1
|
Maresca DC, La Civita E, Romano B, Ambrosio MR, Somma F, Wyss T, Rocco B, Rubino V, Cari L, Krebs P, Rodriguez-Calero A, Ferro M, Trabanelli S, Jandus C, Crocetto F, Ianaro A, Terracciano D, Ercolano G. Circulating innate lymphoid cells are dysregulated in patients with prostate cancer. Cell Mol Biol Lett 2025; 30:48. [PMID: 40247153 PMCID: PMC12007220 DOI: 10.1186/s11658-025-00725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most common cancer affecting men globally, especially those aged 50 years and above. Despite substantial progress in terms of both prognosis and therapy, PCa remains a significant health concern, necessitating the identification of novel therapeutic targets. Innate lymphoid cells (ILCs) have emerged as critical modulators of tumor immunity, exhibiting both pro- and antitumoral effects. However, little is known yet about their contribution in PCa. This study investigated the phenotypic and functional profiles of ILC subsets in the peripheral blood mononuclear cells (PBMCs) of patients with PCa stratified by Gleason score. METHODS PBMCs were isolated by Lymphoprep. ILC frequency and activity were evaluated by flow cytometry. The levels of ILC-activating cytokines were analyzed by multiplex assay in the serum of healthy donors (HDs) and patients with PCa. To evaluate the crosstalk between ILC2s and cancer cells, PC3 and DU145 human PCa cell lines were used. RESULTS We found a stage-dependent increase in the protumoral ILC2 frequency and a concurrent decrease in antitumoral ILC1s in patients with PCa compared with healthy controls. Interestingly, the frequency of ILC2s was higher in patients with elevated prostate-specific antigen (PSA) values, suggesting their potential as molecular predictor for defining the risk category of patients with PCa at diagnosis. Importantly, patients with PCa exhibited hyperactivated ILC2s, characterized by elevated interleukin (IL)-13 and IL-5 production, while ILC1s displayed reduced tumor necrosis factor (TNF)-α and interferon (IFN)-γ secretion. Furthermore, serum levels of ILC2-activating cytokines IL-33, IL-18, and prostaglandin D2 (PGD2) were elevated in patients with PCa. In vitro co-culture experiments demonstrated that PCa cell lines, capable of secreting these cytokines, could directly enhance ILC2 activity. Likewise, ILC2-derived IL-13 promoted PCa cell migration and invasion. CONCLUSIONS Collectively, our findings highlight a dysregulated ILC profile in PCa, characterized by ILC2 dominance and heightened activity at the expense of ILC1s, suggesting both ILC1s and ILC2s as potential therapeutic targets for PCa treatment.
Collapse
Affiliation(s)
- Daniela Claudia Maresca
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138, Naples, Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Benedetta Romano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138, Naples, Italy
| | - Maria Rosaria Ambrosio
- Institute for Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (IEOS-CNR), Via Pansini 5, 80131, Naples, Italy
| | - Fabio Somma
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138, Naples, Italy
| | - Tania Wyss
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bernardo Rocco
- Department of Translational Medicine and Surgery, Gemelli IRCCS University Hospital Foundation in Rome, Università Cattolica del Sacro Cuore di Roma, Roma, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | | | - Matteo Ferro
- Unit of Urology, Department of Health Science, University of Milan, ASST Santi Paolo and Carlo, Via A. Di Rudini 8, 20142, Milan, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Onco-Hematology (CRTOH), Geneva, Switzerland
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138, Naples, Italy.
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80138, Naples, Italy.
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
2
|
Stevenson E, Esengur OT, Zhang H, Simon BD, Harmon SA, Turkbey B. An overview of utilizing artificial intelligence in localized prostate cancer imaging. Expert Rev Med Devices 2025; 22:293-310. [PMID: 40056148 PMCID: PMC12038709 DOI: 10.1080/17434440.2025.2477601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION Prostate cancer (PCa) is a leading cause of cancer-related deaths among men, and accurate diagnosis is critical for effective management. Multiparametric MRI (mpMRI) has become an essential tool in PCa diagnosis due to its superior spatial resolution which enables detailed anatomical, functional information and its resultant ability to detect clinically significant PCa. However, challenges such as subjective interpretation methods and high inter-reader variability remain. In recent years, artificial intelligence (AI) has emerged as a promising solution to enhance the diagnostic performance of mpMRI by automating key tasks such as prostate segmentation, lesion detection, classification. AREAS COVERED This review provides a comprehensive overview of the current AI applications in prostate mpMRI, discussing advancements in automated image analysis and how AI-driven models are developed to improve detection and risk stratification. A literature search was conducted to examine both machine learning and deep learning techniques applied in this field, highlighting key studies and future directions. EXPERT OPINION While AI models have shown significant promise, their clinical integration remains limited due to the need for larger, multi-institutional validation studies. As AI continues to evolve, multimodal approaches combining imaging with clinical data are likely to play pivotal role in personalized PCa diagnosis, treatment planning.
Collapse
Affiliation(s)
- Emma Stevenson
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Omer Tarik Esengur
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Haoyue Zhang
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin D. Simon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - Stephanie A. Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Qin W, Liu S, Liu L, Liu M, Chen J, Dai P. Value of HCY, sdLDL-C, Crea, inflammatory factor IL-6 and prostate-specific antigen in the diagnosis of benign prostatic hyperplasia in the elderly. Actas Urol Esp 2025:501744. [PMID: 40097101 DOI: 10.1016/j.acuroe.2025.501744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE To investigate the diagnostic value of serum metabolic markers such as HCY, sdLDL-C, Crea, inflammatory factor IL-6 and prostate-specific antigen in elderly patients with prostatic hyperplasia (BPH). METHODS 150 senile patients with hyperplasia of prostate were selected as observation group and 169 healthy senile patients were selected as control group. The tPSA, fPSA, fPSA/t PSA and prostate size data of the two groups were collected, and serum samples of the subjects were collected for the detection of HCY, sdLDL, Crea, IL-6 and other indicators. Univariate analysis, correlation analysis and Logistic regression analysis were conducted to analyze the relationship between each index and senility prostatic hyperplasia. The diagnostic efficiency of each serum metabolite was analyzed by receiver operating characteristic curve (ROC). RESULTS Serum levels of tPSA, fPSA, Crea, HCY, sdLDL-C and IL-6 were significantly increased, fPSA/tPSA ratio and HDL were significantly decreased, and TCHO, TG and LDL had no statistical significance. Serum tPSA and fPSA levels were positively correlated with prostate size, serum IL-6, Crea and HCY levels were positively correlated with tPSA and fPSA levels, and serum sdLDL-C levels were negatively correlated with fPSA levels. Logistic regression analysis showed that tPSA, fPSA, prostate size, HCY, Crea and IL-6 were risk factors for prostate hyperplasia. HDL and fPSA/tPSA are protective factors for benign prostatic hyperplasia. ROC curve analysis showed that the sensitivity and specificity of fPSA/tPSA and IL-6 were 82.7% and 72%, 83.4% and 80.5%, and the area under ROC curve were 0.840 and 0.825, respectively. tPSA and fPSA combined with HCY, IL-6 and Crea had the best diagnostic efficiency, with the area under ROC curve reaching 0.881, specificity and sensitivity reaching 84% and 77.3%, respectively. CONCLUSION The combined detection of prostate-specific antigen, HCY, Crea and IL-6 can significantly improve the diagnostic efficiency of senile prostatic hyperplasia, and optimize the diagnosis and treatment scheme can even be used as a major screening index to evaluate and predict the incidence of BPH in senile prostatic hyperplasia.
Collapse
Affiliation(s)
- W Qin
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005 Changsha, Hunan Province, China
| | - S Liu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005 Changsha, Hunan Province, China
| | - L Liu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005 Changsha, Hunan Province, China
| | - M Liu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005 Changsha, Hunan Province, China
| | - J Chen
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005 Changsha, Hunan Province, China.
| | - P Dai
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005 Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Tang L, Chen X, Hou J, Wei X. CXCL14 in prostate cancer: complex interactions in the tumor microenvironment and future prospects. J Transl Med 2025; 23:9. [PMID: 39755616 DOI: 10.1186/s12967-024-06022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025] Open
Abstract
CXCL14 is a highly conserved chemokine expressed in various cell types, playing crucial roles in both physiological and pathological processes, including immune regulation and tumorigenesis. Recently, the role of CXCL14 in tumors has attracted considerable attention. However, previous pan-cancer studies have reported inconsistencies regarding the effects of CXCL14 on tumors, particularly concerning its expression levels in tumor tissues and its influence on various phenotypes of cancer cells. This variability is believed to stem from the context-dependent nature of CXCL14, as different sources of CXCL14 and its secretion within distinct tumor microenvironments may mediate diverse biological effects. Such phenomena have also been observed in prostate cancer research. Despite a foundational understanding of CXCL14 in prostate cancer, there remains a lack of comprehensive reviews summarizing the specific roles of this chemokine and systematically analyzing the reasons behind its complex effects. Therefore, this article aims to discuss the role of CXCL14 in the tumor microenvironment of prostate cancer and explore future research directions and potential applications.
