1
|
Liu Z, Zeng Y, Li R, Yan Y, Yi S, Zhang K. Treatment of chronic obstructive pulmonary disease by traditional Chinese medicine Morin monomer regulated by autophagy. J Thorac Dis 2024; 16:6052-6063. [PMID: 39444855 PMCID: PMC11494543 DOI: 10.21037/jtd-23-1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a frequently occurring disorder. The aim of this study is to explore the mechanism of traditional Chinese medicine Morin monomer in the treatment of COPD via regulating autophagy based on the long non-coding RNA (lncRNA) H19/microRNA (miR)-194-5p/Sirtuin (SIRT)1 signal axis. Methods The COPD rat model was constructed, and the lung tissues were collected. The pathological analysis was performed using hematoxylin-eosin (HE), Masson, and periodic acid-Schiff (PAS) staining. Autophagosomes were observed using transmission electron microscope. LncRNA H19, miR-194-5p, SIRT1 genes in the rat lung tissues were detected using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The autophagy-related proteins including SIRT1, mammalian/mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, microtubule-associated protein light chain 3 (LC3), Beclin-1, autophagy-related (ATG)7, and p62 in each group were detected using Western blot. Results The rats in the control group had normal lung structure. Alveolar enlargement and destruction could be found in the rat lung tissues in the model group, accompanied with obvious infiltration of inflammatory cells, thickened bronchial walls, enlarged alveolar septum, collagen fibers deposition, and goblet cells proliferation. In comparison with the model group, Morin treatment relieved the lung injuries, which was optimized in the moderate- and high-dose groups. The number of autophagosomes in the lung tissues of the model rats was dramatically increased compared with the normal rats. However, the number of autophagosomes in each Morin treatment group was obviously less than that in the model group. LncRNA H19 and SIRT1 expression was significantly increased in the model group, and miR-194-5p was significantly decreased (P<0.05). Morin and 3-methyladenine (3-MA) could obviously reduce the lncRNA H19 and SIRT1 expression, and increase the miR-194-5p expression (P<0.05). Relative to control rats, ATG7, Beclin-1, LC3II/I and SIRT1 levels in the model group increased obviously, while the expression of p62, and p-mTOR/mTOR decreased (P<0.05). Morin treatment reduced the expression of ATG7, Beclin-1, SIRT1, LC3II/I significantly, and increased the p-mTOR/mTOR and p62 expression (P<0.05). Conclusions Morin decreased lncRNA H19 expression, resulting in upregulation of miR-194-5p expression, downregulation of SIRT1 expression, and increased of p-mTOR/mTOR expression. Furthermore, cell autophagy was inhibited, contributing to the COPD treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Zeng
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Yan
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sicheng Yi
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
2
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Padoan F, Piccoli E, Pietrobelli A, Moreno LA, Piacentini G, Pecoraro L. The Role of Zinc in Developed Countries in Pediatric Patients: A 360-Degree View. Biomolecules 2024; 14:718. [PMID: 38927121 PMCID: PMC11201578 DOI: 10.3390/biom14060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc is an important trace element for growth and health at pediatric ages. Zinc is fundamental in inflammatory pathways, oxidative balance, and immune function. Zinc exhibits anti-inflammatory properties by modulating Nuclear Factor-kappa (NF-κB) activity and reducing histamine release from basophils, leukocytes, and mast cells. Furthermore, its antioxidant activity protects against oxidative damage and chronic diseases. Finally, zinc improves the ability to trigger effective immune responses against pathogens by contributing to the maturation of lymphocytes, the production of cytokines, and the regulation of apoptosis. Given these properties, zinc can be considered an adjunctive therapy in treating and preventing respiratory, nephrological, and gastrointestinal diseases, both acute and chronic. This review aims to deepen the role and metabolism of zinc, focusing on the role of supplementation in developed countries in pediatric diseases.
Collapse
Affiliation(s)
- Flavia Padoan
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Elena Piccoli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Angelo Pietrobelli
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luis A. Moreno
- Growth, Exercise, Nutrition and Development (GENUD), Research Group, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, 50001 Zaragoza, Spain
| | - Giorgio Piacentini
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| | - Luca Pecoraro
- Pediatric Unit, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics University of Verona, 37126 Verona, Italy
| |
Collapse
|
4
|
Liu A, Sheng W, Tang X. Atmospheric pollen concentrations and chronic obstructive pulmonary disease (COPD) patients visits in Beijing: time series analysis using a generalized additive model. Sci Rep 2024; 14:3462. [PMID: 38342942 PMCID: PMC10859374 DOI: 10.1038/s41598-024-54055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
To investigate the correlation between the daily visits of chronic obstructive pulmonary disease (COPD) patients in hospital clinic and pollen concentrations in Beijing. We collected daily visits of COPD patients of Beijing Shijitan Hospital from April 1st, 2019 to September 30th, 2019. The relationship between pollen concentrations and COPD patient number was analyzed with meteorological factors, time trend, day of the week effect and holiday effect being controlled by the generalized additive model of time series analysis. R4.1.2 software was applied to generate Spearman correlation coefficient, specific and incremental cumulative effect curves of relative risks as well as the response and three-dimensional diagrams for the exposure lag effect prediction. The fitting models were used to predict the lag relative risk and 95% confidence intervals for specific and incremental cumulative effects of specific pollen concentrations. The number of COPD patients was positively correlated with pollen concentration. When pollen concentration increased by 10 grains/1000 mm2, the peak value of the specific cumulative effect appeared on day0, with the effect gone on day4 and a lag time of 4 days observed, whereas the incremental cumulative effect's peak value was shown on day17, and the effect disappeared on day18, with a lag time of 18 days. The results showed that pollen concentration was not only positively correlated with the number of COPD patients, but also had a bimodal lag effect on COPD visits in the hospital at Beijing.
