1
|
Niu Z, Zhang Y, Wang Y, Liu D, Wang J, Shi T, Xu X, Li L. MTFR2 promotes endometrial carcinoma cell proliferation and growth via the miR-132-3p/PI3K/Akt signaling pathway. Front Med (Lausanne) 2025; 11:1505071. [PMID: 40129972 PMCID: PMC11931630 DOI: 10.3389/fmed.2024.1505071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 03/26/2025] Open
Abstract
Objective Understanding the mechanisms underlying endometrial cancer progression is crucial for the development of effective targeted therapies. In this study, we investigated the role of MTFR2 in endometrial cancer cell. Methods The expression of MTFR2 in endometrial cancer was analyzed using The Cancer Genome Atlas (TCGA) dataset and detected in endometrial cancer tissues and cells, respectively. Gain-of-function and loss-of-function approaches were utilized to investigate the impact of MTFR2 on endometrial cancer cell proliferation and tumorigenesis in both in vitro and in vivo settings. Computational tools were employed to predict microRNAs (miRNAs) that potentially regulate MTFR2, and these predictions were experimentally validated. Results The expression of MTFR2 is enhanced in endometrial carcinoma, and it is positively correlated with the poor prognosis of patients. Functional studies show that MTFR2 promoted the proliferation, migration and invasion of endometrial cancer cells. Bioinformatics analysis and luciferase assays identified that MTFR2 is a potential target of miR-132-3p, and transfection with miR-132-3p mimics attenuated the MTFR2-induced activation of the PI3K/Akt pathway. Conclusion Our findings highlight the critical role of MTFR2 in promoting endometrial cancer cell proliferation and growth through the miR-132-3p/PI3K/Akt signaling pathway. Targeting this signaling axis may offer potential therapeutic strategies for endometrial cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lei Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Stephenson-Gussinye A, Rendón-Bautista LA, Ruiz-Medina BE, Blanco-Olais E, Pérez-Molina R, Marcial-Medina C, Chavarri-Guerra Y, Soto-Pérez-de-Celis E, Morales-Alfaro A, Esquivel-López A, Candanedo-González F, Gamboa-Domínguez A, Cortes-González R, Alfaro-Goldaracena A, Vázquez-Manjarrez SE, Grajales-Figueroa G, Astudillo-Romero B, Ruiz-Manriquez J, Poot-Hernández AC, Licona-Limón P, Furlan-Magaril M. Obtention of viable cell suspensions from breast cancer tumor biopsies for 3D chromatin conformation and single-cell transcriptome analysis. Front Mol Biosci 2024; 11:1420308. [PMID: 39239354 PMCID: PMC11375512 DOI: 10.3389/fmolb.2024.1420308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Molecular and cellular characterization of tumors is essential due to the complex and heterogeneous nature of cancer. In recent decades, many bioinformatic tools and experimental techniques have been developed to achieve personalized characterization of tumors. However, sample handling continues to be a major challenge as limitations such as prior treatments before sample acquisition, the amount of tissue obtained, transportation, or the inability to process fresh samples pose a hurdle for experimental strategies that require viable cell suspensions. Here, we present an optimized protocol that allows the recovery of highly viable cell suspensions from breast cancer primary tumor biopsies. Using these cell suspensions we have successfully characterized genome architecture through Hi-C. Also, we have evaluated single-cell gene expression and the tumor cellular microenvironment through single-cell RNAseq. Both technologies are key in the detailed and personalized molecular characterization of tumor samples. The protocol described here is a cost-effective alternative to obtain viable cell suspensions from biopsies simply and efficiently.