Collapse
Affiliation(s)
- Lei Tang
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215006, People's Republic of China
| | - Xin Chen
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215006, People's Republic of China
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, People's Republic of China
| | - Jianquan Hou
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215006, People's Republic of China.
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, People's Republic of China.
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
5
|
Hwangbo H, Cha HJ, Kim MY, Ji SY, Kim DH, Noh JS, Kim TH, Kim HS, Moon SK, Kim GY, Choi YH. Asparagi radix alleviates testosterone-induced benign prostatic hyperplasia by inhibiting 5α-reductase activity and androgen receptor signaling pathway. Nutr Res Pract 2024; 18:793-805. [PMID: 39651318 PMCID: PMC11621438 DOI: 10.4162/nrp.2024.18.6.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND/OBJECTIVES Recently, herbal medicines have gained attention for the treatment of benign prostatic hyperplasia (BPH), a common disease in elderly men. In this study, we aimed to determine the effect of ethanol extract of Asparagi radix (EAR), which is traditionally used to treat various diseases, on BPH development using a testosterone-induced BPH model. MATERIALS/METHODS Testosterone propionate (TP)-treated Sprague-Dawley rats were used to establish a BPH model in vivo. EAR was orally administered along with TP, and finasteride was used as a positive control. All rats were sacrificed at the end of the experiment, and pathological changes in the prostate tissue and levels of key biomarkers associated with BPH pathogenesis were assessed. RESULTS Oral administration of EAR significantly inhibited TP-induced BPH by reducing the prostate weight, lumen size, and epithelial thickness in a concentration-dependent manner. EAR also significantly abrogated the expression of 5α-reductase type 2 (SRD5A2), proliferating cell nuclear antigen, and prostate-specific antigen (PSA) induced by TP. Additionally, serum levels of testosterone, dihydrotestosterone, and PSA were elevated in the TP-induced group but decreased in the EAR-treated group. EAR also decreased the expression levels of the androgen receptor (AR) and its coactivators in TP-induced BPH model rats. CONCLUSION Our findings revealed that EAR protected against BPH by inhibiting 5α-reductase activity and AR signaling pathway, suggesting its potential for BPH treatment.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49104, Korea
| | - Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Da Hye Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| | - Jeong Sook Noh
- Department of Food Science & Nutrition, Tongmyong University, Busan 48520, Korea
| | - Tae Hee Kim
- Hamsoapharm Central Research, Jinan 55442, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea
| |
Collapse
|
6
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
7
|
Torres-Luna C, Wei S, Bhattiprolu S, Tuszynski G, Rothman VL, McNulty D, Yang J, Chang FN. G-Protein-Coupled Receptor-Associated Sorting Protein 1 Overexpression Is Involved in the Progression of Benign Prostatic Hyperplasia, Early-Stage Prostatic Malignant Diseases, and Prostate Cancer. Cancers (Basel) 2024; 16:3659. [PMID: 39518097 PMCID: PMC11544983 DOI: 10.3390/cancers16213659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Prostate cancer (PCa) is a prevalent malignancy, necessitating accurate diagnostic methods to distinguish it from benign conditions such as benign prostatic hyperplasia (BPH). Current diagnostic tools, relying primarily on serum prostate-specific antigen (PSA) levels, lack specificity, leading to an over-diagnosis and unnecessary treatment of patients with benign conditions. This study explores G-protein-coupled receptor-associated sorting protein 1 (GASP-1) as a more sensitive biomarker for PCa detection. Methods: Prostate tissue microarrays of healthy, BPH, and prostate cancer patients with different Gleason scores were studied. Polyclonal antibodies targeted against GASP-1 were used for routine immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) analyses. Results: The results indicated a 5-fold difference in serum GASP-1 levels between BPH and PCa, which was validated through GASP-1 IHC. Furthermore, a novel scoring system, the H-score, assesses GASP-1 granules' intensity and size, revealing a clear distinction between BPH and PCa. An additional analysis of GASP-1 expression between PCa cases with different Gleason scores reveals that GASP-1 overexpression correlates with PCa severity, providing insights into disease progression. Conclusions: The study supports GASP-1's role as a promising diagnostic marker, supplementing PSA testing, and offering improved risk stratification for PCa. Additionally, an open-source software system is introduced for an efficient GASP-1 granule color analysis, enhancing diagnostic accuracy.
Collapse
Affiliation(s)
- Cesar Torres-Luna
- Halcyon Diagnostics, 1200 Corporate Blvd. Ste. 10C, Lancaster, PA 17601, USA; (C.T.-L.); (G.T.); (V.L.R.); (D.M.); (J.Y.)
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA;
| | | | - George Tuszynski
- Halcyon Diagnostics, 1200 Corporate Blvd. Ste. 10C, Lancaster, PA 17601, USA; (C.T.-L.); (G.T.); (V.L.R.); (D.M.); (J.Y.)
| | - Vicki L. Rothman
- Halcyon Diagnostics, 1200 Corporate Blvd. Ste. 10C, Lancaster, PA 17601, USA; (C.T.-L.); (G.T.); (V.L.R.); (D.M.); (J.Y.)
| | - Declan McNulty
- Halcyon Diagnostics, 1200 Corporate Blvd. Ste. 10C, Lancaster, PA 17601, USA; (C.T.-L.); (G.T.); (V.L.R.); (D.M.); (J.Y.)
| | - Jeff Yang
- Halcyon Diagnostics, 1200 Corporate Blvd. Ste. 10C, Lancaster, PA 17601, USA; (C.T.-L.); (G.T.); (V.L.R.); (D.M.); (J.Y.)
| | - Frank N. Chang
- Halcyon Diagnostics, 1200 Corporate Blvd. Ste. 10C, Lancaster, PA 17601, USA; (C.T.-L.); (G.T.); (V.L.R.); (D.M.); (J.Y.)
| |
Collapse
|
8
|
Liu B, Wang X, Yang Z, Yin Z, Tang C, He Y, Ling Q, Huang Z, Feng S. A genetic study to identify pathogenic mechanisms and drug targets for benign prostatic hyperplasia: a multi-omics Mendelian randomization study. Sci Rep 2024; 14:23120. [PMID: 39367121 PMCID: PMC11452698 DOI: 10.1038/s41598-024-73466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) as a common geriatric disease in urology, the incidence and prevalence are rapidly increasing with the aging society, prompting an urgent need for effective prevention and treatment of BPH. However, limited therapeutic efficacy and higher risk of complications result in the treatment of BPH remaining challenging. The unclear pathogenic mechanism also hampers further exploration of therapeutic approaches for BPH. In this study, we used multi-omics methods to integrate genomics, transcriptomics, immunomics, and metabolomics data and identify biomolecules associated with BPH. We performed transcriptomic imputation, summary data-based Mendelian randomization (SMR), joint/conditional analysis, colocalization analysis, and FOCUS to explore high-confidence genes associated with BPH in blood and prostate tissue. Subsequently, three-step SMR was used to identify the DNA methylation sites regulating high-confidence genes to improve the pathogenic pathways of BPH. We also used cis-instruments of druggable genes to conduct SMR analysis to find potential drug targets for BPH. Finally, we used MR analysis to explore the immune pathways and metabolomics related to BPH. Multiple analytical methods identified BTN3A2 (Blood: TWAS Z score = 5.02912, TWAS P = 4.93 × 10-7; Prostate: TWAS Z score = 4.89, TWAS P = 1.01 × 10-6) and C4A (Blood: TWAS Z score = 4.90754, TWAS P = 9.22 × 10-7; Prostate: TWAS Z score = 5.084, TWAS P = 3.70 × 10-7) as high-confidence genes for BPH and identified the cg14345882-BTN3A2-BPH pathogenic pathway. We also used druggable gene data to identify 30 promising therapeutic target genes, including BTN3A2 and C4A. For MR analysis of immune pathways, we identified immune cell surface molecules as well as the inflammatory factor IL-17 (OR = 1.25, 95% CI = 1.09-1.43, PFDR = 0.12, Maximum likelihood) as risk factors for BPH. In addition, we found that disulfide levels of cysteinylglycine (OR = 1.11, 95% CI = 1.05-1.18, P = 5.18 × 10-4, Weighted median), oxidation levels of cysteinylglycine (OR = 1.09, 95% CI = 1.04-1.14, P = 3.87 × 10-4, Weighted median), and sebacate levels (OR = 1.05, 95% CI = 1.02-1.08, P = 3.0 × 10-4, Maximum likelihood) increase the risk of BPH. This multi-omics study explored biomolecules associated with BPH, improved the pathogenic pathways of BPH, and identified promising therapeutic targets. Our results provide evidence for future studies aimed at developing appropriate therapeutic interventions.
