1
|
Łyko M, Maj J, Jankowska-Konsur A. The Role of the Gut Microbiome in Non-Hodgkin Lymphoma (NHL): A Focus on Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, Cutaneous T-Cell Lymphoma, and NK/T-Cell Lymphoma. Cancers (Basel) 2025; 17:1709. [PMID: 40427206 PMCID: PMC12110234 DOI: 10.3390/cancers17101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Non-Hodgkin lymphomas (NHLs) encompass a diverse group of neoplasms arising from the clonal proliferation of B-cell progenitors, T-cell progenitors, mature B-cells, mature T-cells, and natural killer (NK) cells. These malignancies account for over 90% of lymphoid neoplasms. The link between the gut microbiome and neoplasms has been extensively studied in recent years. Growing evidence suggests that the gut microbiome may be involved not only in the development of the disease, but also in modulating the efficacy of implemented therapies. In this review, we summarize the current knowledge on the potential involvement of the gut microbiome in the development of diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), mucosa-associated lymphoid tissue (MALT) lymphoma, and NK/T-cell lymphoma, including cutaneous T-cell lymphoma (CTCL). Moreover, we discuss the relationship between gut microbiome changes before and after treatment and their association with treatment outcomes, focusing on chemotherapy and CAR T-cell therapy.
Collapse
Affiliation(s)
- Magdalena Łyko
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Joanna Maj
- Clinical Department of General Dermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Alina Jankowska-Konsur
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
2
|
Zhu F, Li L, Zhang H, Liu J, Wu D, Xu Q. Dynamic causal effects of gut microbiota on cervical Cancer lesion progression. Sci Rep 2025; 15:15490. [PMID: 40319127 PMCID: PMC12049543 DOI: 10.1038/s41598-025-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Many investigations have highlighted the involvement of the intestinal microbiota in the progression of cervical cancer lesions; however, the causal link between them remains to be confirmed. We employed two-sample Mendelian randomization (MR) as a alternative to randomized controlled trials (RCTs) to explore the association between intestinal microbiota and high-risk Human Papillomavirus (HPV) infection, cervical intraepithelial neoplasia (CIN), and cervical cancer (CC). This method allowed for a detailed investigation of the underlying mechanistic interactions within the gut-cervix axis. The analysis predominantly encompassed the utilization of inverse variance weighting (IVW) and the Wald ratio test. Additionally, various sensitivity analysis methods were employed to validate the findings. We uncovered a total of 17 gut microbial taxa associated with HPV infection, 9 taxa related to CIN, and 7 taxa linked to CC. At different stages of cervical cancer lesions, various gut microbial communities play either protective or promoting roles. However, some microbial communities also act as persistent risk factors in promoting the progression of CC. Our investigation has revealed that the gut microbiota exerts a considerable impact along the entire spectrum of CC progression within the gut-cervix axis. These findings lay a foundation for prospective research focused on the utilization of gut microbiota in cervical cancer screening, prevention, and therapeutic strategies.
Collapse
Affiliation(s)
- Fei Zhu
- Departments of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Li Li
- Departments of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Huiqi Zhang
- Departments of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Jing Liu
- Departments of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Medical University, Fujian Cancer Hospital, Fujian, China
| | - Dongmei Wu
- Department of Obstetrics and Gynecology, The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, Fujian, China.
| | - Qin Xu
- Departments of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Medical University, Fujian Cancer Hospital, Fujian, China.
| |
Collapse
|
3
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025; 7:895-917. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
4
|
Chen J, Chen X, Ma J. Causal relationships of gut microbiota and blood metabolites with ovarian cancer and endometrial cancer: a Mendelian randomization study. J Ovarian Res 2025; 18:54. [PMID: 40082983 PMCID: PMC11905533 DOI: 10.1186/s13048-025-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVES The study aimed to investigate the causal relationships of gut microbiota (GM), ovarian cancer (OC), endometrial cancer (EC), and potential metabolite mediators using Mendelian randomization (MR) analysis. METHODS Bidirectional two-sample MR analysis and reverse MR analysis of GM on OC/EC were employed to determine the causal effects of GM on OC/EC and the mediating role of blood metabolites in the relationship between GM and OC/EC, with results validated through sensitivity analysis. RESULTS We identified 6 pathogenic bacterial taxa associated with OC, including Euryarchaeota, Escherichia-Shigella, FamilyXIIIAD3011group, Prevotella9, and two unknown genera. Christensenellaceae R.7group, Tyzzerella3, and Victivallaceae were found to be protective against OC. The increase in EC risk was positively associated with Erysipelotrichia, Erysipelotrichaceae, Erysipelotrichales, and FamilyXI. Dorea, RuminococcaceaeUCG014, and Turicibacter exhibited a negative correlation with the EC risk. A total of 26 and 19 blood metabolites related to GM were identified, showing significant correlations with OC and EC, respectively. Cytosine was found to be an intermediate metabolite greatly associated with EC and FamilyXI. In reverse MR analysis, the FamilyXIIIAD3011group exhibited a significant bidirectional causal relationship with OC. CONCLUSION Our study revealed causal relationships of GM and intermediate metabolites with OC/EC, providing new avenues for understanding OC/EC and developing effective treatment strategies.