Collapse
Affiliation(s)
- Aura Stephenson-Gussinye
- Molecular Genetics Department, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Luis A Rendón-Bautista
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Blanca E Ruiz-Medina
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Eduardo Blanco-Olais
- Molecular Genetics Department, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rosario Pérez-Molina
- Molecular Genetics Department, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cleofas Marcial-Medina
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Yanin Chavarri-Guerra
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Enrique Soto-Pérez-de-Celis
- Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Denver, CO, United States
| | - Andrea Morales-Alfaro
- Department of Medicine, Division of Medical Oncology, University of Colorado Cancer Center, Denver, CO, United States
| | - Ayerim Esquivel-López
- Molecular Genetics Department, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Fernando Candanedo-González
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Armando Gamboa-Domínguez
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rubén Cortes-González
- Surgical Oncology Service, Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Alejandro Alfaro-Goldaracena
- Surgical Oncology Service, Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sara E Vázquez-Manjarrez
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guido Grajales-Figueroa
- Department of Gastrointestinal Endoscopy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Beatriz Astudillo-Romero
- Department of Gastrointestinal Endoscopy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesús Ruiz-Manriquez
- Department of Gastrointestinal Endoscopy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - A César Poot-Hernández
- Unidad de Bioinformática y Manejo de Información, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Paula Licona-Limón
- Department of Cellular and Developmental Biology, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Molecular Genetics Department, Institute of Cellular Physiology, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Wei L, Feng Z, Dou Q, Tan L, Zhao X, Hao B. Dysregulation of MTFR2, ATP5IF1 and BAK1 in Sertoli cells relates to idiopathic non-obstructive azoospermia via inhibiting mitochondrial fission and inducing mitochondrial dysfunction†. Biol Reprod 2024; 110:408-418. [PMID: 37903059 DOI: 10.1093/biolre/ioad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Non-obstructive azoospermia affects more than 10% of infertile men with over 70% patients are idiopathic with uncharacterized molecular mechanisms, which is referred as idiopathic non-obstructive azoospermia. In this study, we checked the morphology of Sertoli cell mitochondria in testis biopsies from patients with idiopathic non-obstructive azoospermia and patients with obstructive azoospermia who have normal spermiogenesis. The expression of 104 genes controlling mitochondria fission and fusion were analyzed in three gene expression datasets including a total of 60 patients with non-obstructive azoospermia. The levels of 7 candidate genes were detected in testis biopsies from 38 patients with idiopathic non-obstructive azoospermia and 24 patients with obstructive azoospermia who have normal spermatogenesis by RT-qPCR. Cell viability, apoptosis, mitochondria membrane potential, adenosine triphosphate production, oxygen consumption, and mitochondria morphology were examined in primary human Sertoli cells. Mouse spermatogonial stem cells were used to detect the cell supporting capacity of Sertoli cells. We observed that patients with idiopathic non-obstructive azoospermia had elongated mitochondria. MTFR2 and ATP5IF1 were downregulated, whereas BAK1 was upregulated in idiopathic non-obstructive azoospermia testis and Sertoli cells. Sertoli cells from patients with idiopathic non-obstructive azoospermia had reduced viability, mitochondria membrane potential, adenosine triphosphate production, oxygen consumption rate, glycolysis and increased apoptosis. Knockdown MTFR2 in Sertoli cells increased the mitochondria size. Knockdown ATP5IF1 did not change mitochondrial morphology but increased adenosine triphosphate hydrolysis. Overexpression of BAK1 reduced membrane potential and upregulated cell apoptosis. The dysregulation of all these three genes contributed to the dysfunction of Sertoli cells, which provides a clue for idiopathic non-obstructive azoospermia treatment.