Collapse
Affiliation(s)
- Bohan Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xinyi Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zerui Yang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhaofa Yin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cai Tang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yushi He
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qi Ling
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhongli Huang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Shijian Feng
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology) and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Hsieh KL, Chang CH, Lin YC, Huang TJ, Chen MY. Lifestyle and risk factors associated with elevated prostate-specific antigen levels in rural men: implications for health counseling. Front Oncol 2024; 14:1451941. [PMID: 39376990 PMCID: PMC11456395 DOI: 10.3389/fonc.2024.1451941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Background The use of prostate-specific antigen (PSA) for early detection of prostate cancer (PCa) is common but controversial. In rural areas, PSA is widely used for screening because it is convenient and early-stage PCa often shows no symptoms. Studies suggest that PSA levels are linked to factors like unhealthy lifestyles, obesity, lack of exercise, inflammation, and aging. Proper use and interpretation of PSA are crucial for healthcare providers, especially in primary care settings. This study aims to explore the prevalence and factors linked to higher PSA levels in rural men. Methods We conducted a community-based cross-sectional study from March to December 2023 in the western coastal region of Taiwan. Men aged 40-75 years participated, completing a lifestyle questionnaire and providing blood samples for cardiometabolic biomarkers and PSA levels. PSA levels of ≥ 4.0 ng/mL were considered elevated. We used propensity score matching (PSM) and genetic matching (GM) for analysis, followed by regression analysis. Results In total, 3347 male adults with a mean age of 56.3 years (SD=11.8, range 40-75), and without cancer-related diseases, were enrolled. Findings indicated that 3.9% (n=130) of men aged 40-75 years had a PSA ≥ 4 ng/mL. and many of them did not adopt health-related behaviors, including inadequate servings of vegetables, water intake, and engaging in regular exercise. Furthermore, more than half of the participants had high blood pressure, and over one-quarter exhibited a higher waist-hip ratio and cardiometabolic diseases. After employing propensity score matching (PSM) and genetic matching (GM) with respect to age and education, the multivariate logistic regression model indicated that less water intake (p<0.01), higher waist-hip ratio (> 0.95) (p<0.05), and being diagnosed with cardiometabolic diseases (p<0.05) were significantly associated with a higher serum PSA level. Conclusion This study revealed that inadequate water intake and obesity related diseases are significant risk factors associated with elevated PSA levels among male adults living in rural areas. It is important for frontline healthcare providers to carefully interpret the meaning of a high PSA level. Additionally, launching a longitudinal study is necessary to further investigate its relation to PCa.
Collapse
Affiliation(s)
- Kun-Lu Hsieh
- Department of Family Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chia-Hao Chang
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Yu-Chih Lin
- Department of Family Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tung-Jung Huang
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Yunlin, Taiwan
| | - Mei-Yen Chen
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Research Fellow, Department of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
- School of Nursing, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Stella M, Russo GI, Leonardi R, Carcò D, Gattuso G, Falzone L, Ferrara C, Caponnetto A, Battaglia R, Libra M, Barbagallo D, Di Pietro C, Pernagallo S, Barbagallo C, Ragusa M. Extracellular RNAs from Whole Urine to Distinguish Prostate Cancer from Benign Prostatic Hyperplasia. Int J Mol Sci 2024; 25:10079. [PMID: 39337566 PMCID: PMC11432375 DOI: 10.3390/ijms251810079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
RNAs, especially non-coding RNAs (ncRNAs), are crucial players in regulating cellular mechanisms due to their ability to interact with and regulate other molecules. Altered expression patterns of ncRNAs have been observed in prostate cancer (PCa), contributing to the disease's initiation, progression, and treatment response. This study aimed to evaluate the ability of a specific set of RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and mRNAs, to discriminate between PCa and the non-neoplastic condition benign prostatic hyperplasia (BPH). After selecting by literature mining the most relevant RNAs differentially expressed in biofluids from PCa patients, we evaluated their discriminatory power in samples of unfiltered urine from 50 PCa and 50 BPH patients using both real-time PCR and droplet digital PCR (ddPCR). Additionally, we also optimized a protocol for urine sample manipulation and RNA extraction. This two-way validation study allowed us to establish that miRNAs (i.e., miR-27b-3p, miR-574-3p, miR-30a-5p, and miR-125b-5p) are more efficient biomarkers for PCa compared to long RNAs (mRNAs and lncRNAs) (e.g., PCA3, PCAT18, and KLK3), as their dysregulation was consistently reported in the whole urine of patients with PCa compared to those with BPH in a statistically significant manner regardless of the quantification methodology performed. Moreover, a significant increase in diagnostic performance was observed when molecular signatures composed of different miRNAs were considered. Hence, the abovementioned circulating ncRNAs represent excellent potential non-invasive biomarkers in urine capable of effectively distinguishing individuals with PCa from those with BPH, potentially reducing cancer overdiagnosis.
Collapse
Affiliation(s)
- Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Giorgio Ivan Russo
- Department of Urology, Polyclinic Hospital, University of Catania, 95123 Catania, Italy
| | - Rosario Leonardi
- Casa di Cura Musumeci GECAS, 95030 Gravina di Catania, Italy
- Department of Medicine and Surgery, University of Enna KORE, 94100 Enna, Italy
| | - Daniela Carcò
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Salvatore Pernagallo
- DESTINA Genomica S.L., Health Sciences Technology Park (PTS), Av. de la Innovación 1, Building Business Innovation Center (BIC), 18016 Granada, Spain
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Kanu SC, Ejezie FE, Ejezie CS, Eleazu CO. Effect of methanol extract of Plectranthus esculentus N.E.Br tuber and its fractions on indices of benign prostatic hyperplasia in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118301. [PMID: 38735419 DOI: 10.1016/j.jep.2024.118301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many ethnopharmacological properties (anti-tumor, etc.) have been credited to Plectranthus esculentus tuber but the scientific basis has not been established. AIM OF THE STUDY To evaluate the effect of methanol extract of P. esculentus tuber (MEPET) (phase 1) and its fractions (phase 2) on benign prostatic hyperplasia (BPH) in rats. MATERIALS AND METHODS The study was conducted in two phases. Phase 1, thirty-five male albino rats (6 weeks old) were divided into seven groups of five rats each: normal control (NC) received olive oil (subcutaneously) and water (orally); disease control (DC) received testosterone propionate (TP) (3 mg/kg) and water; test groups (1,2,3 and 4) received TP + MEPET at 100, 200, 400, 600 mg/kg respectively; positive control, received TP + finasteride (5 mg/70 kg). After 28 days, their relative prostate weights (RPW) and prostate specific antigen (PSA) were determined. Phase 2, thirty rats were divided into 6 groups of 5 rats each: NC received olive oil (subcutaneously daily) and dimethyl sulfoxide (DMSO) (orally); DC received TP (3 mg/kg), and DMSO; test group 1 received TP and aqueous fraction of MEPET (400 mg/kg); test group 2 received TP and methanol fraction of MEPET (400 mg/kg); test group 3 received TP, and ethyl acetate fraction of MEPET (400 mg/kg); positive control received TP and finasteride (5 mg/70 kg). After 28 days, their erythrocyte sedimentation rates, RPW, prostate levels of PSA, DHT, inflammatory, apoptotic markers and prostate histology were determined. RESULTS Ethyl acetate fraction of MEPET modulated most of the parameters of BPH in the rats in a manner akin to finasteride as corroborated by prostate histology. CONCLUSIONS EFPET could be useful in the treatment of BPH.
Collapse
Affiliation(s)
- Shedrach C Kanu
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria; Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Fidelis E Ejezie
- Department of Medical Biochemistry, College of Medicine, University of Nigeria Enugu Campus, Enugu State, Nigeria
| | - Chioma S Ejezie
- Department of Haematology and Immunology, University of Nigeria Teaching Hospital, Ituku-Ozalla Enugu, Nigeria
| | - Chinedum O Eleazu
- Department of Biochemistry, Alex-Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
12
|
Broomfield J, Kalofonou M, Bevan CL, Georgiou P. Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics. BIOSENSORS 2024; 14:443. [PMID: 39329818 PMCID: PMC11430765 DOI: 10.3390/bios14090443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.
Collapse
Affiliation(s)
- Joseph Broomfield
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Melpomeni Kalofonou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Pantelis Georgiou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
13
|
Can U, Coskun A, Canakci C, Simsek B, Karaca Y, Sabuncu K, Akca O. A new promising indicator in prostate cancer screening: Prostate-specific antigen fluctuation rate. Actas Urol Esp 2024; 48:470-475. [PMID: 38369288 DOI: 10.1016/j.acuroe.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 02/20/2024]
Abstract
OBJECTIVES To evaluate whether PSA fluctuation can be used to predict the risk of prostate cancer. MATERIALS AND METHODS The study included 1244 patients who underwent prostate biopsy at Kartal Dr. Lutfi Kirdar City Hospital between 2013 and 2021 (848 in non-cancer; 396 in cancer). The patient's age, last two PSA values (PSA1 and PSA2) within three months before the biopsy, the duration between two PSAs (days), prostate size (g) and PSA density (PSAD) were all recorded. PSA fluctuation rate (PSAfr) was defined as the change rate between two PSA values. RESULTS PSAfr was significantly higher in the non-cancer group than in the prostate cancer group (15.2% (20.5) and 9.6% (14.4), P=.019). A Simple linear regression was used to examine the relationship between PSAfr and other factors such as age, PSA, PSAD, and prostate volume, but it was shown that these had no effect on PSA fluctuations. ROC analysis revealed a relatively low Area Under the Curve (AUC) for PSAfr (AUC, 0.584 (0.515-0.653)). However, the cut-off value of 12.35% was found to be significant, with a sensitivity of 58% and a specificity of 59% (P:.019, 95%CI). The odds ratio, adjusted for age, PSAD, and PSA2, was calculated as 0.545 (0.33-0.89) using logistic regression analysis to show the relationship between prostate cancer and PSAfr. As a result, those with high PSAfr were found to be 1.83 times less likely to be diagnosed with prostate cancer than those with low fluctuations. CONCLUSION PSAfr could be used in nomograms to predict prostate cancer risk and reduce the number of unnecessary biopsies.