Collapse
Affiliation(s)
- Jinyan Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Xuejun Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Jiong Ma
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Kenneth MJ, Wu CC, Fang CY, Hsu TK, Lin IC, Huang SW, Chiu YC, Hsu BM. Exploring the Impact of Chemotherapy on the Emergence of Antibiotic Resistance in the Gut Microbiota of Colorectal Cancer Patients. Antibiotics (Basel) 2025; 14:264. [PMID: 40149075 PMCID: PMC11939702 DOI: 10.3390/antibiotics14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
With nearly half of colorectal cancer (CRC) patients diagnosed at advanced stages where surgery alone is insufficient, chemotherapy remains a cornerstone for this cancer treatment. To prevent infections and improve outcomes, antibiotics are often co-administered. However, chemotherapeutic interactions with the gut microbiota cause significant non-selective toxicity, affecting not only tumor and normal epithelial cells but also the gut microbiota. This toxicity triggers the bacterial SOS response and loss of microbial diversity, leading to bacterial mutations and dysbiosis. Consequently, pathogenic overgrowth and systemic infections increase, necessitating broad-spectrum antibiotics intervention. This review underscores how prolonged antibiotic use during chemotherapy, combined with chemotherapy-induced bacterial mutations, creates selective pressures that drive de novo antimicrobial resistance (AMR), allowing resistant bacteria to dominate the gut. This compromises the treatment efficacy and elevates the mortality risk. Restoring gut microbial diversity may mitigate chemotherapy-induced toxicity and improve therapeutic outcomes, and emerging strategies, such as fecal microbiota transplantation (FMT), probiotics, and prebiotics, show considerable promise. Given the global threat posed by antibiotic resistance to cancer treatment, prioritizing antimicrobial stewardship is essential for optimizing antibiotic use and preventing resistance in CRC patients undergoing chemotherapy. Future research should aim to minimize chemotherapy's impact on the gut microbiota and develop targeted interventions to restore microbial diversity affected during chemotherapy.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Chin-Chia Wu
- Division of Colorectal Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
- College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Tsui-Kang Hsu
- Department of Ophthalmology, Cheng Hsin General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung 413, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua 500, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
6
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
7
|
Žukauskaitė K, Baušys B, Horvath A, Sabaliauskaitė R, Šeštokaitė A, Mlynska A, Jarmalaitė S, Stadlbauer V, Baušys R, Baušys A. Gut Microbiome Changes After Neoadjuvant Chemotherapy and Surgery in Patients with Gastric Cancer. Cancers (Basel) 2024; 16:4074. [PMID: 39682264 DOI: 10.3390/cancers16234074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Neoadjuvant chemotherapy (NAC) followed by radical gastrectomy is the current standard approach for locally advanced gastric cancer (GC) in the West. Both NAC and gastrectomy can significantly influence the gut microbiome, potentially leading to clinically significant changes. However, no longitudinal studies to date support this hypothesis. This study investigates gut microbiome changes throughout GC treatment, including NAC and gastrectomy. METHODS This longitudinal observational study included GC patients undergoing NAC followed by gastrectomy. Fecal microbiome composition, intestinal inflammation (fecal calprotectin), and gut permeability (LBP, sCD14) markers were investigated at baseline, after NAC, and after gastrectomy. RESULTS A total of 38 patients were included in the study. The results showed that NAC did not affect the gut microbiome composition at the phylum level. In contrast, radical gastrectomy led to an increased abundance of Bacteroidetes and Proteobacteria and a decreased abundance of Firmicutes and Actinobacteria. Furthermore, NAC alone did not impact alpha or beta diversity, while a combination of NAC and gastrectomy significantly influenced both. After gastrectomy, the gut microbiome composition analysis also revealed enrichment of oralization-associated bacterial species such as Escherichia-Shigella, Streptococcus equinus, uncultured Streptococcus species, and species from the Enterobacteriaceae family. Intestinal inflammation and gut permeability markers did not significantly change throughout the treatment. CONCLUSIONS The radical treatment of advanced GC with NAC and radical surgery has long-term effects on the gut microbiome, characterized by gut microbiome oralization. These sustained alterations primarily stem from the radical gastrectomy rather than the NAC. Since previous studies have linked oralization-associated dysbiosis to various gastrointestinal symptoms, this study highlights the gut microbiome as a potential therapeutic target to enhance the quality of life in long-term survivors following gastrectomy.
Collapse
Affiliation(s)
- Kristina Žukauskaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Bernardas Baušys
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Division of Translational Precision Medicine, Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Rasa Sabaliauskaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Laboratory of Genetic Diagnostics, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Agnė Šeštokaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Laboratory of Genetic Diagnostics, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Agata Mlynska
- Laboratory of Immunology, National Cancer Institute, 08406 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Laboratory of Genetic Diagnostics, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
- Division of Translational Precision Medicine, Center for Biomarker Research in Medicine (CBmed GmbH), 8010 Graz, Austria
| | - Rimantas Baušys
- Department of General and Abdominal Surgery and Oncology, National Cancer Institute, 08406 Vilnius, Lithuania
| | - Augustinas Baušys
- Institute of Biosciences, Life Science Center, Vilnius University, 01513 Vilnius, Lithuania
- Department of General and Abdominal Surgery and Oncology, National Cancer Institute, 08406 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Translational Health Research Institute, Faculty of Medicine, 03101 Vilnius, Lithuania
| |
Collapse
|
8
|
Zhang M, Mo J, Huang W, Bao Y, Luo X, Yuan L. The ovarian cancer-associated microbiome contributes to the tumor's inflammatory microenvironment. Front Cell Infect Microbiol 2024; 14:1440742. [PMID: 39497925 PMCID: PMC11532186 DOI: 10.3389/fcimb.2024.1440742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
A growing body of research has established a correlation between tumors and persistent chronic inflammatory infiltration. As a primary instigator of inflammation, the majority of microbiomes naturally residing within our bodies engage in a mutually beneficial symbiotic relationship. Nevertheless, alterations in the microbiome's composition or breaches in the normal barrier function can disrupt the internal environment's homeostasis, potentially leading to the development and progression of various diseases, including tumors. The investigation of tumor-related microbiomes has contributed to a deeper understanding of their role in tumorigenesis. This review offers a comprehensive overview of the microbiome alterations and the associated inflammatory changes in ovarian cancer. It may aid in advancing research to elucidate the mechanisms underlying the ovarian cancer-associated microbiome, providing potential theoretical support for the future development of microbiome-targeted antitumor therapies and early screening through convenient methods.
Collapse
Affiliation(s)
- Min Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiahang Mo
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wu Huang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiting Bao
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xukai Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Qin H, Liu J, Qu Y, Li YY, Xu YL, Yan YF. The intratumoral microbiota biomarkers for predicting survival and efficacy of immunotherapy in patients with ovarian serous cystadenocarcinoma. J Ovarian Res 2024; 17:140. [PMID: 38970121 PMCID: PMC11227176 DOI: 10.1186/s13048-024-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Ovarian serous cystadenocarcinoma, accounting for about 90% of ovarian cancers, is frequently diagnosed at advanced stages, leading to suboptimal treatment outcomes. Given the malignant nature of the disease, effective biomarkers for accurate prediction and personalized treatment remain an urgent clinical need. METHODS In this study, we analyzed the microbial contents of 453 ovarian serous cystadenocarcinoma and 68 adjacent non-cancerous samples. A univariate Cox regression model was used to identify microorganisms significantly associated with survival and a prognostic risk score model constructed using LASSO Cox regression analysis. Patients were subsequently categorized into high-risk and low-risk groups based on their risk scores. RESULTS Survival analysis revealed that patients in the low-risk group had a higher overall survival rate. A nomogram was constructed for easy visualization of the prognostic model. Analysis of immune cell infiltration and immune checkpoint gene expression in both groups showed that both parameters were positively correlated with the risk level, indicating an increased immune response in higher risk groups. CONCLUSION Our findings suggest that microbial profiles in ovarian serous cystadenocarcinoma may serve as viable clinical prognostic indicators. This study provides novel insights into the potential impact of intratumoral microbial communities on disease prognosis and opens avenues for future therapeutic interventions targeting these microorganisms.
