optimized SeNP are spherical, <100 nm, and with a narrow size distribution. BSA-stabilized SeNPs produced under acidic conditions present the highest stability in medium, plasma, and at physiological pH, maintaining their size ≈50-60 nm for an extended period. SeNPs demonstrate enhanced toxicity in cancer cell lines while sparing primary human dermal fibroblasts, underscoring their potential as effective anticancer agents. Moreover, the combination of BSA-SeNPs with a nanovaccine results in a strong tumor growth reduction in an EO771 breast cancer mouse model, demonstrating a three-fold decrease in tumor size. This synergistic anticancer effect not only highlights the role of SeNPs as effective anticancer agents but also offers valuable insights for developing innovative combinatorial approaches using SeNPs to improve the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Cláudio Ferro
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ana I. Matos
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luigia Serpico
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jacopo Chiaro
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Carmine D'Amico
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Risto Koivula
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Marianna Kemell
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Maria Manuela Gaspar
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Vincenzo Cerullo
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
- Drug Research ProgramDivision of Pharmaceutical BiosciencesFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Helena F. Florindo
- Research Institute for MedicinesiMed.UlisboaFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
2
|
Maia Rissate FM, de Souza LR, Melo Otoni F, Kim B, dos Santos HB, Thomé RG, José Alves R, de Azambuja Ribeiro RIM. In Vitro Antitumor and Antimetastatic Activity of a New Lapachol Derivative against Metastatic Breast Carcinoma. Asian Pac J Cancer Prev 2024; 25:3935-3946. [PMID: 39611918 PMCID: PMC11996102 DOI: 10.31557/apjcp.2024.25.11.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Breast cancer represents the most prevalent type of tumor throughout the world. Considering the side effects caused by the available treatments, the resistance acquired by cells to cytotoxic agents, and metastasis, it is necessary to search for new sources of antitumor and antimetastatic therapies. Given the numerous antitumor studies involving the synthesis of substances derived from the naphthoquinone lapachol, we investigated the antineoplastic potential of a new synthetic substance (APO-3) derived from lapachol, alone and in combination with the chemotherapeutic agent paclitaxel (PTX), against 4T1 cells, a murine breast cancer cell line. METHODS/RESULTS In MTT assay APO-3 and the APO-3/PTX combination were selectively cytotoxic to 4T1 cells, with APO-3/PTX being approximately 6.5 and 15 times more selective than PTX and APO-3, respectively. After zymography, APO-3/PTX was more effective in decreasing matrix metalloproteinase-9 (MMP-9) activity compared with APO-3 alone. In the clonogenic assay, APO-3/PTX reduced the number of colonies more effectively than APO-3 or PTX alone. APO-3/PTX also inhibited cell migration, as did PTX and APO-3 alone. The combination increased the expression of proteins involved in the intrinsic apoptotic pathway and induced cellular morphological changes characteristic of this type of cell death, acting similarly to PTX alone. APO-3 increased Receptor-interacting serine/threonine-protein kinase 1 (RIP1) and caused morphological changes characteristic of apoptosis and necroptosis in 4T1 cells. CONCLUSION Taken together, APO-3 presented antitumor action against 4T1 cells, but the APO-3/PTX combination was more effective than either substance alone.
Collapse
Affiliation(s)
- Flávia Medeiros Maia Rissate
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, 35501-296, MG, Brazil.
| | - Lorena Raspanti de Souza
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, 35501-296, MG, Brazil.
| | - Flaviano Melo Otoni
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil.
| | - Bonglee Kim
- College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea.
| | - Hélio Batista dos Santos
- Tissue Processing Laboratory, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, 35501-296, MG, Brazil.
| | - Ralph Gruppi Thomé
- Tissue Processing Laboratory, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, 35501-296, MG, Brazil.
| | - Ricardo José Alves
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, MG, Brazil.
| | - Rosy Iara Maciel de Azambuja Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, 35501-296, MG, Brazil.