Collapse
Affiliation(s)
- U Can
- Servicio de Urología, Hospital Urbano de Kartal Dr. Lutfi Kirdar, Estambul, Turkey.
| | - A Coskun
- Servicio de Urología, Hospital Urbano de Kartal Dr. Lutfi Kirdar, Estambul, Turkey
| | - C Canakci
- Servicio de Urología, Hospital Urbano de Kartal Dr. Lutfi Kirdar, Estambul, Turkey
| | - B Simsek
- Servicio de Urología, Hospital Liv-Ulus, Estambul, Turkey
| | - Y Karaca
- Servicio de Urología, Hospital de Formación e Investigación, Sancaktepe, Turkey
| | - K Sabuncu
- Servicio de Urología, Facultad de Medicina, Universidad de Medipol, Estambul, Turkey
| | - O Akca
- Servicio de Urología, Facultad de Medicina, Universidad de Bahcesehir, Estambul, Turkey
| |
Collapse
|
14
|
Hamed MA, Wasinger V, Wang Q, Biazik J, Graham P, Malouf D, Bucci J, Li Y. Optimising Extracellular Vesicle Metabolomic Methodology for Prostate Cancer Biomarker Discovery. Metabolites 2024; 14:367. [PMID: 39057690 PMCID: PMC11279087 DOI: 10.3390/metabo14070367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional diagnostic tools for prostate cancer (PCa), such as prostate-specific antigen (PSA), transrectal ultrasound (TRUS), digital rectal examination (DRE), and tissue biopsy face, limitations in individual risk stratification due to invasiveness or reliability issues. Liquid biopsy is a less invasive and more accurate alternative. Metabolomic analysis of extracellular vesicles (EVs) holds a promise for detecting non-genetic alterations and biomarkers in PCa diagnosis and risk assessment. The current research gap in PCa lies in the lack of accurate biomarkers for early diagnosis and real-time monitoring of cancer progression or metastasis. Establishing a suitable approach for observing dynamic EV metabolic alterations that often occur earlier than being detectable by other omics technologies makes metabolomics valuable for early diagnosis and monitoring of PCa. Using four distinct metabolite extraction approaches, the metabolite cargo of PC3-derived large extracellular vesicles (lEVs) was evaluated using a combination of methanol, cell shearing using microbeads, and size exclusion filtration, as well as two fractionation chemistries (pHILIC and C18 chromatography) that are also examined. The unfiltered methanol-microbeads approach (MB-UF), followed by pHILIC LC-MS/MS for EV metabolite extraction and analysis, is effective. Identified metabolites such as L-glutamic acid, pyruvic acid, lactic acid, and methylmalonic acid have important links to PCa and are discussed. Our study, for the first time, has comprehensively evaluated the extraction and separation methods with a view to downstream sample integrity across omics platforms, and it presents an optimised protocol for EV metabolomics in PCa biomarker discovery.
Collapse
Affiliation(s)
- Mahmoud Assem Hamed
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia;
| | - Qi Wang
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Joanna Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia;
| | - Peter Graham
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - David Malouf
- Department of Urology, St. George Hospital, Kogarah, NSW 2217, Australia;
| | - Joseph Bucci
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW 2052, Australia; (M.A.H.); (Q.W.); (P.G.); (J.B.)
- Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
15
|
Elbialy A, Kappala D, Desai D, Wang P, Fadiel A, Wang SJ, Makary MS, Lenobel S, Sood A, Gong M, Dason S, Shabsigh A, Clinton S, Parwani AV, Putluri N, Shvets G, Li J, Liu X. Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research. Cells 2024; 13:1005. [PMID: 38920635 PMCID: PMC11201841 DOI: 10.3390/cells13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Deepthi Kappala
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Dhruv Desai
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL 60637, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mina S. Makary
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Vascular and Interventional Radiology, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott Lenobel
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Division of Musculoskeletal Imaging, Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Gong
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shawn Dason
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmad Shabsigh
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Clinton
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
| | - Anil V. Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (A.E.)
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Armstrong L, Willoughby CE, McKenna DJ. The Suppression of the Epithelial to Mesenchymal Transition in Prostate Cancer through the Targeting of MYO6 Using MiR-145-5p. Int J Mol Sci 2024; 25:4301. [PMID: 38673886 PMCID: PMC11050364 DOI: 10.3390/ijms25084301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
| | | | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; (L.A.); (C.E.W.)
| |
Collapse
|
17
|
Naqvi RA, Valverde A, Yadavalli T, Bobat FI, Capistrano KJ, Shukla D, Naqvi AR. Viral MicroRNAs in Herpes Simplex Virus 1 Pathobiology. Curr Pharm Des 2024; 30:649-665. [PMID: 38347772 DOI: 10.2174/0113816128286469240129100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024]
Abstract
Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Fatima Ismail Bobat
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Kristelle J Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
18
|
Applegate CC, Nelappana MB, Nielsen EA, Kalinowski L, Dobrucki IT, Dobrucki LW. RAGE as a Novel Biomarker for Prostate Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:4889. [PMID: 37835583 PMCID: PMC10571903 DOI: 10.3390/cancers15194889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in driving prostate cancer (PCa) growth, aggression, and metastasis through the fueling of chronic inflammation in the tumor microenvironment. This systematic review and meta-analysis summarizes and analyzes the current clinical and preclinical data to provide insight into the relationships among RAGE levels and PCa, cancer grade, and molecular effects. A multi-database search was used to identify original clinical and preclinical research articles examining RAGE expression in PCa. After screening and review, nine clinical and six preclinical articles were included. The associations of RAGE differentiating benign prostate hyperplasia (BPH) or normal prostate from PCa and between tumor grades were estimated using odds ratios (ORs) and associated 95% confidence intervals (CI). Pooled estimates were calculated using random-effect models due to study heterogeneity. The clinical meta-analysis found that RAGE expression was highly likely to be increased in PCa when compared to BPH or normal prostate (OR: 11.3; 95% CI: 4.4-29.1) and that RAGE was overexpressed in high-grade PCa when compared to low-grade PCa (OR: 2.5; 95% CI: 1.8-3.4). In addition, meta-analysis estimates of preclinical studies performed by albatross plot generation found robustly positive associations among RAGE expression/activation and PCa growth and metastatic potential. This review demonstrates that RAGE expression is strongly tied to PCa progression and can serve as an effective diagnostic target to differentiate between healthy prostate, low-grade PCa, and high-grade PCa, with potential theragnostic applications.
Collapse
Affiliation(s)
- Catherine C. Applegate
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael B. Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elaine A. Nielsen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61853, USA
| | - Lawrence W. Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61853, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Davoudi F, Moradi A, Becker TM, Lock JG, Abbey B, Fontanarosa D, Haworth A, Clements J, Ecker RC, Batra J. Genomic and Phenotypic Biomarkers for Precision Medicine Guidance in Advanced Prostate Cancer. Curr Treat Options Oncol 2023; 24:1451-1471. [PMID: 37561382 PMCID: PMC10547634 DOI: 10.1007/s11864-023-01121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/11/2023]
Abstract
OPINION STATEMENT Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.
Collapse
Affiliation(s)
- Fatemeh Davoudi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Therese M. Becker
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
| | - John G. Lock
- Ingham Institute for Applied Medical Research, University of Western Sydney and University of New South Wales, Liverpool, 2170 Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, 2052 Australia
| | - Brian Abbey
- Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, VIC Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Gardens Point Campus, 2 George St, Brisbane, QLD 4000 Australia
- Centre for Biomedical Technologies (CBT), Queensland University of Technology, Brisbane, QLD 4000 Australia
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW 2006 Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| | - Rupert C. Ecker
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
- TissueGnostics GmbH, EU 1020 Vienna, Austria
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, 4059 Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, 4059 Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, 4102 Australia
| |
Collapse
|
20
|
Armstrong L, Willoughby CE, McKenna DJ. Targeting of AKT1 by miR-143-3p Suppresses Epithelial-to-Mesenchymal Transition in Prostate Cancer. Cells 2023; 12:2207. [PMID: 37759434 PMCID: PMC10526992 DOI: 10.3390/cells12182207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
An altered expression of miR-143-3p has been previously reported in prostate cancer where it is purported to play a tumor suppressor role. Evidence from other cancers suggests miR-143-3p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key biological process required for metastasis. However, in prostate cancer the interaction between miR-143-3p and EMT-associated mechanisms remains unclear. Therefore, this paper investigated the link between miR-143-3p and EMT in prostate cancer using in vitro and in silico analyses. PCR detected that miR-143-3p expression was significantly decreased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) data showed a significant downregulation of miR-143-3p in prostate cancer, correlating with pathological markers of advanced disease. Functional enrichment analysis confirmed the significant association of miR-143-3p and its target genes with EMT. The EMT-linked gene AKT1 was subsequently shown to be a novel target of miR-143-3p in prostate cancer cells. The in vitro manipulation of miR-143-3p levels significantly altered the cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Further TCGA PRAD analysis suggested miR-143-3p tumor expression may be a useful predictor of disease recurrence. In summary, this is the first study to report that miR-143-3p overexpression in prostate cancer may inhibit EMT by targeting AKT1. The findings suggest miR-143-3p could be a useful diagnostic and prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
| | | | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; (L.A.); (C.E.W.)