Collapse
Affiliation(s)
- Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Jie Liu
- Department of Medical Records, Air Force Medical Center, PLA, Air Force Medical University, Beijing, China
| | - Yi Qu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yang-Yang Li
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Lan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, China
| | - Yi-Fang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No.49 North Huayuan Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
10
|
Dominique GM, Hammond C, Stack MS. The Gut Microbiome in Aging and Ovarian Cancer. AGING AND CANCER 2024; 5:14-34. [PMID: 39132604 PMCID: PMC11309124 DOI: 10.1002/aac2.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
The gut microbiome changes with age and affects regions beyond the gut, including the ovarian cancer tumor microenvironment. In this review summarizing the literature on the gut microbiome in ovarian cancer and in aging, we note trends in the microbiota composition common to both phenomena and trends that are distinctly opposite. Both ovarian cancer and aging are characterized by an increase in proinflammatory bacterial species, particularly those belonging to phylum Proteobacteria and genus Escherichia, and a decrease in short chain fatty acid producers, particularly those in Clostridium cluster XIVa (family Lachnospiraceae) and the Actinobacteria genus Bifidobacterium. However, while beneficial bacteria from family Porphyromonadaceae and genus Akkermansia tend to increase with normal, healthy aging, these bacteria tend to decrease in ovarian cancer, similar to what is observed in obesity or unhealthy aging. We also note a lack in the current literature of research demonstrating causal relationships between the gut microbiome and ovarian cancer outcomes and research on the gut microbiome in ovarian cancer in the context of aging, both of which could lead to improvements to ovarian cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gena M Dominique
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | | | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| |
Collapse
|
11
|
Fan YL, Jin JX, Zhu J, Ruan HB, Huang JQ. Extracellular vesicles of Bifidobacterium longum reverse the acquired carboplatin resistance in ovarian cancer cells via p53 phosphorylation on Ser15. Kaohsiung J Med Sci 2024; 40:530-541. [PMID: 38647095 DOI: 10.1002/kjm2.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
We previously found that the relative abundance of Bifidobacterium was increased after chemotherapy; however, the role of Bifidobacterium longum in chemotherapeutic drug resistance in ovarian cancer (OVC) remains unclear. This study aimed to understand the potential effects and mechanism of B. longum extracellular vesicles (B. longum-EVs) on carboplatin (CBP) resistance in OVC. Eight normal and 11 ovarian tissues were collected and the expression of B. longum genomic DNA and its association with acquired CBP resistance in OVC patients was determined. After isolating EVs by ultracentrifugation from B. longum (ATCC 15707), CBP-resistant A2780 cells were treated with PBS, CBP, B. longum-EVs, or CBP + B. longum-EVs, and subsequently analyzed by CCK-8, Edu staining, Annexin V/PI double staining, wound healing, and Transwell assays to detect cell viability, proliferation, apoptosis, migration, and invasion, respectively. MRP1, ATP7A, ATP7B, and p53 expression as well as p53 phosphorylation were measured by western blot analysis. S15A mutation of p53 was assessed to examine the potential role of p53 Ser15 phosphorylation in CBP-resistant OVC. B. longum levels were elevated and positively associated with CBP resistance in OVC patients. Only high concentrations of B. longum-EVs attenuated A2780 cell proliferation, apoptosis, migration, and invasion. B. longum-EVs exposure significantly enhanced the sensitivity of CBP-resistant A2780 cells to CBP and decreased the expression of drug resistance-related proteins. The effect of B. longum-EVs on reversing CBP resistance was completely inhibited by S15A mutation of p53. B. longum-EVs enhanced the sensitivity of OVC cells to CBP through p53 phosphorylation on Ser15.
Collapse
Affiliation(s)
- Yun-Long Fan
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Jia-Xi Jin
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Jun Zhu
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Hai-Bo Ruan
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| | - Jin-Qun Huang
- Departments of Gynaecology and Obstetrics, The First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
12
|
Fan P, Ding L, Du G, Wei C. Effect of mastectomy on gut microbiota and its metabolites in patients with breast cancer. Front Microbiol 2024; 15:1269558. [PMID: 38860221 PMCID: PMC11163111 DOI: 10.3389/fmicb.2024.1269558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Background The relationship between gut microbiota and breast cancer has been extensively studied; however, changes in gut microbiota after breast cancer surgery are still largely unknown. Materials and methods A total of 20 patients with breast cancer underwent routine open surgery at the First Affiliated Hospital of Hainan Medical College from 1 June 2022 to 1 December 2022. Stool samples were collected from the patients undergoing mastectomy for breast cancer preoperatively, 3 days later, and 7 days later postoperatively. The stool samples were subjected to 16s rRNA sequencing. Results Surgery did not affect the α-diversity of gut microbiota. The β-diversity and composition of gut microorganisms were significantly affected by surgery in breast cancer patients. Both linear discriminant analysis effect size (LEfSe) analysis and between-group differences analysis showed that surgery led to a decrease in the abundance of Firmicutes and Lachnospiraceae and an increase in the abundance of Proteobacteria and Enterobacteriaceae. Moreover, 127 differential metabolites were screened and classified into 5 categories based on their changing trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed significant changes in the phenylalanine metabolic pathway and exogenous substance metabolic pathway. Eight characterized metabolites were screened using ROC analysis. Conclusion Our study found that breast cancer surgery significantly altered gut microbiota composition and metabolites, with a decrease in beneficial bacteria and an increase in potentially harmful bacteria. This underscores the importance of enhanced postoperative management to optimize gut microbiota.
Collapse
Affiliation(s)
- Pingming Fan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Linwei Ding
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
13
|
Kong Y, Liu S, Wang X, Qie R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37628. [PMID: 38552081 PMCID: PMC10977594 DOI: 10.1097/md.0000000000037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Growing evidence has suggested that gut microbiota is associated with gynecologic cancers. However, whether there is a causal relationship between these associations remains to be determined. A two-sample Mendelian randomization (MR) evaluation was carried out to investigate the mechanism associating gut microbiota and 3 prevalent gynecological cancers, ovarian cancer (OC), endometrial cancer, and cervical cancer as well as their subtypes in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental single nucleotide polymorphisms that were significantly related to the gut microbiota were selected. Multiple MR analysis approaches were carried out, including inverse variance weighted, MR-Egger, Weighted Median methods, and a range of sensitivity analyses. Lastly, we undertook a reverse MR analysis to evaluate the potential of reverse causality. We sifted through 196 bacterial taxa and identified 33 suggestive causal relationships between genetic liability in the gut microbiota and gynecological cancers. We found that 11 of these genera could be pathogenic risk factors for gynecological cancers, while 19 could lessen the risk of cancer. In the other direction, gynecological cancers altered gut microbiota composition. Our MR analysis revealed that the gut microbiota was causally associated with OC, endometrial cancer, and cervical cancer. This may assist in providing new insights for further mechanistic and clinical studies of microbiota-mediated gynecological cancer.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
15
|
Mahoney D. The Role of the Human Microbiome in Epithelial Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:97-105. [PMID: 38805126 DOI: 10.1007/978-3-031-58311-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ovarian cancer is the fifth-leading cause of cancer deaths among women due to the absence of available screening methods to identify early disease. Thus, prevention and early disease detection investigations are of high priority, surrounding a critical window of opportunity to better understand important pathogenic mechanisms of disease progression. Microorganisms modulate molecular interactions in humans that can influence states of health and disease, including ovarian cancer. While the mechanisms of infectious microbial invasion that trigger the immune-inflammatory axis are well studied in cancer research, the complex interactions that promote the transition of noninfectious healthy microbes to pathobiont expansion are less understood. As traditional research has focused on the influences of infectious pathogens on ovarian cancer development and progression, the impact of noninfectious microbes has gained scientific attention. The objective of this chapter is to summarize current evidence on the role of microbiota in epithelial ovarian cancer throughout disease.