| |
Collapse
|
3
|
Liu Z, Wang G, Liu H, Ding K, Song J, Fu R. ACT001 inhibits primary central nervous system lymphoma tumor growth by enhancing the anti-tumor effect of T cells. Biomed Pharmacother 2024; 178:117133. [PMID: 39024837 DOI: 10.1016/j.biopha.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a group of malignant brain tumors with a poor prognosis, and new therapeutic approaches for this tumor urgently need to be investigated. Formulated from a long-standing anti-inflammatory drugs, ACT001 has demonstrated in clinical research to be able to pass through the blood-brain barrier (BBB) and affect the central nervous system. The effects of ACT001 on PCNSL cell apoptosis, proliferation and immune-related indexes were detected by flow cytometry, and the efficacy of ACT001 was verified in vivo by constructing a mouse PCNSL tumor model. ACT001 significantly inhibited PCNSL cell proliferation and induced apoptosis in vitro. In addition, ACT001 can significantly inhibit the PD-1/PD-L1 expression and restore the function of T cells, so that the immune system cannot allow tumor cells to escape. In vivo experiments show that co-infusion of ACT001 and T cells effectively inhibits PCNSL tumor growth in NSG mice. Our work describes the inhibitory effect of ACT001 on the PCNSL cell line and demonstrated the inhibitory effect of ACT001 on immune checkpoints.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| | - Guanrou Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control,Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| |
Collapse
|
4
|
Díaz-Ortega P, Calderón-Montaño JM, Jiménez-Alonso JJ, Guillén-Mancina E, Jiménez-González V, Burgos-Morón E, López-Lázaro M. A Diet Lacking Selenium, but Not Zinc, Copper or Manganese, Induces Anticancer Activity in Mice with Metastatic Cancers. Nutrients 2024; 16:2249. [PMID: 39064692 PMCID: PMC11280272 DOI: 10.3390/nu16142249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium, zinc, copper, and manganese are essential components of antioxidant enzymes involved in the elimination of reactive oxygen species (ROS). Given that cancer cells produce high levels of ROS and the accumulation of ROS can lead to cell death, cancer cells may be susceptible to strategies that reduce ROS elimination. In this work, we prepared several artificial diets that contained normal carbohydrate, protein, and lipid levels but lacked selenium, zinc, copper, or manganese. The anticancer activity of these diets was examined in a metastatic ovarian cancer model, established by injecting ID8 Trp53-/- murine ovarian cancer cells into the peritoneal cavity of C57BL/6JRj mice. Treatments started 15 days later and consisted of replacing a normal diet with one of the artificial diets for several weeks. A significant improvement in mice survival was observed when the normal diet was replaced with the selenium-free diet. Diets lacking zinc, copper, or manganese showed no significant impact on mice survival. All diets were very well tolerated. The anticancer efficacy of a diet lacking selenium was confirmed in mice with metastatic colon cancer and in mice with metastatic triple-negative breast cancer. These results suggest that diets lacking selenium hold potential for the treatment of metastatic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Yu Q, Zuo X, Bai H, Zhang S, Luan J, Zhao Q, Zhao X, Feng X. Alleviative effects of the parthenolide derivative ACT001 on insulin resistance induced by sodium propionate combined with a high-fat diet and its potential mechanisms. Eur J Pharmacol 2024; 971:176529. [PMID: 38554931 DOI: 10.1016/j.ejphar.2024.176529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The increasing side effects of traditional medications used to treat type II diabetes have made research into the development of safer and more effective natural medications necessary. ACT001, a derivative of parthenolide, has been shown to have good anti-inflammatory and antitumor effects; however, its role in diabetes is unclear. The short-chain fatty acid propionate is a common food preservative that has been found to cause disturbances in glucose metabolism in mice and humans. This study aimed to investigate whether sodium propionate could aggravate insulin resistance in obese mice and cause diabetes and to study the alleviative effects and potential mechanisms of action of ACT001 on insulin resistance in diabetic mice. Type II diabetic mice were adminietered sodium propionate combined with a high-fat diet (HFD + propionate) by gavage daily for four weeks. Biochemical analysis showed that ACT001 significantly affected blood glucose concentration in diabetic mice, mainly by downregulating the expression of phosphoenolpyruvate carboxykinase 2 and glucose-6-phosphatase. Meanwhile, the level of fatty acid-binding protein 4 in the liver was significantly decreased. ACT001 has a protective effect on the liver and adipose tissue of mice. In addition, the results of the running wheel experiment indicated that ACT001 alleviated the circadian rhythm disorder caused by insulin resistance to a certain extent. This study revealed the potential mechanism by which ACT001 alleviates insulin resistance and provides ideas for developing natural antidiabetic drugs.