Collapse
Affiliation(s)
- Lei Wei
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zonggang Feng
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Dou
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Tan
- Reproductive Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghua Zhao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Hao
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Xing J, Qi L, Liu X, Shi G, Sun X, Yang Y. Roles of mitochondrial fusion and fission in breast cancer progression: a systematic review. World J Surg Oncol 2022; 20:331. [PMID: 36192752 PMCID: PMC9528125 DOI: 10.1186/s12957-022-02799-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Mitochondria play critical roles in cellular physiological activity as cellular organelles. Under extracellular stimulation, mitochondria undergo constant fusion and fission to meet different cellular demands. Mitochondrial dynamics, which are involved in mitochondrial fusion and fission, are regulated by specialized proteins and lipids, and their dysregulation causes human diseases, such as cancer. The advanced literature about the crucial role of mitochondrial dynamics in breast cancer is performed. Methods All related studies were systematically searched through online databases (PubMed, Web of Science, and EMBASE) using keywords (e.g., breast cancer, mitochondrial, fission, and fusion), and these studies were then screened through the preset inclusion and exclusion criteria. Results Eligible studies (n = 19) were evaluated and discussed in the systematic review. These advanced studies established the roles of mitochondrial fission and fusion of breast cancer in the metabolism, proliferation, survival, and metastasis. Importantly, the manipulating of mitochondrial dynamic is significant for the progresses of breast cancer. Conclusion Understanding the mechanisms underlying mitochondrial fission and fusion during tumorigenesis is important for improving breast cancer treatments.
Collapse
Affiliation(s)
- Jixiang Xing
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Luyao Qi
- The Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xiaofei Liu
- Department of Breast and Thyroid, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guangxi Shi
- Department of Breast and Thyroid, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaohui Sun
- Department of Breast and Thyroid, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Yang
- Department of Breast and Thyroid, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
5
|
MTFR2 shapes a barrier of immune microenvironment in hepatocellular carcinoma. iScience 2022; 26:105095. [PMID: 36713263 PMCID: PMC9881049 DOI: 10.1016/j.isci.2022.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/31/2022] [Accepted: 09/04/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in the world. Mitochondrial fission regulator 2 (MTFR2) is involved in the development of various cancers. However, the roles of MTFR2 in HCC remain unknown. In this study, we conducted a comprehensive analysis of MTFR2 in HCC, which was generated from integrative MTFR2 analyses of eight HCC cell lines, and three datasets (public dataset, real-world dataset, and immunotherapy dataset) derived from bulk HCC tissues, survival, and immunotherapy data. We demonstrated that the expression level of MTFR2 is upregulated in HCC, leading to poor prognosis. MTFR2 is positively correlated with the level of immune cell infiltration, multiple immune checkpoints and immunotherapy response prediction pathways, and acts as an important role in cancer-immunity cycle. In conclusion, our work indicates that MTFR2 can shape a barrier of immune microenvironment and result in poor prognosis in hepatocellular carcinoma, but the immune barrier may be broken by immunotherapy.
Collapse
|
6
|
Lian Z, Pang P, Zhu Y, Du W, Zhou J. Prognostic Value and Potential Mechanism of MTFR2 in Lung Adenocarcinoma. Front Oncol 2022; 12:832517. [PMID: 35600359 PMCID: PMC9117628 DOI: 10.3389/fonc.2022.832517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial fission regulator 2 (MTFR2) belongs to the MTFR1 family, which plays a crucial role in regulating oxidative phosphorylation. Recent studies indicate that it also participates in cancer carcinogenesis and development; however, the clinical significance of MTFR2 in lung adenocarcinoma has not been fully confirmed. Our current study investigated the relationships between clinical characteristics and MTFR2 expression based on The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GSE31210) dataset, and clinical histopathological sample cohort. In addition, Kaplan–Meier and Cox regression analyses were additionally performed to evaluate the association between MTFR2 expression and patient survival. Gene set enrichment analysis (GESA) was conducted to spot possible pathways associated with MTFR2. Moreover, a single-sample GESA (ssGESA) was performed to evaluate the association between MTFR2 expression and immune cell infiltration. Cell colony formation assay, CCK-8 assay, cell cycle assay, and transwell assay were performed to verify the cell proliferation, migration, and invasion abilities after interfering with MTFR2 in lung cancer cells. Western blot assay was applied to identify the underlying protein levels. The results indicated that the elevated MTFR2 expression in lung adenocarcinoma samples correlated with T stage (P < 0.001), N stage (P = 0.005), M stage (P = 0.015), pathological stage (P = 0.002), and TP53 status (P < 0.001). Patients with a higher MTFR2 expression correlated with poorer overall survival (P < 0.01) and progression-free survival (P = 0.002). Knockdown of MTFR2 inhibited cell proliferation, migration, and invasion via AKT-cyclin D1 signaling and EMT pathways. Moreover, MTFR2 expression significantly positively correlated with Th2 cells (P < 0.001). Taken together, MTFR2 could serve as a novel prognostic indicator and therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Zengzhi Lian