Collapse
Affiliation(s)
- Diane Mahoney
- Franklin D. Gaines & Beverly J. Gaines Tipton Endowed Professor of Oncology Nursing, University of Kansas School of Nursing, Kansas City, KS, USA.
| |
Collapse
|
16
|
Mehra Y, Chalif J, Mensah-Bonsu C, Spakowicz D, O’Malley DM, Chambers L. The microbiome and ovarian cancer: insights, implications, and therapeutic opportunities. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023. [DOI: 10.20517/2394-4722.2023.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Ovarian cancer is the leading cause of gynecologic cancer death in the United States. Most ovarian cancer patients are diagnosed with advanced-stage disease, which poses a challenge for early detection and effective treatment. At present, cytoreductive surgery and platinum-based chemotherapy are foundational for patients with newly diagnosed ovarian cancer, but unfortunately, most patients will recur and die of their disease. Therefore, there is a significant need to seek innovative, novel approaches for early detection and to overcome chemoresistance for ovarian cancer patients. The microbiome, comprising diverse microbial communities inhabiting various body sites, is vital in maintaining human health. Changes to the diversity and composition of the microbial communities impact the microbiota-host relationship and are linked to diseases, including cancer. The microbiome contributes to carcinogenesis through various mechanisms, including altered host immune response, modulation of DNA repair, upregulation of pro-inflammatory pathways, altered gene expression, and dysregulated estrogen metabolism. Translational and clinical studies have demonstrated that specific microbes contribute to ovarian cancer development and impact chemotherapy’s efficacy. The microbiome is malleable and can be altered through different approaches, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature regarding ovarian cancer and the microbiome of female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and options for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiome and ovarian cancer may provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
|
17
|
Alsholi DM, Yacoub GS, Rehman AU, Ullah H, Khan AI, Deng T, Siddiqui NZ, Alioui Y, Farooqui NA, Elkharti M, Li Y, Wang L, Xin Y. Lactobacillus rhamnosus Attenuates Cisplatin-Induced Intestinal Mucositis in Mice via Modulating the Gut Microbiota and Improving Intestinal Inflammation. Pathogens 2023; 12:1340. [PMID: 38003804 PMCID: PMC10674506 DOI: 10.3390/pathogens12111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Lactobacillus rhamnosus (LBS) is a well-documented probiotic strain in oncology and has a pivotal role in clinical applications. Here, we have investigated the protective effect of Lactobacillus rhamnosus on intestinal mucositis induced by cisplatin (CP) and explored the underlying mechanisms targeting inflammatory proteins, as well as the histological changes in the intestinal tissue of mice, in addition, the bacterial strains that may be related to the health-enhancing properties. BALB/c mice were pre-treated with or without LBS via oral gavage, followed by mucositis induction with cisplatin. Our results revealed that the LBS-treated groups significantly attenuated proinflammatory cytokine levels (IL-1β, IL-6, and TNF-α) compared to the CP group. Furthermore, LBS mitigated the damaged tight junction integrity caused by CP via up-regulating the levels of claudin, occludin, ZO-1, and mucin-2 protein (MUC-2). Finally, the 16S rRNA fecal microbiome genomic analysis showed that LBS administration enhanced the growth of beneficial bacteria, i.e., Firmicutes and Lachnospiraceae, while the relative abundance of the opportunistic bacteria Bacteroides and Proteobacteria decreased. Collectively, LBS was found to beneficially modulate microbial composition structure and functions and enrich the ecological diversity in the gut.
Collapse
Affiliation(s)
- Duaa M. Alsholi
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Ghazi Suleiman Yacoub
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian 116011, China;
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Ting Deng
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| | - Maroua Elkharti
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Yanxia Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (D.M.A.); (A.U.R.); (H.U.); (A.I.K.); (T.D.); (N.Z.S.); (Y.A.); (N.A.F.)
| |
Collapse
|
18
|
Xie Q, Hu B. Effects of gut microbiota on prostatic cancer: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1250369. [PMID: 38029073 PMCID: PMC10659115 DOI: 10.3389/fmicb.2023.1250369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Recent observational and small-sample case-control studies have shown a relationship between gut microbiota composition and prostatic cancer (PCa). Nevertheless, the causal association between gut microbiota and PCa is still unclear. Herein, we used the Mendelian randomization (MR) method to explore the potential causal relationship between gut microbiota and PCa. Methods In this two-sample MR study, data were extracted from the summary statistics of gut microbiota from the largest available genome-wide association study meta-analysis conducted by the MiBioGen consortium (n = 14,306) and the Dutch Microbiome Project (n = 8,208). Summary statistics for PCa were obtained from the FinnGen consortium release data (n = 95,213). Inverse variance weighted (IVW), MR-Egger, strength test (F), and MR-PRESSO were used to examine the potential causal association between gut microbiota and PCa. Cochran's Q statistics were used to quantify the heterogeneity of instrumental variables. Results IVW estimates suggested that the relative abundance of Akkermansia muciniphila (odds ratio [OR] = 0.7926, 95% confidence interval [CI]: 0.6655-0.9440) and Bacteroides salyersiae (OR = 0.9023, 95% CI: 0.8262-0.9853) were negatively associated with the odds of PCa, while that of Eubacterium biforme (OR = 1.1629, 95% CI: 1.0110-1.3376) was positively associated with the odds of PCa. In addition, we explored these relationships among patients without other cancers and similarly found that the relative abundance of Akkermansia muciniphila, Bacteroides salyersiae, and Eubacterium biforme were linked to PCa (all P < 0.05). Conclusion Gut microbiota potentially influenced the occurrence of PCa. Our findings may provide some new ideas for researching the methods of PCa prevention. In addition, further studies are needed to explore the causal association and specific underlying mechanisms between gut microbiota and PCa.