Collapse
Affiliation(s)
- Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Fu Q, Shen N, Fang T, Zhang H, Di Y, Liu X, Du C, Guo J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genomics 2024; 46:323-332. [PMID: 37831404 DOI: 10.1007/s13258-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. OBJECTIVE The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. METHODS NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. RESULTS Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. CONCLUSION ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China.
| | - Na Shen
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Hewei Zhang
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Xuan Liu
- Pharmacy Department, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Chao Du
- Emergency Surgical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| |
Collapse
|
7
|
Oraby MA, Elazazy O, Karam HM, Fadaly DS, Ibrahim AA. MitoQ combats tumor cell progression in Ehrlich ascites carcinoma mice: A crosstalk between mitochondrial oxidative status, mitophagy, and NF-κB signaling. Life Sci 2023; 331:122063. [PMID: 37666390 DOI: 10.1016/j.lfs.2023.122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Despite the clinical advances in cancer treatment, the high mortality rate is still a great challenge, requiring much effort to find new and efficient cancer therapies. AIMS The present evidence investigated the potential antiproliferative impact of the mitochondrial-targeted antioxidant, Mitoquinol (MitoQ), on a mouse model of Ehrlich ascites carcinoma (EAC). MAIN METHODS Mice-bearing tumors were administered two doses of MitoQ (0.3 mg & 0.5 mg/kg; i.p daily) or doxorubicin (2 mg/kg; i.p daily) for 20 days. KEY FINDINGS EAC mice revealed exacerbated mitochondrial reactive oxygen species (mtROS) and impaired mitochondrial membrane potential (△Ψm). Dysfunctional mitophagy was observed in EAC mice, along with boosting aerobic glycolysis. In addition, tumor cells exhibited higher proliferation rates, thereby stimulating cell cycle, invasion, and angiogenesis biomarkers together with suppressing proapoptotic proteins, events that might be correlated with activation of NF-κB signaling. The administration of MitoQ combated tumor cell survival and dissemination in EAC mice as evidenced by reducing tumor volumes and weights and increasing the number of necrotic areas in histopathological assessment. MitoQ also repressed tumor cell cycle, invasion, and angiogenesis via preventing cyclin D1 mRNA, MMP-1, and CD34 levels as well as VEGF protein expression. These observations were associated with the abrogation of mtROS overproduction and enhancement of the mitophagy proteins, PINK1/Parkin levels, followed by inhibition of NADH dehydrogenase. Notably, NF-κB signaling was modulated. SIGNIFICANCE This study suggests that MitoQ combated tumor cell survival and progression in EAC mice by maintaining mtROS and restoring mitophagy, thereby attenuation of NF-κB activation.
Collapse
Affiliation(s)
- Mamdouh A Oraby
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, 11829, Egypt.
| | - Heba M Karam
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Doaa S Fadaly
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Ibrahim
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada.
| |
Collapse
|
8
|
Zhou H, Niu B, Wu X, Chu W, Zhou Y, Chen Z, Mi Y, Liu Y, Li P. iTRAQ-based quantitative proteomics analysis of the effect of ACT001 on non-alcoholic steatohepatitis in mice. Sci Rep 2023; 13:11336. [PMID: 37443174 PMCID: PMC10345009 DOI: 10.1038/s41598-023-38448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023] Open
Abstract
ACT001 is a novel sesquiterpene lactone derivative that has been shown to have significant antitumor and anti-inflammatory effects. However, the effect of ACT001 on nonalcoholic steatohepatitis (NASH) is unknown. Methionine and choline deficient (MCD) diet induced NASH model in C57BL/6J mice. Steatosis, inflammation and fibrosis-related indices of serum and liver tissues were detected by fully automated biochemical analyzer, enzyme-linked immunosorbent assay (ELISA) kit, flow cytometry, hematoxylin and eosin (H&E), Masson and immunohistochemical staining. The results showed that ACT001 reduced serum lipid and inflammatory factor levels, attenuated hepatic steatosis, inflammation and fibrosis, and inhibited hepatic oxidative stress and activation of NOD-like receptor protein 3 (NLRP3) inflammatory vesicles in NASH mice. In addition, 381 differentially expressed proteins (DEPs), including 162 up-regulated and 219 down-regulated proteins, were identified in the MCD group and ACT001 high-dose group using isotope labeling relative and absolute quantification (iTRAQ) technique analysis. Among these DEPs, five proteins associated with NAFLD were selected for real-time fluorescence quantitative PCR (RT-qPCR) validation, and the results were consistent with proteomics. In conclusion, ACT001 has a therapeutic effect on NASH, and the results of proteomic analysis will provide new ideas for the mechanism study of ACT001 for NASH treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Niu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xue Wu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Weike Chu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yibing Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Ze Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yonggang Liu
- Department of Pathology, Tianjin Second People's Hospital, Tianjin, China
| | - Ping Li
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Research Institute of Liver Diseases, Tianjin, China.