| |
Collapse
|
21
|
Wells KV, Krackeler ML, Jathal MK, Parikh M, Ghosh PM, Leach JK, Genetos DC. Prostate cancer and bone: clinical presentation and molecular mechanisms. Endocr Relat Cancer 2023; 30:e220360. [PMID: 37226936 PMCID: PMC10696925 DOI: 10.1530/erc-22-0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| | - Margaret L Krackeler
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Maitreyee K Jathal
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, USA
- Veterans Affairs-Northern California Health System, Mather, California, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Veterans Affairs-Northern California Health System, Mather, California, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
| | - J Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California Davis School of Veterinary Medicine, Davis, California, USA
| |
Collapse
|
22
|
Mougola Bissiengou P, Montcho Comlan JG, Atsame Ebang G, Sylla Niang M, Djoba Siawaya JF. Prostate malignant tumor and benign prostatic hyperplasia microenvironments in black African men: Limited infiltration of CD8+ T lymphocytes, NK-cells, and high frequency of CD73+ stromal cells. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1817. [PMID: 37092584 PMCID: PMC10440842 DOI: 10.1002/cnr2.1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Anti-cancerous immunology has yet to be investigated in the African black population, despite being the dawn of precision medicine. AIM Here we investigated the tumor microenvironment of prostate cancer and benign prostatic hyperplasia (BPH) in black Africans. METHODS Through immunohistochemistry analysis of prostate cancer and BPH patients' biopsies, we investigated the expression and distribution of CD73, CCD8 T-lymphocytes, and natural killer cells. In addition, we looked at tumor-infiltrating features CD8 T-lymphocytes and natural killer cells. RESULTS We show for the first time in black Africans a high expression of CD73 in epithelial-stromal cells and virtually no infiltration of CD8 T lymphocytes and natural killer cells in the tumoral area. In addition, CD73 was seven (7) times more likely to be expressed in prostate cancer stromal tissues than in benign prostatic hyperplasia tissues (odds ratio = 7.2; χ2 = 21; p < .0001). In addition, PSA concentration was significantly higher in prostate cancer patients than in BPH patients (p < .001). Also, the PSA-based ROC. analysis showed an area under the curve of 0.87 (p < .0001). CONCLUSION CD73 expression is more likely expressed in prostate cancer stromal tissues than in benign prostatic hyperplasia tissues. The features of prostate cancer in Black Africans suggest CD73 expression as a possible target for immunotherapy in this population.
Collapse
Affiliation(s)
- Pélagie Mougola Bissiengou
- Service d'Immunologie, Département des Sciences Fondamentales, Faculté de MédecineUniversité des Sciences de la SantéLibrevilleGabon
- Service d'Immunologie, Département des Sciences Biologiques et Pharmaceutiques Appliquées, Faculté de Médecine, de Pharmacie et d'OdontostomatologieUniversité Cheikh Anta DiopDakarSenegal
| | - Jérôme Gaston Montcho Comlan
- Service d'Immunologie, Département des Sciences Biologiques et Pharmaceutiques Appliquées, Faculté de Médecine, de Pharmacie et d'OdontostomatologieUniversité Cheikh Anta DiopDakarSenegal
| | - Gabrielle Atsame Ebang
- Unité d'anatomie‐Cytologie‐PathologieCentre Hospitalier Universitaire de LibrevilleLibrevilleGabon
| | - Maguette Sylla Niang
- Service d'Immunologie, Département des Sciences Biologiques et Pharmaceutiques Appliquées, Faculté de Médecine, de Pharmacie et d'OdontostomatologieUniversité Cheikh Anta DiopDakarSenegal
| | - Joel Fleury Djoba Siawaya
- Service LaboratoireCentre Hospitalier Universitaire Mère‐Enfant Fondation Jeanne EBORILibrevilleGabon
| |
Collapse
|
23
|
Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Morales-Pacheco M, Martínez-Martínez E, Morales-Montor JG, Servín-Haddad A, Izquierdo-Luna JS, Rodríguez-Martínez G, Ramos-Godínez MDP, González-Covarrubias V, Cañavera-Constantino A, González-Ramírez I, Su B, Leong HS, Rodríguez-Dorantes M. Unraveling the Role of EV-Derived miR-150-5p in Prostate Cancer Metastasis and Its Association with High-Grade Gleason Scores: Implications for Diagnosis. Cancers (Basel) 2023; 15:4148. [PMID: 37627176 PMCID: PMC10453180 DOI: 10.3390/cancers15164148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis remains the leading cause of mortality in prostate cancer patients. The presence of tumor cells in lymph nodes is an established prognostic indicator for several cancer types, such as melanoma, breast, oral, pancreatic, and cervical cancers. Emerging evidence highlights the role of microRNAs enclosed within extracellular vesicles as facilitators of molecular communication between tumors and metastatic sites in the lymph nodes. This study aims to investigate the potential diagnostic utility of EV-derived microRNAs in liquid biopsies for prostate cancer. By employing microarrays on paraffin-embedded samples, we characterized the microRNA expression profiles in metastatic lymph nodes, non-metastatic lymph nodes, and primary tumor tissues of prostate cancer. Differential expression of microRNAs was observed in metastatic lymph nodes compared to prostate tumors and non-metastatic lymph node tissues. Three microRNAs (miR-140-3p, miR-150-5p, and miR-23b-3p) were identified as differentially expressed between tissue and plasma samples. Furthermore, we evaluated the expression of these microRNAs in exosomes derived from prostate cancer cells and plasma samples. Intriguingly, high Gleason score samples exhibited the lowest expression of miR-150-5p compared to control samples. Pathway analysis suggested a potential regulatory role for miR-150-5p in the Wnt pathway and bone metastasis. Our findings suggest EV-derived miR-150-5p as a promising diagnostic marker for identifying patients with high-grade Gleason scores and detecting metastasis at an early stage.
Collapse
Affiliation(s)
- Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Alejandro Servín-Haddad
- Urology Department, Hospital General Dr. Manuel Gea Gonzalez, Mexico City 14080, Mexico; (J.G.M.-M.); (A.S.-H.)
| | | | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| | | | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana, Mexico City 14387, Mexico
| | - Boyang Su
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Hon S. Leong
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
- Biological Sciences Platform, Sunybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (M.C.-B.)
| |
Collapse
|
24
|
Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O, Bray F, Brawley O, Luckenbaugh AN, Mucci L, Morgan TM, Carlsson SV. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur Urol 2023; 84:191-206. [PMID: 37202314 PMCID: PMC10851915 DOI: 10.1016/j.eururo.2023.04.021] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
CONTEXT Prostate cancer (PCa) is one of the most common cancers worldwide. Understanding the epidemiology and risk factors of the disease is paramount to improve primary and secondary prevention strategies. OBJECTIVE To systematically review and summarize the current evidence on the descriptive epidemiology, large screening studies, diagnostic techniques, and risk factors of PCa. EVIDENCE ACQUISITION PCa incidence and mortality rates for 2020 were obtained from the GLOBOCAN database of the International Agency for Research on Cancer. A systematic search was performed in July 2022 using PubMed/MEDLINE and EMBASE biomedical databases. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and was registered in PROSPERO (CRD42022359728). EVIDENCE SYNTHESIS Globally, PCa is the second most common cancer, with the highest incidence in North and South America, Europe, Australia, and the Caribbean. Risk factors include age, family history, and genetic predisposition. Additional factors may include smoking, diet, physical activity, specific medications, and occupational factors. As PCa screening has become more accepted, newer approaches such as magnetic resonance imaging (MRI) and biomarkers have been implemented to identify patients who are likely to harbor significant tumors. Limitations of this review include the evidence being derived from meta-analyses of mostly retrospective studies. CONCLUSIONS PCa remains the second most common cancer among men worldwide. PCa screening is gaining acceptance and will likely reduce PCa mortality at the cost of overdiagnosis and overtreatment. Increasing use of MRI and biomarkers for the detection of PCa may mitigate some of the negative consequences of screening. PATIENT SUMMARY Prostate cancer (PCa) remains the second most common cancer among men, and screening for PCa is likely to increase in the future. Improved diagnostic techniques can help reduce the number of men who need to be diagnosed and treated to save one life. Avoidable risk factors for PCa may include factors such as smoking, diet, physical activity, specific medications, and certain occupations.