Collapse
Affiliation(s)
| | - Bin Hu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Zhan X, Zuo Q, Huang G, Qi Z, Wang Y, Zhu S, Zhong Y, Xiong Y, Chen T, Tan B. Tripterygium glycosides sensitizes cisplatin chemotherapeutic potency by modulating gut microbiota in epithelial ovarian cancer. Front Cell Infect Microbiol 2023; 13:1236272. [PMID: 37818040 PMCID: PMC10560985 DOI: 10.3389/fcimb.2023.1236272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a fatal gynecological malignancy with limited therapeutic options. Previous research has demonstrated that Tripterygium glycosides (GTW) can enhance effectiveness of cisplatin (DDP) chemotherapy against EOC. However, the underlying mechanism of GTW alleviating EOC still remains unclear. In this article, an ID8 cell-derived xenograft mouse model was established to evaluate the anti-tumor efficacy of GTW combined with DDP. Consistent with previous findings, the results suggested that GTW combined with DDP can exhibit a stronger tumor suppressive effect than DDP alone. Additionally, GTW was found can further exert gastrointestinal protection against DDP by reducing pathological damage on colon tissue. Secondly, to verify whether gut microbiota play an instrumental role in GTW's anticancer effect, we treated mice models with antibiotic to eliminate gut microbiota. And our experimental results indicated that all drug groups showed a weaker tumor suppressive effect and more severe gastrointestinal damage post antibiotic supplement. At genus level, the relative abundance of Lactobacillus was dramatically diminished by the antibiotic treatment, while combined treatment of GTW and DDP can significantly restore the level. Moreover, we performed Lactobacillus acidophilus transplantation and healthy mice fecal microbiota transplantation experiments to further investigate the link between the anticancer effect of GTW and gut microbiota. Our results suggested that both cisplatin-sensitizing and intestinal barrier-protecting effects of GTW can be recovered to a different extent. In conclusion, our results indicated that GTW is a promising chemosensitization and intestinal barrier repair drug for EOC, and the potential mechanism may corelate with the restoration of the compromised intestinal microbial balance.
Collapse
Affiliation(s)
- Xinlu Zhan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Zuo
- Department of Obstetrics & Gynecology, Ji’an Central People’s Hospital, Ji’an, China
| | - Genhua Huang
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhanghua Qi
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yufan Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Sihong Zhu
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanying Zhong
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yifei Xiong
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Roggiani S, Mengoli M, Conti G, Fabbrini M, Brigidi P, Barone M, D'Amico F, Turroni S. Gut microbiota resilience and recovery after anticancer chemotherapy. MICROBIOME RESEARCH REPORTS 2023; 2:16. [PMID: 38046820 PMCID: PMC10688789 DOI: 10.20517/mrr.2022.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 12/05/2023]
Abstract
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, what a "healthy" gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its recovery with serious long-term consequences for patients' health. However, the distinguishing features of gut microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after such high-impact pharmacological treatments.
Collapse
Affiliation(s)
- Sara Roggiani
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Mariachiara Mengoli
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
21
|
Sun Y, Zhang X, Jin C, Yue K, Sheng D, Zhang T, Dou X, Liu J, Jing H, Zhang L, Yue J. Prospective, longitudinal analysis of the gut microbiome in patients with locally advanced rectal cancer predicts response to neoadjuvant concurrent chemoradiotherapy. J Transl Med 2023; 21:221. [PMID: 36967379 PMCID: PMC10041716 DOI: 10.1186/s12967-023-04054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND Neoadjuvant concurrent chemoradiotherapy (nCCRT) is a standard treatment for locally advanced rectal cancer (LARC). The gut microbiome may be reshaped by radiotherapy through its effects on microbial composition, mucosal immunity, and the systemic immune system. We sought to clarify dynamic, longitudinal changes in the gut microbiome and blood immunomodulators throughout nCCRT and to explore the relationship of such changes with outcomes after nCCRT. METHODS A total of 39 patients with LARC were recruited for this study. Fecal samples and peripheral blood samples were collected from all 39 patients before nCCRT, during nCCRT (at week 3), and after nCCRT (at week 5). The gut microbiota and the microbial community structure were analyzed by 16S rRNA sequencing of the V3-V4 region. Levels of blood immunomodulatory proteins were measured with a Millipore HCKPMAG-11 K kit and Luminex 200 platform (Luminex, USA). RESULTS Cross-sectional and longitudinal analyses revealed that the gut microbiome profile and enterotype exhibited characteristic variations that could distinguish patients with good response (AJCC TRG classification 0-1) vs poor response (TRG 2-3) to nCCRT. Sparse partial least squares regression and canonical correspondence analyses showed multivariate associations between specific microbial taxa, host immunomodulatory proteins, immune cells, and outcomes after nCCRT. An integrated model consisting of baseline Clostridium sensu stricto 1 levels, fold changes in Intestinimonas, blood levels of the herpesvirus entry mediator (HVEM/CD270), and lymphocyte counts could predict good vs poor outcome after nCCRT [area under the receiver-operating characteristics curve (AUC)= 0.821; area under the precision-recall curve [AUPR] = 0.911]. CONCLUSIONS Our results showed that longitudinal variations in specific gut taxa, associated host immune cells, and immunomodulatory proteins before and during nCCRT could be useful for early predictions of the efficacy of nCCRT, which could guide the choice of individualized treatment for patients with LARC.
Collapse
Affiliation(s)
- Yi Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kaile Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xue Dou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lei Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Microbiome-X, National Institute of Health Data Science of China & Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
22
|
Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines 2023; 11:biomedicines11030782. [PMID: 36979761 PMCID: PMC10045465 DOI: 10.3390/biomedicines11030782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite significant advances in understanding the pathogenetic mechanisms underlying gynaecological cancers, these cancers still remain widespread. Recent research points to a possible link between microbiota and cancer, and the most recent attention is focusing on the relationship between the microbiome, the immune system, and cancer. The microbiome diversity can affect carcinogenesis and the patient’s immune response, modulating the inflammatory cascade and the severity of adverse events. In this review, we presented the recent evidence regarding microbiome alterations in patients with gynaecological tumours to understand if the link that exists between microbiome, immunity, and cancer can guide the prophylactic, diagnostic, and therapeutic management of gynaecological cancers.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | | | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
23
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
24
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
25
|
Han M, Wang N, Han W, Ban M, Sun T, Xu J. Gut Microbes in Gynecologic Cancers: Causes or Biomarkers and Therapeutic Potential. Front Oncol 2022; 12:902695. [PMID: 35912194 PMCID: PMC9326394 DOI: 10.3389/fonc.2022.902695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
The human intestine is home to a variety of microorganisms. In healthy populations, the intestinal flora shares a degree of similarity and stability, and they have a role in the metabolism, immunological response, and physiological function of key organs. With the rapid advent of high-throughput sequencing in recent years, several researchers have found that dysbiosis of the human gut microflora potentially cause physical problems and gynecological malignancies among postmenopausal women. Besides, dysbiosis hinders tumor treatment. Nonetheless, the importance of maintaining homeostatic gut microbiota and the effective use of probiotics in the treatment of gynecological malignancies should not be disregarded. Moreover, intestinal flora regulation and the involvement of probiotics as well as associated biologically active substances in gynecological malignancies could be an adjuvant treatment modality related to surgery and chemoradiotherapy in the future. Herein, this article aims to review the potential relationship between gut microorganisms and postmenopausal status as well as gynecologic malignancies; then the relationship between gut microbes and early screening as well as therapeutic aspects. Also, we describe the role of probiotics in the prevention, treatment, and prognosis of gynecologic malignancies.