| |
Collapse
|
9
|
Deng H, Liu H, Yang G, Wang D, Luo Y, Li C, Qi Z, Liu Z, Wang P, Jia Y, Gao Y, Ding Y. ACT001 inhibited CD133 transcription by targeting and inducing Olig2 ubiquitination degradation. Oncogenesis 2023; 12:19. [PMID: 36990974 PMCID: PMC10060425 DOI: 10.1038/s41389-023-00462-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Lung cancer is the most lethal malignancies with high aggressive and poor prognosis. Until now, the five-year survival rate has not been improved which brings serious challenge to human health. Lung cancer stem cells (LCSCs) serve as the root of cancer occurrence, progression, recurrence, and drug resistance. Therefore, effective anti-cancer agents and molecular mechanisms which could specifically eliminate LCSCs are urgently needed for drug design. In this article, we discovered Olig2 was overexpressed in clinical lung cancer tissues and acted as a transcription factor to regulate cancer stemness by regulating CD133 gene transcription. The results suggested Olig2 could be a promising target in anti-LCSCs therapy and new drugs targeted Olig2 may exhibit excellent clinical results. Furthermore, we verified ACT001, a guaianolide sesquiterpene lactone in phase II clinical trial with excellent glioma remission, inhibited cancer stemness by directly binding to Olig2 protein, inducing Olig2 ubiquitination degradation and inhibiting CD133 gene transcription. All these results suggested that Olig2 could be an excellent druggable target in anti-LCSCs therapy and lay a foundation for the further application of ACT001 in the treatment of lung cancer in clinical.
Collapse
Affiliation(s)
- Huiting Deng
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Hailin Liu
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, People's Republic of China
| | - Guoyue Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Dandan Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Chenglong Li
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Zhenchang Qi
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Zhili Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Yanfang Jia
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, Nankai University, 83 Jintang Road, Tianjin, 300170, People's Republic of China.
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
10
|
Guillén-Mancina E, Jiménez-Alonso JJ, Calderón-Montaño JM, Jiménez-González V, Díaz-Ortega P, Burgos-Morón E, López-Lázaro M. Artificial Diets with Selective Restriction of Amino Acids and Very Low Levels of Lipids Induce Anticancer Activity in Mice with Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15051540. [PMID: 36900331 PMCID: PMC10000978 DOI: 10.3390/cancers15051540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Patients with metastatic triple negative breast cancer (TNBC) need new therapies to improve the low survival rates achieved with standard treatments. In this work, we show for the first time that the survival of mice with metastatic TNBC can be markedly increased by replacing their normal diet with artificial diets in which the levels of amino acids (AAs) and lipids are strongly manipulated. After observing selective anticancer activity in vitro, we prepared five artificial diets and evaluated their anticancer activity in a challenging model of metastatic TNBC. The model was established by injecting 4T1 murine TNBC cells into the tail vein of immunocompetent BALB/cAnNRj mice. First-line drugs doxorubicin and capecitabine were also tested in this model. AA manipulation led to modest improvements in mice survival when the levels of lipids were normal. Reducing lipid levels to 1% markedly improved the activity of several diets with different AA content. Some mice fed the artificial diets as monotherapy lived much longer than mice treated with doxorubicin and capecitabine. An artificial diet without 10 non-essential AAs, with reduced levels of essential AAs, and with 1% lipids improved the survival not only of mice with TNBC but also of mice with other types of metastatic cancers.