Collapse
Affiliation(s)
- Oskar Bergengren
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Kelly R Pekala
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jonathan Fainberg
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean F Mungovan
- Westmead Private Physiotherapy Services and The Clinical Research Institute, Westmead Private Hospital, Sydney, Australia
| | - Ola Bratt
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Freddie Bray
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France
| | - Otis Brawley
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lorelei Mucci
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Sigrid V Carlsson
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Bellei E, Caramaschi S, Giannico GA, Monari E, Martorana E, Reggiani Bonetti L, Bergamini S. Research of Prostate Cancer Urinary Diagnostic Biomarkers by Proteomics: The Noteworthy Influence of Inflammation. Diagnostics (Basel) 2023; 13:diagnostics13071318. [PMID: 37046536 PMCID: PMC10093134 DOI: 10.3390/diagnostics13071318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Nowadays, in the case of suspected prostate cancer (PCa), tissue needle biopsy remains the benchmark for diagnosis despite its invasiveness and poor tolerability, as serum prostate-specific antigen (PSA) is limited by low specificity. The aim of this proteomic study was to identify new diagnostic biomarkers in urine, an easily and non-invasively available sample, able to selectively discriminate cancer from benign prostatic hyperplasia (BPH), evaluating whether the presence of inflammation may be a confounding parameter. The analysis was performed by two-dimensional gel electrophoresis (2-DE), mass spectrometry (LC-MS/MS) and Enzyme-Linked Immunosorbent Assay (ELISA) on urine samples from PCa and BPH patients, divided into subgroups based on the presence or absence of inflammation. Significant quantitative and qualitative differences were found in the urinary proteomic profile of PCa and BPH groups. Of the nine differentially expressed proteins, only five can properly be considered potential biomarkers of PCa able to discriminate the two diseases, as they were not affected by the inflammatory process. Therefore, the proteomic research of novel and reliable urinary biomarkers of PCa should be conducted considering the presence of inflammation as a realistic interfering element, as it could hinder the detection of important protein targets.
Collapse
Affiliation(s)
- Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Stefania Caramaschi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, AOU Policlinico di Modena, 41124 Modena, Italy
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuela Monari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Eugenio Martorana
- Division of Urology, New Civilian Hospital of Sassuolo, 41049 Modena, Italy
| | - Luca Reggiani Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, AOU Policlinico di Modena, 41124 Modena, Italy
| | - Stefania Bergamini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
26
|
Angel CZ, Stafford MYC, McNally CJ, Nesbitt H, McKenna DJ. MiR-21 Is Induced by Hypoxia and Down-Regulates RHOB in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041291. [PMID: 36831632 PMCID: PMC9954526 DOI: 10.3390/cancers15041291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Tumour hypoxia is a well-established contributor to prostate cancer progression and is also known to alter the expression of several microRNAs. The over-expression of microRNA-21 (miR-21) has been consistently linked with many cancers, but its role in the hypoxic prostate tumour environment has not been well studied. In this paper, the link between hypoxia and miR-21 in prostate cancer is investigated. A bioinformatic analysis of The Cancer Genome Atlas (TCGA) prostate biopsy datasets shows the up-regulation of miR-21 is significantly associated with prostate cancer and clinical markers of disease progression. This up-regulation of miR-21 expression was shown to be caused by hypoxia in the LNCaP prostate cancer cell line in vitro and in an in vivo prostate tumour xenograft model. A functional enrichment analysis also revealed a significant association of miR-21 and its target genes with processes related to cellular hypoxia. The over-expression of miR-21 increased the migration and colony-forming ability of RWPE-1 normal prostate cells. In vitro and in silico analyses demonstrated that miR-21 down-regulates the tumour suppressor gene Ras Homolog Family Member B (RHOB) in prostate cancer. Further a TCGA analysis illustrated that miR-21 can distinguish between different patient outcomes following therapy. This study presents evidence that hypoxia is a key contributor to the over-expression of miR-21 in prostate tumours, which can subsequently promote prostate cancer progression by suppressing RHOB expression. We propose that miR-21 has good potential as a clinically useful diagnostic and prognostic biomarker of hypoxia and prostate cancer.
Collapse
Affiliation(s)
- Charlotte Zoe Angel
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | | | - Christopher J. McNally
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Heather Nesbitt
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
| | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK
- Correspondence:
| |
Collapse
|
27
|
Stafford MYC, McKenna DJ. MiR-182 Is Upregulated in Prostate Cancer and Contributes to Tumor Progression by Targeting MITF. Int J Mol Sci 2023; 24:ijms24031824. [PMID: 36768146 PMCID: PMC9914973 DOI: 10.3390/ijms24031824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Altered expression of microRNA-182-5p (miR-182) has been consistently linked with many cancers, but its specific role in prostate cancer remains unclear. In particular, its contribution to epithelial-to-mesenchymal transition (EMT) in this setting has not been well studied. Therefore, this paper profiles the expression of miR-182 in prostate cancer and investigates how it may contribute to progression of this disease. In vitro experiments on prostate cancer cell lines and in silico analyses of The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) datasets were performed. PCR revealed miR-182 expression was significantly increased in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of TCGA PRAD data similarly showed upregulation of miR-182 was significantly associated with prostate cancer and clinical markers of disease progression. Functional enrichment analysis confirmed a significant association of miR-182 and its target genes with EMT. The EMT-linked gene MITF (melanocyte inducing transcription factor) was subsequently shown to be a novel target of miR-182 in prostate cancer cells. Further TCGA analysis suggested miR-182 expression can be an indicator of patient outcomes and disease progression following therapy. In summary, this is the first study to report that miR-182 over-expression in prostate cancer may contribute to EMT by targeting MITF expression. We propose miR-182 as a potentially useful diagnostic and prognostic biomarker for prostate cancer and other malignancies.
Collapse
|
28
|
Su Z, Wang G, Li L. CHRDL1, NEFH, TAGLN and SYNM as novel diagnostic biomarkers of benign prostatic hyperplasia and prostate cancer. Cancer Biomark 2023; 38:143-159. [PMID: 37781794 DOI: 10.3233/cbm-230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are common male diseases whose incidence rates gradually increase with age. They seriously affect men's physical health and quality of life. This study aimed to identify new biomarkers for the diagnosis of BPH and PCa. METHODS Two datasets, GSE28204 and GSE134051 (including human PCa and BPH), were downloaded from the GEO database. The batch effect was removed for merging, and then differential gene expression analysis was conducted to identify BPH and PCa cases. The diagnostic biomarkers of BPH and PCa were further screened using machine learning and bioinformatics. ROC curves were drawn to evaluate the diagnostic accuracy of the selected biomarkers. An online website and qPCR were used to preliminarily explore the expression levels of PCa biomarkers. The correlations between the expression of biomarkers and the tumor microenvironment, tumor mutation load and immunotherapy drugs were evaluated. RESULTS We identified fifteen genes (CHRDL1, DES, FLNC, GSTP1, MYL9, TGFB3, NEFH, TAGLN, SPARCL1, SYNM, TRPM8, HPN, PLA2G7, ENTPD5 and GPR160) as critical diagnostic biomarkers. After reviewing the literature on all selected biomarkers, we found few studies on the four genes CHRDL1, NEFH, TAGLN and SYNM in BPH or PCa. We defined these four genes as new potential diagnostic biomarkers (NPDBs) of BPH and PCa. All NPDBs were downregulated in PCa patients and PCa cell lines and upregulated in BPH patients and cell lines. When the immune landscape and mutation frequencies were analyzed, the results showed that the tumor microenvironment (TME), immune landscape, tumor mutation burden, and drug response were significantly correlated with NPDB expressions. CONCLUSIONS We found four new diagnostic markers of BPH and PCa, which may facilitate the early diagnosis, treatment, and immunotherapeutic responses assessment and may be of major value in guiding clinical practice.
Collapse
Affiliation(s)
- Zhiyong Su
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guanghui Wang
- Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Leilei Li
- Department of Pathology, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
29
|
Kim SS, Lee SC, Lim B, Shin SH, Kim MY, Kim SY, Lim H, Charton C, Shin D, Moon HW, Kim J, Park D, Park WY, Lee JY. DNA methylation biomarkers distinguishing early-stage prostate cancer from benign prostatic hyperplasia. Prostate Int 2023. [DOI: 10.1016/j.prnil.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
30
|
He W, Zhang F, Jiang F, Liu H, Wang G. Correlations between serum levels of microRNA-148a-3p and microRNA-485-5p and the progression and recurrence of prostate cancer. BMC Urol 2022; 22:195. [PMID: 36434610 PMCID: PMC9701040 DOI: 10.1186/s12894-022-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Unpredicted postoperative recurrence of prostate cancer, one of the most common malignancies among males worldwide, has become a prominent issue affecting patients after treatment. Here, we investigated the correlation between the serum miR-148a-3p and miR-485-5p expression levels and cancer recurrence in PCa patients, aiming to identify new biomarkers for diagnosis and predicting postoperative recurrence of prostate cancer. METHODS A total of 198 male PCa cases treated with surgery, postoperative radiotherapy, and chemotherapy were involved in the presented study. Serum levels of miR-148a-3p and miR-485-5p were measured before the initial operation for the involved cases, which were then followed up for two years to monitor the recurrence of cancer and to split the cases into recurrence and non-recurrence groups. Comparison of the relative expressions of serum miR-148a-3p and miR-485-5p were made and related to other clinic pathological features. RESULTS Pre-surgery serum levels of miR-148a-3p in patients with TNM stage cT1-2a prostate cancer (Gleason score < 7) were significantly lower (P < 0.05) than levels in patients with TNM Classification of Malignant Tumors (TNM) stage cT2b and higher prostate cancer (Gleason score ≥ 7). pre-surgery serum levels of miR-485-5p in patients with TNM stage cT1-2a prostate cancer (Gleason score < 7) were significantly higher (P < 0.05) than in patients with TNM stage cT2b and higher cancer (Gleason score ≥ 7). Serum miR-148a-3p level in recurrence group is higher than the non-recurrence group (P < 0.05) while serum miR-485-5p level in recurrence group is lower than non-recurrence group (P < 0.05). ROC curve analysis showed the AUCs of using miR-148a-3p, miR-485-5p, and combined detection for predicting recurrence of prostate cancer were 0.825 (95% CI 0.765-0.875, P < 0.0001), 0.790 (95% CI 0.726-0.844, P < 0.0001), and 0.913 (95% CI 0.865-0.948, P < 0.0001). CONCLUSION Pre-surgery serum miR-148a-3p level positively correlates while miR-485-5p level negatively correlates with prostate cancer's progressing and postoperative recurrence. Both molecules show potential to be used for predicting postoperative recurrence individually or combined.