Collapse
Affiliation(s)
- Aizhu Liu
- Department of Otolaryngology Head and Neck Surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Weixuan Sheng
- Department of Anesthesiology, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Xianshi Tang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China.
| |
Collapse
|
5
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Ochoa JJ, Diaz-Castro J. Antioxidant and Immune-Related Implications of Minerals in COVID-19: A Possibility for Disease Prevention and Management. Antioxidants (Basel) 2023; 12:antiox12051104. [PMID: 37237970 DOI: 10.3390/antiox12051104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Since the coronavirus disease 2019 (COVID-19) pandemic appeared, both governments and the scientific community have focused their efforts on the search for prophylactic and therapeutic alternatives in order to reduce its effects. Vaccines against SARS-CoV-2 have been approved and administered, playing a key role in the overcoming of this situation. However, they have not reached the whole world population, and several doses will be needed in the future in order to successfully protect individuals. The disease is still here, so other strategies should be explored with the aim of supporting the immune system before and during the infection. An adequate diet is certainly associated with an optimal inflammatory and oxidative stress status, as poor levels of different nutrients could be related to altered immune responses and, consequently, an augmented susceptibility to infections and severe outcomes derived from them. Minerals exert a wide range of immune-modulatory, anti-inflammatory, antimicrobial, and antioxidant activities, which may be useful for fighting this illness. Although they cannot be considered as a definitive therapeutic solution, the available evidence to date, obtained from studies on similar respiratory diseases, might reflect the rationality of deeper investigations of the use of minerals during this pandemic.
Collapse
Affiliation(s)
- Juan M Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - María Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain
| |
Collapse
|
6
|
Li K, Mei X, Xu K, Jia L, Zhao P, Tian Y, Li J. Comparative study of cigarette smoke, Klebsiella pneumoniae, and their combination on airway epithelial barrier function in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1133-1142. [PMID: 36757011 DOI: 10.1002/tox.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The airway epithelium acts as a physical barrier to protect pulmonary airways against pathogenic microorganisms and toxic substances, such as cigarette smoke (CS), bacteria, and viruses. The disruption of the structural integrity and dysfunction of the airway epithelium is related to the occurrence and progression of chronic obstructive pulmonary disease. PURPOSE The aim of this study is to compare the effects of CS, Klebsiella pneumoniae (KP), and their combination on airway epithelial barrier function. METHODS The mice were exposed to CS, KP, and their combination from 1 to 8 weeks. After the cessation of CS and KP at Week 8, we observed the recovery of epithelial barrier function in mice for an additional 16 weeks. To compare the epithelial barrier function among different groups over time, the mice were sacrificed at Weeks 4, 8, 16, and 24 and then the lungs were harvested to detect the pulmonary pathology, inflammatory cytokines, and tight junction proteins. To determine the underlying mechanisms, the BEAS-2B cells were treated with an epidermal growth factor receptor (EGFR) inhibitor (AG1478). RESULTS The results of this study suggested that the decreased lung function, increased bronchial wall thickness (BWT), elevated inflammatory factors, and reduced tight junction protein levels were observed at Week 8 in CS-induced mice and these changes persisted until Week 16. In the KP group, increased BWT and elevated inflammatory factors were observed only at Week 8, whereas in the CS + KP group, decreased lung function, lung tissue injury, inflammatory cell infiltration, and epithelial barrier impairment were observed at Week 4 and persisted until Week 24. To further determine the mechanisms of CS, bacteria, and their combination on epithelial barrier injury, we investigated the changes of EGFR and its downstream protein in the lung tissues of mice and BEAS-2B cells. Our research indicated that CS, KP, or their combination could activate EGFR, which can phosphorylate and activate ERK1/2, and this effect was more pronounced in the CS + KP group. Furthermore, the EGFR inhibitor AG1478 suppressed the phosphorylation of ERK1/2 and subsequently upregulated the expression of ZO-1 and occludin. In general, these results indicated that the combination of CS and KP caused more severe and enduring damage to epithelial barrier function than CS or KP alone, which might be associated with EGFR/ERK1/2 signaling. CONCLUSION Epithelial barrier injury occurred earlier, was more severe, and had a longer duration when induced by the combination of CS and KP compared with the exposure to CS or KP alone, which might be associated with EGFR/ERK signaling.