Collapse
Affiliation(s)
- Mengzhen Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Na Wang
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Wenjie Han
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Meng Ban
- Department of Bioinformatics, Liaoning Microhealth Biotechnology Co., Ltd, Shenyang, China
| | - Tao Sun
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Breast Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, China
| | - Junnan Xu
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
- *Correspondence: Junnan Xu,
| |
Collapse
|
26
|
Leigh SJ, Lynch CMK, Bird BRH, Griffin BT, Cryan JF, Clarke G. Gut microbiota-drug interactions in cancer pharmacotherapies: implications for efficacy and adverse effects. Expert Opin Drug Metab Toxicol 2022; 18:5-26. [PMID: 35176217 DOI: 10.1080/17425255.2022.2043849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The gut microbiota is involved in host physiology and health. Reciprocal microbiota-drug interactions are increasingly recognized as underlying some individual differences in therapy response and adverse events. Cancer pharmacotherapies are characterized by a high degree of interpatient variability in efficacy and side effect profile and recently, the microbiota has emerged as a factor that may underlie these differences. AREAS COVERED The effects of cancer pharmacotherapy on microbiota composition and function are reviewed with consideration of the relationship between baseline microbiota composition, microbiota modification, antibiotics exposure and cancer therapy efficacy. We assess the evidence implicating the microbiota in cancer therapy-related adverse events including impaired gut function, cognition and pain perception. Finally, potential mechanisms underlying microbiota-cancer drug interactions are described, including direct microbial metabolism, and microbial modulation of liver metabolism and immune function. This review focused on preclinical and clinical studies conducted in the last 5 years. EXPERT OPINION Preclinical and clinical research supports a role for baseline microbiota in cancer therapy efficacy, with emerging evidence that the microbiota modification may assist in side effect management. Future efforts should focus on exploiting this knowledge towards the development of microbiota-targeted therapies. Finally, a focus on specific drug-microbiota-cancer interactions is warranted.
Collapse
Affiliation(s)
| | | | | | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Zhao H, Wang Q, Hu L, Xing S, Gong H, Liu Z, Qin P, Xu J, Du J, Ai W, Peng S, Li Y. Dynamic Alteration of the Gut Microbiota Associated with Obesity and Intestinal Inflammation in Ovariectomy C57BL/6 Mice. Int J Endocrinol 2022; 2022:6600158. [PMID: 35103060 PMCID: PMC8800624 DOI: 10.1155/2022/6600158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Estrogen is a critical hormone that is mainly produced by the ovary in females. Estrogen deficiency leads to various syndromes and diseases, partly due to gut microbiota alterations. Previous studies have shown that estrogen deficiency affects the gut microbiota at 6-8 weeks after ovariectomy, but the immediate effect of estrogen deficiency on the gut microbiota remains poorly understood. METHODS To investigate the short time and dynamic effects of decreased estrogen levels on the gut microbiota and their potential impact on estrogen deficiency-related diseases, we performed metagenomic sequencing of 260 fecal samples from 50 ovariectomy (OVX) and 15 control C57BL/6 female mice at four time points after surgery. RESULTS We found that seven gut microbiota species, including E. coli, Parabacteroides unclassified, Lachnospiraceae bacterium 8_1_57FAA, Bacteroides uniformis, Veillonella unclassified, Bacteroides xylanisolvens, and Firmicutes bacterium M10_2, were abundant in OVX mice. The abundance of these species increased with time after OVX surgery. The relative abundance of the opportunistic pathogen E. coli and the Crohn's disease-related Veillonella spp. was significantly correlated with mouse weight gain in the OVX group. Butyrate production and the Entner-Doudoroff pathway were significantly enriched in the control mouse group, while the degradation of glutamic acid and aspartic acid was enriched in the OVX mouse group. As the time after OVX surgery increased, the bacterial species and metabolic pathways significantly changed and tended to suggest an inflammatory environment, indicating a subhealthy state of the gut microbiota in the OVX mouse group. CONCLUSIONS Taken together, our results show that the dynamic gut microbiota profile alteration caused by estrogen deficiency is related to obesity and inflammation, which may lead to immune and metabolic disorders. This study provides new clues for the treatment of estrogen deficiency-related diseases.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730010, Gansu, China
| | - Liqiu Hu
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Hui Gong
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhe Liu
- Department of Computer Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Panpan Qin
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - Jie Xu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou 730010, Gansu, China
| | - Jihui Du
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Wen Ai
- Medical Research Center of Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518102, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Yifan Li
- Department of Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
28
|
Giudice E, Salutari V, Ricci C, Nero C, Carbone MV, Ghizzoni V, Musacchio L, Landolfo C, Perri MT, Camarda F, Scambia G, Lorusso D. Gut microbiota and its influence on ovarian cancer carcinogenesis, anticancer therapy and surgical treatment: A literature review. Crit Rev Oncol Hematol 2021; 168:103542. [PMID: 34801701 DOI: 10.1016/j.critrevonc.2021.103542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and very little is known about the underlying tumorigenesis mechanisms. For other tumors, like colorectal cancer, a relationship between several opportunistic pathogens and cancer development and progression has been proven. Recent researches also underline a possible correlation between gut microbiota dysbiosis and cancer treatment efficacy and adverse effects. Several studies have also demonstrated a link between abdominal surgery and gut microbiota modifications. In this paper, we aim to review the available evidences of this issue in OC to understand if there is a relationship between gut microbiota modifications and efficacy and adverse effects of cancer therapies, either surgical and medical treatments. Well-designed clinical studies, with a robust translational component, are required to better understand the modulation of gut microbiota during OC treatment. The microbiota/microbiome composition analysis, in the near future, could represent a novel instrument to personalize anticancer therapies.