Collapse
Affiliation(s)
- Wenyan He
- grid.513202.7Department of Urology, Yan’an People’s Hospital, Yan’an, China
| | - Furong Zhang
- grid.507892.10000 0004 8519 1271Department of Neurology, Affiliated Hospital of Yan’an University, Yan’an, China
| | - Feng Jiang
- grid.412750.50000 0004 1936 9166Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Huan Liu
- grid.412750.50000 0004 1936 9166Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY USA
| | - Gang Wang
- grid.513202.7Department of Urology, Yan’an People’s Hospital, Yan’an, China
| |
Collapse
|
31
|
Tao R, Liu E, Zhao X, Han L, Yu B, Mao H, Yang W, Gao X. Combination of Ligustri Lucidi Fructus with Ecliptae Herba and their phytoestrogen or phytoandrogen like active pharmaceutical ingredients alleviate oestrogen/testosterone-induced benign prostatic hyperplasia through regulating steroid 5-α-reductase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154169. [PMID: 35636178 DOI: 10.1016/j.phymed.2022.154169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a urinary system disease with high prevalence among the middle and elder men. In BPH, proliferation of prostate cells and the imbanlance between androgen and estrogen are both important inducers. Previous studies have demonstrated that compounds from Ligustri Lucidi Fructus (LLF) and Ecliptae Herba (EH) are of phytoestrogenic or phytoandrogenic activities. The combination of LLF with EH at the ratio of 1:1 on crude drugs quantity is called Erzhi formula (EZF), which is used for in vivo research of our study. PURPOSE This study aimed to investigate potential mechanisms of EZF and its active pharmaceutical ingredients on BPH in vitro and in vivo. METHODS Therapeutic effects of EZF was evaluated in E2/testosterone (1:100) induced BPH rats model. The pathological changes of prostate, concentrations of testosterone, DHT, E2, PSA in rats' plasma and prostate were detected. The expressions of PCNA, AR, ERα, ERβ, SRD5A1, SRD5A2 were measured in BPH rat prostates and E2-stimulated human benign prostatic epithelial cells (BPH-1). RESULTS EZF treatment significantly attenuated rat prostate enlargement, alleviated BPH pathological features, and decreased the expression of PCNA. The up-regulation of AR, ERα, SRD5A1/2 expressions, and down-regulation of ERβ expression at prostate of rat BPH model were significantly blocked by EZF administration. The expression levels of testosterone, DHT, E2, PSA were strongly inhibited by EZF treatment. At the cellular level, ligustrosidic acid and echinocystic acid inhibited E2-induced BPH-1 cell proliferation and PCNA expressions, which were consistent with the results in vivo. And these two ingredients also down-regulated the expressions of AR, ERα, SRD5A1/2 and up-regulated the expression of ERβ in BPH-1 cells. CONCLUSION EZF, ligustrosidic acid from LLF and echinocystic acid from EH showed inhibitive effects on BPH via down-regulating prostatic AR, ERα, SRD5A1/2 expressions and up-regulating ERβ expression.
Collapse
Affiliation(s)
- Rui Tao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoping Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
32
|
Coradduzza D, Solinas T, Balzano F, Culeddu N, Rossi N, Cruciani S, Azara E, Maioli M, Zinellu A, De Miglio MR, Madonia M, Falchi M, Carru C. miRNAs as molecular biomarkers for prostate cancer. J Mol Diagn 2022; 24:1171-1180. [PMID: 35835374 DOI: 10.1016/j.jmoldx.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA able to regulate specific mRNA stability, thus influencing target gene expression. Disrupted levels of several miRNA have been associated with prostate cancer, the leading cause of cancer death among men and the fifth leading cause of death worldwide. Here, we investigated whether miR-145, miR-148, and miR-185 circulating levels in plasma could be used as molecular biomarkers, to allow distinguishing between individuals with benign prostatic hyperplasia, precancerous lesion, and prostate cancer. In this study, we recruited 170 urological clinic patients with suspected prostate cancer who underwent prostate biopsy. Total RNA was isolated from plasma, and TaqMan MicroRNA assays were used to analyze miR-145, miR-185, and miR-148 expression. First, differential miRNA expression among patient groups was evaluated. Then, miRNA levels were combined with clinical assessment outcomes, including results from invasive tests, using multivariate analysis to examine their ability in discriminating among the three patient groups. Our results suggest that miRNA is a promising molecular tool for clinical management of at-risk patients.
Collapse
Affiliation(s)
| | - Tatiana Solinas
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari
| | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Nicola Culeddu
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Niccolò Rossi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Massimo Madonia
- Urologic Clinic, Dep. of Clinical and Experimental Medicine, University of Sassari
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; University Hospital of Sassari (AOU), Sassari, Italy.
| |
Collapse
|
33
|
McNally CJ, Watt J, Kurth MJ, Lamont JV, Moore T, Fitzgerald P, Pandha H, McKenna DJ, Ruddock MW. A Novel Combination of Serum Markers in a Multivariate Model to Help Triage Patients Into “Low-” and “High-Risk” Categories for Prostate Cancer. Front Oncol 2022; 12:837127. [PMID: 35664747 PMCID: PMC9161691 DOI: 10.3389/fonc.2022.837127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Almost 50,000 men in the United Kingdom (UK) are diagnosed each year with prostate cancer (PCa). Secondary referrals for investigations rely on serum prostate-specific antigen (PSA) levels and digital rectal examination. However, both tests lack sensitivity and specificity, resulting in unnecessary referrals to secondary care for costly and invasive biopsies. Materials and Methods Serum samples and clinical information were collected from N = 125 age-matched patients (n = 61 non-PCa and n = 64 PCa) and analyzed using Biochip Array Technology on high-sensitivity cytokine array I (IL-2, IL-4, IL-6, IL-8, IL-10, IL-1α, IL-1β, TNFα, MCP-1, INFγ, EGF, and VEGF), cerebral array II (CRP, D-dimer, neuron-specific enolase, and sTNFR1), and tumor PSA oncology array (fPSA, tPSA, and CEA). Results The data showed that 11/19 (68.8%) markers were significantly different between the non-PCa and the PCa patients. A combination of EGF, log10 IL-8, log10 MCP-1, and log10 tPSA significantly improved the predictive potential of tPSA alone to identify patients with PCa (DeLong, p < 0.001). This marker combination had an increased area under the receiver operator characteristic (0.860 vs. 0.700), sensitivity (78.7 vs. 68.9%), specificity (76.5 vs. 67.2%), PPV (76.2 vs. 66.7%), and NPV (79.0 vs. 69.4%) compared with tPSA. Conclusions The novel combination of serum markers identified in this study could be employed to help triage patients into “low-” and “high-risk” categories, allowing general practitioners to improve the management of patients in primary care settings and potentially reducing the number of referrals for unnecessary, invasive, and costly treatments.