- Department of Pulmonary and Critical Care Medicine, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Pei Pang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhu
- Department of Emergency and Critical Care Medicine, Changzheng Hospital of Second Military Medical University, Shanghai, China
| | - Wenwen Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jintao Zhou
- Department of Pulmonary and Critical Care Medicine, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Li H, Zhu X, Zhang W, Lu W, Liu C, Ma J, Zang R, Song Y. Association of High Expression of Mitochondrial Fission Regulator 2 with Poor Survival of Patients with Esophageal Squamous Cell Carcinoma. J Cancer Prev 2021; 26:250-257. [PMID: 35047451 PMCID: PMC8749323 DOI: 10.15430/jcp.2021.26.4.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022] Open
Abstract
Mitochondrial fission regulator 2 (MTFR2) is associated with mitochondrial fission, while few studies have assessed the associations between MTFR2 expression and clinical characteristics or prognosis of esophageal squamous cell carcinoma (ESCC). In this study, we compared the expression of MTFR2 in 6 ESCC tumors and relative normal tissues by immunohistochemistry (IHC). To assess the effect of MTFR2 expression on clinicopathologic characteristics and survival, 115 paraffin embedded ESCC tissue samples were assessed by IHC staining. Furthermore, the association between clinicopathological properties and MTFR2 expression in patients with ESCC was examined. The survival analysis was performed using the Cox regression models. We found that MTFR2 expression was significantly increased in ESCC tumors compared with normal esophageal epithelial cells. IHC analysis of 115 paraffin embedded ESCC tumor specimens of the patients showed that the expression of MTFR2 was significantly associated with clinical stage (P < 0.001), tumor classification (P < 0.001), histological grade (P < 0.001), and other clinicopathological characteristics. Both univariate and multivariate analyses showed that MTFR2 expression was inversely correlated with the survival of ESCC patients. In conclusion, the expression of MTFR2 is significantly associated with clinicopathologic characteristics and prognosis of ESCC. Thus, MTFR2 expression could serve as a potentially important prognostic biomarker and clinical target for patients with ESCC.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xingzhuang Zhu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Wenjie Lu
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinbo Ma
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Rukun Zang
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yipeng Song
- Department of Radiation Oncology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.,Department of Oncology, School of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Xie Y, Chen R, Yan L, Jia Z, Liang G, Wang Q. Transcription factor HOXC10 activates the expression of MTFR2 to regulate the proliferation, invasion and migration of colorectal cancer cells. Mol Med Rep 2021; 24:797. [PMID: 34523692 PMCID: PMC8456344 DOI: 10.3892/mmr.2021.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 12/09/2022] Open
Abstract
HOXC10 and mitochondrial fission regulator 2 (MTFR2) have been reported to be abnormally expressed in multiple types of cancer tissues. However, the effects of HOXC10 and MTFR2 on colorectal cancer (CRC) remain poorly understood. Therefore, the present study aimed to investigate the expression of HOXC10 and MTFR2 in CRC tissues and cells, and analyze their effects on CRC cell proliferation, invasion and migration. Reverse transcription‑quantitative PCR and western blotting were used to detect the expression levels of MTFR2 and HOXC10 in tissues and cells. To investigate the association between MTFR2 and HOXC10, short hairpin RNA‑MTFR2 and overexpression vector‑HOXC10 were transfected into the cells, respectively. Furthermore, western blotting was performed to detect the expression levels of invasion‑associated proteins. The proliferation, clone formation, invasion and migration of colorectal cancer cells were in turn analyzed by the Cell Counting Kit‑8, clone formation, wound healing and Transwell assays. Japan Automotive Software Platform and Architecture software predicted the binding sites between HOXC10 and MTFR2, which was confirmed by the dual‑luciferase reporter assay and chromatin immunoprecipitation. The present study demonstrated that HOXC10 and MTFR2 mRNA and protein expression levels were significantly upregulated in CRC tissues and cells. MTFR2 knockdown significantly inhibited CRC cell proliferation, clone formation, invasion and migration. Furthermore, HOXC10 was shown to interact with MTFR2. HOXC10 overexpression was able to significantly reverse the inhibitory effects of MTFR2 knockdown on CRC cells. In conclusion, HOXC10 overexpression activated MTFR2 expression to enhance the proliferation, clone formation, invasion and migration of CRC cells.