Collapse
Affiliation(s)
- Elena Giudice
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Vanda Salutari
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Caterina Ricci
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Camilla Nero
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Maria Vittoria Carbone
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Viola Ghizzoni
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Lucia Musacchio
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Chiara Landolfo
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Maria Teresa Perri
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Floriana Camarda
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy; Medical Oncology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Giovanni Scambia
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Domenica Lorusso
- Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Rome, Italy; Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
29
|
Gjorgoska M, Rižner TL. Estrogens and the Schrödinger's Cat in the Ovarian Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13195011. [PMID: 34638494 PMCID: PMC8508344 DOI: 10.3390/cancers13195011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Ovarian cancer is a complex pathology for which we require effective screening and therapeutical strategies. Apart from the cancer cell portion, there exist plastic immune and non-immune cell populations, jointly constituting the context-adaptive tumor microenvironment, which is pivotal in tumorigenesis. Estrogens might be synthesized in the ovarian tumor tissue and actively contribute to the shaping of an immunosuppressive microenvironment. Current immune therapies have limited effectiveness as a multitude of factors influence the outcome. A thorough understanding of the ovarian cancer biology is crucial in the efforts to reestablish homeostasis. Abstract Ovarian cancer is a heterogeneous disease affecting the aging ovary, in concert with a complex network of cells and signals, together representing the ovarian tumor microenvironment. As in the “Schrödinger’s cat” thought experiment, the context-dependent constituents of the—by the time of diagnosis—well-established tumor microenvironment may display a tumor-protective and -destructive role. Systemic and locally synthesized estrogens contribute to the formation of a pro-tumoral microenvironment that enables the sustained tumor growth, invasion and metastasis. Here we focus on the estrogen biosynthetic and metabolic pathways in ovarian cancer and elaborate their actions on phenotypically plastic, estrogen-responsive, aging immune cells of the tumor microenvironment, altogether highlighting the multicomponent-connectedness and complexity of cancer, and contributing to a broader understanding of the ovarian cancer biology.
Collapse
|
30
|
Oh B, Boyle F, Pavlakis N, Clarke S, Guminski A, Eade T, Lamoury G, Carroll S, Morgia M, Kneebone A, Hruby G, Stevens M, Liu W, Corless B, Molloy M, Libermann T, Rosenthal D, Back M. Emerging Evidence of the Gut Microbiome in Chemotherapy: A Clinical Review. Front Oncol 2021; 11:706331. [PMID: 34604043 PMCID: PMC8481611 DOI: 10.3389/fonc.2021.706331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/25/2021] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence suggests that the gut microbiome is associated with both cancer chemotherapy (CTX) outcomes and adverse events (AEs). This review examines the relationship between the gut microbiome and CTX as well as the impact of CTX on the gut microbiome. A literature search was conducted in electronic databases Medline, PubMed and ScienceDirect, with searches for "cancer" and "chemotherapy" and "microbiome/microbiota". The relevant literature was selected for use in this article. Seventeen studies were selected on participants with colorectal cancer (CRC; n=5), Acute Myeloid Leukemia (AML; n=3), Non-Hodgkin's lymphoma (n=2), breast cancer (BCa; n=1), lung cancer (n=1), ovarian cancer (n=1), liver cancer (n=1), and various other types of cancers (n=3). Seven studies assessed the relationship between the gut microbiome and CTX with faecal samples collected prior to (n=3) and following CTX (n=4) showing that the gut microbiome is associated with both CTX efficacy and toxicity. Ten other prospective studies assessed the impact of CTX during treatment and found that CTX modulates the gut microbiome of people with cancer and that dysbiosis induced by the CTX is related to AEs. CTX adversely impacts the gut microbiome, inducing dysbiosis and is associated with CTX outcomes and AEs. Current evidence provides insights into the gut microbiome for clinicians, cancer survivors and the general public. More research is required to better understand and modify the impact of CTX on the gut microbiome.
Collapse
Affiliation(s)
- Byeongsang Oh
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- University of Kansas Medical Center, Kansas City, KS, United States
| | - Frances Boyle
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Nick Pavlakis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Stephen Clarke
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alex Guminski
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Gillian Lamoury
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Susan Carroll
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marita Morgia
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark Stevens
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
| | - Wen Liu
- University of Kansas Medical Center, Kansas City, KS, United States
| | - Brian Corless
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Mark Molloy
- Bowel Cancer and Biomarker Laboratory, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Towia Libermann
- Beth Israel Deaconess Medical Center (BIDMC) Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Michael Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
- Cancer Care Service, Mater Hospital, North Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Wu Y, Wu J, Lin Z, Wang Q, Li Y, Wang A, Shan X, Liu J. Administration of a Probiotic Mixture Ameliorates Cisplatin-Induced Mucositis and Pica by Regulating 5-HT in Rats. J Immunol Res 2021; 2021:9321196. [PMID: 34568500 PMCID: PMC8461230 DOI: 10.1155/2021/9321196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Probiotic-based therapies have been shown to be beneficial for chemotherapy-induced mucositis. Previous research has demonstrated that a probiotic mixture (Bifidobacterium brevis, Lactobacillus acidophilus, Lactobacillus casei, and Streptococcus thermophilus) can ameliorate chemotherapy-induced mucositis and dysbiosis in rats, but the underlying mechanism has not been completely elucidated. We aimed to determine the inhibitory effects of the probiotic mixture on cisplatin-induced mucositis and pica and the underlying mechanism, focusing on the levels of 5-hydroxytryptamine (5-HT, serotonin) regulated by the gut microbiota. A rat model of mucositis and pica was established by daily intraperitoneal injection of cisplatin (6 mg/kg) for 3 days. In the probiotic+cisplatin group, predaily intragastric injection of the probiotic mixture (1 × 109 CFU/kg BW) was administrated for 1 week before cisplatin injection. This was then followed by further daily probiotic injections for 6 days. Histopathology, pro-/anti-inflammatory cytokines, oxidative status, and 5-HT levels were assessed on days 3 and 6. The structure of the gut microbiota was analyzed by 16S rRNA gene sequencing and quantitative PCR. Additionally, 5-HT levels in enterochromaffin (EC) cells (RIN-14B cell line) treated with cisplatin and/or various probiotic bacteria were also determined. The probiotic mixture significantly attenuated kaolin consumption, inflammation, oxidative stress, and the increase in 5-HT concentrations in rats with cisplatin-induced intestinal mucositis and pica. Cisplatin markedly increased the relative abundances of Enterobacteriaceae_other, Blautia, Clostridiaceae_other, and members of Clostridium clusters IV and XIVa. These levels were significantly restored by the probiotic mixture. Importantly, most of the genera increased by cisplatin were significantly positively correlated with colonic 5-HT. Furthermore, in vitro, the probiotic mixture had direct inhibitory effects on the 5-HT secretion by EC cells. The probiotic mixture protects against cisplatin-induced intestine injury, exhibiting both anti-inflammatory and antiemetic properties. These results were closely related to the reestablishment of intestinal microbiota ecology and normalization of the dysbiosis-driven 5-HT overproduction.
Collapse
Affiliation(s)
- Yuanhang Wu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jianlin Wu
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhikun Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qian Wang
- Liaoning CapitalBio Technology Co., Ltd., Dalian, China
| | - Ying Li
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Aman Wang
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiu Shan
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiwei Liu
- Department of Medical Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Wahid M, Dar SA, Jawed A, Mandal RK, Akhter N, Khan S, Khan F, Jogiah S, Rai AK, Rattan R. Microbes in gynecologic cancers: Causes or consequences and therapeutic potential. Semin Cancer Biol 2021; 86:1179-1189. [PMID: 34302959 DOI: 10.1016/j.semcancer.2021.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022]
Abstract
Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.