Collapse
|
11
|
Chaudhari D, Katari O, Ghadi R, Kuche K, Date T, Bhargavi N, Jain S. Unfolding the Potency of Adenosine in Targeting Triple Negative Breast Cancer via Paclitaxel-Incorporated pH-Responsive Stealth Liposomes. ACS Biomater Sci Eng 2022; 8:3473-3484. [PMID: 35896042 DOI: 10.1021/acsbiomaterials.2c00594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution. Thus, to resolve this issue, we designed PTX-loaded pH-sensitive liposomes (pH Lipos) in the present investigation and used adenosine (ADN) as a targeting ligand. Further, d-α-tocopheryl polyethylene glycol succinate (TPGS) was incorporated into the liposomes to impart a stealth effect to the system. For the development of these pH Lipos, different conjugates were synthesized (ADN-CHEMS and TPGS-ADN) and further utilized for the preparation of ADN-PEG-pH Lipo and ADN-pH Lipo by a thin-film hydration method. DOPE:HSPC:CHEMS:cholesterol at a molar ratio of 3:3:2:2 was selected for the preparation of pH-Lipo possessing 7.5% w/w drug loading. They showed a particle size below 140 nm, a PDI below 0.205, and a % EE greater than 60%. All of the pH Lipos displayed a biphasic pattern of PTX release at pH 7.4 and 5.5. However, the percent drug release at pH 5.5 was substantially greater because of the pH-sensitive nature of the liposomes. The MDA MB 231 and 4T1 cell lines depicted improvement in the qualitative as well as quantitative cellular uptake of PTX ADN-PEG-pH Lipo with a substantial decrease in the IC50 value. Moreover, a higher apoptotic index was observed with pH Lipo compared to free PTX. PTX ADN-PEG-pH Lipo revealed a 3.98- and 3.41-fold rise in the AUC and t1/2 values of PTX compared to Intaxel, respectively. Overall, characteristic decreases in tumor volume and serum toxicity marker levels were observed, which confirmed the development of an efficient and safe formulation.
Collapse
Affiliation(s)
- Dasharath Chaudhari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Oly Katari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Nallamothu Bhargavi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
12
|
Guo H, Song Y, Li F, Fan Y, Li Y, Zhang C, Hou H, Shi M, Zhao Z, Chen Z. ACT001 suppressing M1 polarization against inflammation via NF-κB and STAT1 signaling pathways alleviates acute lung injury in mice. Int Immunopharmacol 2022; 110:108944. [PMID: 35728304 DOI: 10.1016/j.intimp.2022.108944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
ACT001 has been shown to exhibit excellent antitumor and anti-fibrosis activities. However, the role of ACT001 in acute lung injury (ALI) and the underlying mechanism remains largely unclear. The present study aimed to investigate the protective effects of ACT001 on ALI and explore the potential mechanisms. Herein, we firstly established the ALI mouse model induced by intratracheal instillation of lipopolysaccharide (LPS). ACT001 treatment significantly alleviated histopathological changes of lung tissues with lower infiltration of pulmonary M1 macrophages in ALI mice. Then, we performed in vitro experiment and found that ACT001 treatment effectively inhibited the M1 phenotype of RAW264.7 and THP-1.. Next, we performed pull-down and mass spectrometry analysis to screen the interacting proteins of ACT001, identifying IKKβ and STAT1 as the critical target proteins of ACT001. And ACT001 treatment significantly suppressed the NF-κB and STAT1 pathways, thereby inhibiting the M1 polarization against inflammation in vivo and in vitro. Finally, we used IMD 0354 (IMD) and Fludarabine (Flud) to specifically block the activity of IKKβ and STAT1, and stimulated macrophages through IKKβ and STAT1 overexpression. Our data clearly showed that ACT001-induced decrease of the M1 polarization was blocked by IMD and Flud treatment, and reversed by IKKβ and STAT1 overexpression in RAW264.7 cells. In conclusion, we discovered that ACT001 significantly alleviates inflammation and limits M1 phenotype of pulmonary macrophages via suppressing NF-κB and STAT1 signaling pathways, providing new insights for the development of drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Hui Guo
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Song
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanjian Li
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Fan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiman Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaonan Zhang
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Hou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Minmin Shi
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zilong Zhao
- Department of Neurosurgery, Tianjin Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zhe Chen
- Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Zhao M, Qin T, Huang D. ACT001 inhibits the proliferation of non-small cell lung cancer cells by upregulating NKTR expression. Thorac Cancer 2022; 13:1772-1782. [PMID: 35537816 PMCID: PMC9200889 DOI: 10.1111/1759-7714.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer, the primary cause of cancer-related deaths worldwide, is diagnosed at an advanced stage and has a poor prognosis. Non-small cell lung cancer (NSCLC) is a major histological type of lung malignancy. This study investigated the effect of ACT001, a novel sesquiterpene lactone derivative, on the proliferation of NSCLC cells and explored the underlying mechanism. METHODS The effect of ACT001 on cell proliferation was examined by clone formation and MTT assay. Differentially expressed genes and enrichment pathways were analyzed by RNA-seq. Flow cytometry and cell cycle-related protein expression analysis were performed to study the cell cycle. Phosphorylated AKT was detected to explore the mechanism in natural killer cell triggering receptor (NKTR) KD cells with AKT activator and/or inhibitor. The therapeutic effect of ACT001 in vivo was studied in the xenograft tumor model. RESULTS ACT001 inhibited the proliferation and G1/S transition in NSCLC cell lines. By RNA-seq analysis, NKTR may be the target of ACT001. Moreover, knockdown NKTR promoted cell proliferation and reversed the effects of ACT001. In addition, ACT001 inhibited AKT phosphorylation, but NKTR knockdown promoted AKT phosphorylation. CONCLUSION Our results suggested NKTR may be the target of ACT001 in NSCLC. ACT001 holds promise as a novel method for the treatment of NSCLC.
Collapse
Affiliation(s)
- Min Zhao
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tingting Qin
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
14
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
16
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
17
|
Yao CL, Zhang JQ, Li JY, Wei WL, Wu SF, Guo DA. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat Prod Rep 2021; 38:1618-1633. [PMID: 33511969 DOI: 10.1039/d0np00057d] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: up to July 2020Drugs derived from traditional Chinese medicine (TCM) include both single chemical entities and multi-component preparations. Drugs of both types play a significant role in the healthcare system in China, but are not well-known outside China. The research and development process, the molecular mechanisms of action, and the clinical evaluation associated with some exemplificative anticancer drugs based on TCM are discussed, along with their potential of integration in western medicine.
Collapse
Affiliation(s)
- Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Shi-Fei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
18
|
Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, Wang B, Wang Q, Zhao Y, Cai Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol 2020; 88:106939. [PMID: 33182039 DOI: 10.1016/j.intimp.2020.106939] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation and immune responses are two core element that characterize the tumor microenvironment. A large number of immune/inflammatory cells (including tumor associated macrophages, neutrophils and myeloid derived suppressor cells) as well as cytokines (such as IL-6, IL-10, TGF-β) are present in the tumor microenvironment, which results in both a chronic inflammatory state and immunosuppression. As a consequence tumor cell migration, invasion, metastasis and anticancer drug sensitivity are modulated. On the one hand, secreted cytokines change the function of cytotoxic T lymphocytes and antigen presenting cells, thereby inhibiting tumor specific immune responses and consequently inducing a special immunosuppressive microenvironment for tumor cells. On the other hand, tumor cells change the differentiation and function of immune/inflammatory cells in the tumor microenvironment especially via the NF-κB and STAT3 signaling pathways. This may promote proliferation of tumor cells. Here we review these double edged effects of immune/inflammatory cells and cytokines on tumor cells, and explored their interactions with inflammation, hypoxia, and immune responses in the tumor microenvironment. The tumor inflammatory or immunosuppressive reactions mediated by the high activity of NF-κB or STAT3 can occur alone or simultaneously, and there is a certain connection between them. Inhibiting the NF-κB or STAT3 signaling pathway is likely to curb the growth of tumor cells, reduce the secretion of pro-inflammatory factors, and enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai 200032, China; Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bingyue Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Yiye Zhao
- Integrated Hospital of Traditonal Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Cancer Research Institute of Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|