Collapse
Affiliation(s)
- Ying Xie
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Ran Chen
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Liujia Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Zhangjun Jia
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Guangshu Liang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Qin Wang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Zhu H, Wang G, Zhu H, Xu A. MTFR2, A Potential Biomarker for Prognosis and Immune Infiltrates, Promotes Progression of Gastric Cancer Based on Bioinformatics Analysis and Experiments. J Cancer 2021; 12:3611-3625. [PMID: 33995638 PMCID: PMC8120185 DOI: 10.7150/jca.58158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Mitochondrial fission regulator 2 (MTFR2) which can promote mitochondrial fission, has recently been reported to be involved in tumorigenesis. However, little is known about its expression levels and function in gastric cancer (GC). This study aims to clarify the role of MTFR2 in GC. Methods:We firstly determined the expression level and prognostic value of MTFR2 in GC by integrated bioinformatics (Oncomine, GEPIA, Kaplan-Meier Plotter database) and experimental approaches (RT-qPCR, western blot, immunohistochemistry). After constructing stable down-regulated GC cells, the biological functions of MTFR2 in vitro and in vivo were studied through cell clone formation, wound healing, transwell and tumor formation experiments.To understand the reason for the high expression of MTFR2 in GC, copy number alternation, promoter methylation and mutation of MTFR2 were detected by UALCAN and cBioPortal. TargetScanHuman and PROMO databases were also used to explore the miRNAs and transcription factors of MTFR2, and the regulatory network was visualized by Cytoscape. LinkedOmics was used to detect the co-expression profile, and then these co-expressed genes were used for gene oncology function and pathway enrichment analysis to deepen the understanding of MTFR2 mechanism. The protein interaction network of MTFR2 was constructed by the GeneMANIA platform. Docking study of the binding mode was conducted by H DOCK webserver, and PYMOL is used for visualization, and analysis. TIMER database was used to explore the correlation between MTFR2 expression level and immune cells infiltration and gene markers of tumor infiltrating immune cells. Results: We demonstrated that MTFR2 was up-regulated in GC, and its overexpression led to poorer prognosis. MTFR2 downregulation inhibited the proliferation, migration, and invasion of GC cells in vitro and in vivo. By bioinformatics analysis, we identified the possible factors in MTFR2 overexpression. Moreover, function and pathway enrichment analyses found that MTFR2 was involved in chromosome segregation, catalytic activity, cell cycle, and ribonucleic acid transport. A MTFR2-protein interaction network revealed a potential direct protein interaction between MTFR2 and protein kinase adenosine-monophosphate-activated catalytic subunit alpha 1 (PRKAA1), and their potential binding site was predicted in a molecular docking model. In addition, we also found that MTFR2 may be correlated with immune infiltration in GC. Conclusions: Our study has effectively revealed the expression, prognostic value, potential functional networks, protein interactions and immune infiltration of MTFR2 in GC. Altogether, our data identify the possible underlying mechanisms of MTFR2 and suggest that MTFR2 may be a prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Haixing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, People's Republic of China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China.,Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| |
Collapse
|