Collapse
Affiliation(s)
- Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Raju Kumar Mandal
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il, Saudi Arabia
| | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sudhisa Jogiah
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Women's Health Services, Henry Ford Hospital, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
33
|
Schreurs MPH, de Vos van Steenwijk PJ, Romano A, Dieleman S, Werner HMJ. How the Gut Microbiome Links to Menopause and Obesity, with Possible Implications for Endometrial Cancer Development. J Clin Med 2021; 10:jcm10132916. [PMID: 34209916 PMCID: PMC8268108 DOI: 10.3390/jcm10132916] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Interest is growing in the dynamic role of gut microbiome disturbances in human health and disease. No direct evidence is yet available to link gut microbiome dysbiosis to endometrial cancer. This review aims to understand any association between microbiome dysbiosis and important risk factors of endometrial cancer, high estrogen levels, postmenopause and obesity. Methods: A systematic search was performed with PubMed as primary database. Three separate searches were performed to identify all relevant studies. Results: Fifteen studies were identified as highly relevant and included in the review. Eight articles focused on the relationship with obesity and eight studies focused on the menopausal change or estrogen levels. Due to the heterogeneity in patient populations and outcome measures, no meta-analysis could be performed. Both the menopausal change and obesity were noted to enhance dysbiosis by reducing microbiome diversity and increasing the Firmicutes to Bacteroidetes ratio. Both also incurred estrobolome changes, leading to increased systemic estrogen levels, especially after menopause. Furthermore, microbiome dysbiosis was reported to be related to systemic inflammation through toll-like receptor signaling deficiencies and overexpression of pro-inflammatory cytokines. Conclusions: This review highlights that the female gut microbiome is intrinsically linked to estrogen levels, menopausal state and systemic inflammation, which indicates gut microbiome dysbiosis as a potential hallmark for risk stratification for endometrial cancer. Studies are needed to further define the role the gut microbiome plays in women at risk for endometrial cancer.
Collapse
Affiliation(s)
- Malou P. H. Schreurs
- Department of Obstetrics, Gynecology and Gynecologic Oncology, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
- Correspondence:
| | - Peggy J. de Vos van Steenwijk
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
| | - Andrea Romano
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
| | - Sabine Dieleman
- Maastricht University Medical Centre, Department of Surgery, GROW—School for Oncology and Developmental Biology, 6202 AZ Maastricht, The Netherlands;
| | - Henrica M. J. Werner
- Maastricht University Medical Centre, Department of Obstetrics and Gynecology, GROW—School for Oncology and Development Biology, 6202 AZ Maastricht, The Netherlands; (P.J.d.V.v.S.); (A.R.); (H.M.J.W.)
| |
Collapse
|
34
|
Rosignoli C, Petruzzellis G, Radici V, Facchin G, Girgenti M, Stella R, Isola M, Battista M, Sperotto A, Geromin A, Cerno M, Arzese A, Deias P, Tascini C, Fanin R, Patriarca F. Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation. J Clin Med 2020; 9:jcm9113673. [PMID: 33207616 PMCID: PMC7696044 DOI: 10.3390/jcm9113673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Patients who undergo hematopoietic stem cell transplants (HSCT) are at major risk of C. difficile (CD) infection (CDI), the most common cause of nosocomial diarrhea. We conducted a retrospective study, which enrolled 481 patients who underwent autologous (220) or allogeneic HSCT (261) in a 5-year period, with the aim of identifying the incidence, risk factors and outcome of CDI between the start of conditioning and 100 days after HSCT. The overall cumulative incidence of CDI based upon clinical evidence was 5.4% (95% CI, 3.7% to 7.8%), without any significant difference between the two types of procedures. The median time between HSCT and CDI diagnosis was 12 days. Out of 26 patients, 19 (73%) with clinical and symptomatic evidence of CDI were positive also for enzymatic or molecular detection of toxigenic CD; in particular, in 5 out of 26 patients (19%) CD binary toxin was also detected. CDI diagnoses significantly increased in the period 2018-2019, since the introduction in the microbiology lab unit of the two-step diagnostic test based on GDH immunoenzymatic detection and toxin B/binary toxin/027 ribotype detection by real-time PCR. Via multivariate analysis, abdominal surgery within 10 years before HSCT (p = 0.002), antibiotic therapy within two months before HSCT (p = 0.000), HCV infection (p = 0.023) and occurrence of bacterial or fungal infections up to 100 days after HSCT (p = 0.003) were significantly associated with a higher risk of CDI development. The 26 patients were treated with first-line vancomycin (24) or fidaxomicine (2) and only 2 patients needed a second-line treatment, due to the persistence of stool positivity. No significant relationship was identified between CDI and the development of acute graft versus host disease (GVHD) after allogeneic HSCT. At a median follow-up of 25 months (range 1-65), the cumulative incidence of transplant related mortality (TRM) was 16.6% (95% CI 11.7% to 22.4%) and the 3-year overall survival (OS) was 67.0% (95% CI 61.9% to 71.6%). The development of CDI had no significant impact on TRM and OS, which were significantly impaired in the multivariate analysis by gastrointestinal and urogenital comorbidities, severe GVHD, previous infections or hospitalization within two months before HSCT, active disease at transplant and occurrence of infections after HSCT. We conclude that 20% of all episodes of diarrhea occurring up to 100 days after HSCT were related to toxigenic CD infection. Patients with a history of previous abdominal surgery or HCV infection, or those who had received broad spectrum parenteral antibacterial therapy were at major risk for CDI development. CDIs were successfully treated with vancomycin or fidaxomicin after auto-HSCT as well as after allo-HSCT.
Collapse
Affiliation(s)
- Chiara Rosignoli
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Giuseppe Petruzzellis
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Vera Radici
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Gabriele Facchin
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Marco Girgenti
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Rossella Stella
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Miriam Isola
- Istituto di Statistica, Dipartimento di Area Medica, Università di Udine, 33100 Udine, Italy;
| | - Martalisa Battista
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Alessandra Sperotto
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Antonella Geromin
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Michela Cerno
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Alessandra Arzese
- SOC Microbiologia, Azienda Sanitaria Friuli Centrale, 33100 Udine, Italy;
- Dipartimento di Area Medica, Università di Udine, 33100 Udine, Italy
| | - Paola Deias
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
| | - Carlo Tascini
- SOC Malattie Infettive, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy;
| | - Renato Fanin
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
- SOC Malattie Infettive, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy;
| | - Francesca Patriarca
- Clinica Ematologica ed Unità di Terapie Cellulari, Azienda Sanitaria Universitaria Friuli Centrale, Piazzale S. Maria della Misericordia 10, 33100 Udine, Italy; (C.R.); (G.P.); (V.R.); (G.F.); (M.G.); (R.S.); (M.B.); (A.S.); (A.G.); (M.C.); (P.D.); (R.F.)
- SOC Malattie Infettive, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy;
- Correspondence:
| |
Collapse
|