Collapse
Affiliation(s)
| | - Joanne Watt
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin, United Kingdom
| | - Mary Jo Kurth
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin, United Kingdom
| | - John V. Lamont
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin, United Kingdom
| | - Tara Moore
- Genomic Medicine Research Group, Ulster University, Coleraine, United Kingdom
| | - Peter Fitzgerald
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin, United Kingdom
| | - Hardev Pandha
- Royal Surrey County Hospital NHS Foundation Trust, Research Development and Innovations Department, The Royal Surrey County Hospital, Guildford, United Kingdom
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Coleraine, United Kingdom
| | - Mark W. Ruddock
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin, United Kingdom
- *Correspondence: Mark W. Ruddock,
| |
Collapse
|
34
|
Zhang C, Qian J, Wu Y, Zhu Z, Yu W, Gong Y, Li X, He Z, Zhou L. Identification of Novel Diagnosis Biomarkers for Therapy-Related Neuroendocrine Prostate Cancer. Pathol Oncol Res 2021; 27:1609968. [PMID: 34646089 PMCID: PMC8503838 DOI: 10.3389/pore.2021.1609968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Background: Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-characterized molecular biomarkers. The clinical diagnosis of this disease is dependent on biopsy and histological assessment: methods that are experience-based and easily misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for NEPC may assist clinicians in making medical decisions on the choice of continuing anti-androgen receptor therapy or switching to platinum-based chemotherapy. Methods: Gene expression profiles and clinical characteristics data of 208 samples of metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno) and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression network to study the interrelationship between the potential modules and clinical features of metastatic prostate adenocarcinoma and to identify hub genes in the modules. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The findings were then verified in the nepc_wcm_2016 dataset. Results: A total of 51 co-expression modules were successfully constructed using WGCNA, of which three co-expression modules were found to be significantly associated with the neuroendocrine features and the NEPC score. In total, four novel genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in NEPC compared with the adenocarcinoma samples, and these genes were all associated with the neuroactive ligand receptor interaction pathway. Next, the expression levels of these four genes were used to construct an NEPC diagnosis model, which was successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the training and the validation cohorts. Moreover, the values of the area under the receiver operating characteristic (AUC) were 0.995 and 0.833 for the training and validation cohorts, respectively. Conclusion: The present study identified four specific novel biomarkers for therapy-related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of NEPC, thereby meriting further study.
Collapse
Affiliation(s)
- Cuijian Zhang
- Department of Urology, Peking University First Hospital Institute of Urology, National Urological Cancer Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lokshin A, Mikhaleva LM, Goufman EI, Boltovskaya MN, Tikhonova NB, Stepanova II, Stepanov AA, Potoldykova NV, Vinarov AZ, Stemmer P, Iakovlev V. Proteolyzed Variant of IgG with Free C-Terminal Lysine as a Biomarker of Prostate Cancer. BIOLOGY 2021; 10:biology10080817. [PMID: 34440049 PMCID: PMC8389667 DOI: 10.3390/biology10080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary We have discovered that immunoglobulins digested with plasmin, one of the enzymes of blood clotting cascade acquire a capability to bind to one of the chains of plasminogen. We investigate here the mechanisms and localization of such binding. We also show that levels of this digested immunoglobulin molecule are higher in patients with prostate cancer. Therefore, this digested immunoglobulin could serve as a biomarker for the detection of patients with prostate cancer from patients with benign prostate hyperplasia. We observed that the diagnostic accuracy of blood levels of digested immunoglobulins is dramatically higher than that of PSA. Abstract The differential diagnosis of prostate cancer is problematic due to the lack of markers with high diagnostic accuracy. We previously demonstrated the increased binding of IgG to human plasminogen (PLG) in plasma of patients with prostate cancer (PC) compared to healthy controls. Heavy and light chains of PLG (PLG-H and PLG-L) were immobilized on 96-well plates and the binding of IgG to PLG-H and PLG-L was analyzed in serum from 30 prostate cancer (PC) patients, 30 patients with benign prostatic hyperplasia (BPH) and 30 healthy controls using enzyme-linked immunosorbent assay (ELISA). Our results demonstrate that IgG from PC sera bind to PLG-H but not to PLG-L. This interaction occurred through the free IgG C-terminal lysine (Lys) that becomes exposed as a result of IgG conformational changes associated with proteolysis. Circulating levels of modified IgG with exposed C-terminal Lys (IgG-Lys) were significantly higher in PC patients than in healthy controls and in BPH. We used Receiver Operating Characteristic (ROC) analysis to calculate the sensitivity (SN) and specificity (SP) of circulating IgG-Lys for differentiating PC from BPH as 77% and 90%, respectively. The area under the curve (AUC) was 0.87. We demonstrated that the diagnostic accuracy of circulating levels of IgG-Lys is much higher than diagnostic accuracy of total PSA (tPSA).
Collapse
Affiliation(s)
- Anna Lokshin
- Departments of Pathology, Medicine, and Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| | - Lyudmila M. Mikhaleva
- Research Institute of Human Morphology, 117418 Moscow, Russia; (L.M.M.); (E.I.G.); (M.N.B.); (N.B.T.); (I.I.S.); (A.A.S.)
| | - Eugene I. Goufman
- Research Institute of Human Morphology, 117418 Moscow, Russia; (L.M.M.); (E.I.G.); (M.N.B.); (N.B.T.); (I.I.S.); (A.A.S.)
| | - Marina N. Boltovskaya
- Research Institute of Human Morphology, 117418 Moscow, Russia; (L.M.M.); (E.I.G.); (M.N.B.); (N.B.T.); (I.I.S.); (A.A.S.)
| | - Natalia B. Tikhonova
- Research Institute of Human Morphology, 117418 Moscow, Russia; (L.M.M.); (E.I.G.); (M.N.B.); (N.B.T.); (I.I.S.); (A.A.S.)
| | - Irina I. Stepanova
- Research Institute of Human Morphology, 117418 Moscow, Russia; (L.M.M.); (E.I.G.); (M.N.B.); (N.B.T.); (I.I.S.); (A.A.S.)
| | - Alexandr A. Stepanov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (L.M.M.); (E.I.G.); (M.N.B.); (N.B.T.); (I.I.S.); (A.A.S.)
| | - Natalia V. Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119048 Moscow, Russia; (N.V.P.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute of Urology and Reproductive Health, Sechenov University, 119048 Moscow, Russia; (N.V.P.); (A.Z.V.)
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA;
| | | |
Collapse
|
36
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
37
|
Abramovic I, Vrhovec B, Skara L, Vrtaric A, Nikolac Gabaj N, Kulis T, Stimac G, Ljiljak D, Ruzic B, Kastelan Z, Kruslin B, Bulic-Jakus F, Ulamec M, Katusic-Bojanac A, Sincic N. MiR-182-5p and miR-375-3p Have Higher Performance Than PSA in Discriminating Prostate Cancer from Benign Prostate Hyperplasia. Cancers (Basel) 2021; 13:cancers13092068. [PMID: 33922968 PMCID: PMC8123314 DOI: 10.3390/cancers13092068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the most prevalent neoplasia among men worldwide but is commonly “mimicked” by benign prostate hyperplasia (BPH). Their discrimination by the prostate-specific antigen (PSA) is often uncertain, resulting in lengthy diagnostic protocols and recurrent tissue biopsies. The development of more appropriate biomarkers, possibly present in liquid biopsy, would significantly improve PCa and BPH patient management. To address this challenge, in this study miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were analyzed by ddPCR in blood plasma and seminal plasma of patients with PCa and BPH prior to tissue biopsy. Among other findings, miR-182-5p and miR-375-3p were found to have statistically significantly higher expression in PCa patients compared to BPH in blood, with a combined specificity of 90.2% to predict positive or negative biopsy results. The data presented emphasize the great potential of miRNAs as liquid biopsy biomarkers for PCa. Abstract Prostate cancer (PCa) is the most commonly diagnosed neoplasm among men. Since it often resembles benign prostate hyperplasia (BPH), biomarkers with a higher differential value than PSA are required. Epigenetic biomarkers in liquid biopsies, especially miRNA, could address this challenge. The absolute expression of miR-375-3p, miR-182-5p, miR-21-5p, and miR-148a-3p were quantified in blood plasma and seminal plasma of 65 PCa and 58 BPH patients by digital droplet PCR. The sensitivity and specificity of these microRNAs were determined using ROC curve analysis. The higher expression of miR-182-5p and miR-375-3p in the blood plasma of PCa patients was statistically significant as compared to BPH (p = 0.0363 and 0.0226, respectively). Their combination achieved a specificity of 90.2% for predicting positive or negative biopsy results, while PSA cut-off of 4 µg/L performed with only 1.7% specificity. In seminal plasma, miR-375-3p, miR-182-5p, and miR-21-5p showed a statistically significantly higher expression in PCa patients with PSA >10 µg/L compared to ones with PSA ≤10 µg/L. MiR-182-5p and miR-375-3p in blood plasma show higher performance than PSA in discriminating PCa from BPH. Seminal plasma requires further investigation as it represents an obvious source for PCa biomarker identification.
Collapse
Affiliation(s)
- Irena Abramovic
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Borna Vrhovec
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Lucija Skara
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Alen Vrtaric
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Nora Nikolac Gabaj
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Clinical Chemistry, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Kulis
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Stimac
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Dejan Ljiljak
- Department of Gynecology and Obstetrics, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Boris Ruzic
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia;
| | - Zeljko Kastelan
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Department of Urology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Bozo Kruslin
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Floriana Bulic-Jakus
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Monika Ulamec
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Ljudevit Jurak Clinical Department of Pathology and Cytology, University Clinical Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
- Department of Pathology, School of Dental Medicine and School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Katusic-Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (I.A.); (L.S.); (F.B.-J.); (A.K.-B.)
- Group for Research on Epigenetic Biomarkers (Epimark), University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (T.K.); (G.S.); (B.R.); (Z.K.); (M.U.)
- Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (A.V.); (N.N.G.); (B.K.)
- Correspondence: ; Tel.: +385-145-66-806
| |
Collapse
|
38
|
Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030466. [PMID: 33800141 PMCID: PMC7998238 DOI: 10.3390/diagnostics11030466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.
Collapse
|