Collapse
Affiliation(s)
- Kangchen Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kexin Xu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lidan Jia
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- Department of Respiratory Diseases, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Manuja A, Chhabra D, Kumar B. Chloroquine chaos and COVID-19: Smart delivery perspectives through pH sensitive polymers/micelles and ZnO nanoparticles. ARAB J CHEM 2023; 16:104468. [PMID: 36466721 PMCID: PMC9710101 DOI: 10.1016/j.arabjc.2022.104468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The global pandemic of COVID-19 had a consequential impact on our lives. (Hydroxy)chloroquine, a well-known drug for treatment or prevention against malaria and chronic inflammatory conditions, was also used for COVID patients with reported potential efficacy. Although it was well tolerated, however in some cases, it produced severe side effects, including grave cardiac issues. The variable reports on the administration of (hydroxy)chloroquine in COVID19 patients led to chaos. This drug is a well-known zinc ionophore, besides possessing antiviral effects. Zinc ionophores augment the intracellular Zn2+ concentration by facilitating the zinc ions into the cells and subsequently impair virus replication. Zinc oxide nanoparticles (ZnO NPs) have been reported to possess antiviral activity. However, the adverse effects of both components are also reported. We discussed in depth their possible mechanism as antiviral and smart delivery perspectives through pH-sensitive polymers/ micelles and ZnO NPs.
Collapse
Affiliation(s)
- Anju Manuja
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| | | | - Balvinder Kumar
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| |
Collapse
|
8
|
Zinc in Human Health and Infectious Diseases. Biomolecules 2022; 12:biom12121748. [PMID: 36551176 PMCID: PMC9775844 DOI: 10.3390/biom12121748] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
During the last few decades, the micronutrient zinc has proven to be an important metal ion for a well-functioning immune system, and thus also for a suitable immune defense. Nowadays, it is known that the main cause of zinc deficiency is malnutrition. In particular, vulnerable populations, such as the elderly in Western countries and children in developing countries, are often affected. However, sufficient zinc intake and homeostasis is essential for a healthy life, as it is known that zinc deficiency is associated with a multitude of immune disorders such as metabolic and chronic diseases, as well as infectious diseases such as respiratory infections, malaria, HIV, or tuberculosis. Moreover, the modulation of the proinflammatory immune response and oxidative stress is well described. The anti-inflammatory and antioxidant properties of zinc have been known for a long time, but are not comprehensively researched and understood yet. Therefore, this review highlights the current molecular mechanisms underlying the development of a pro-/ and anti-inflammatory immune response as a result of zinc deficiency and zinc supplementation. Additionally, we emphasize the potential of zinc as a preventive and therapeutic agent, alone or in combination with other strategies, that could ameliorate infectious diseases.
Collapse
|
9
|
Delhove J, Alawami M, Macowan M, Lester SE, Nguyen PT, Jersmann HPA, Reynolds PN, Roscioli E. Organotypic sinonasal airway culture systems are predictive of the mucociliary phenotype produced by bronchial airway epithelial cells. Sci Rep 2022; 12:19225. [PMID: 36357550 PMCID: PMC9648462 DOI: 10.1038/s41598-022-23667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Differentiated air-liquid interface models are the current standard to assess the mucociliary phenotype using clinically-derived samples in a controlled environment. However, obtaining basal progenitor airway epithelial cells (AEC) from the lungs is invasive and resource-intensive. Hence, we applied a tissue engineering approach to generate organotypic sinonasal AEC (nAEC) epithelia to determine whether they are predictive of bronchial AEC (bAEC) models. Basal progenitor AEC were isolated from healthy participants using a cytological brushing method and differentiated into epithelia on transwells until the mucociliary phenotype was observed. Tissue architecture was assessed using H&E and alcian blue/Verhoeff-Van Gieson staining, immunofluorescence (for cilia via acetylated α-tubulin labelling) and scanning electron microscopy. Differentiation and the formation of tight-junctions were monitored over the culture period (day 1-32) by quantifying trans-epithelial electrical resistance. End point (day 32) tight junction protein expression was assessed using Western blot analysis of ZO-1, Occludin-1 and Claudin-1. Reverse transcription qPCR-array was used to assess immunomodulatory and autophagy-specific transcript profiles. All outcome measures were assessed using R-statistical software. Mucociliary architecture was comparable for nAEC and bAEC-derived cultures, e.g. cell density P = 0.55, epithelial height P = 0.88 and cilia abundance P = 0.41. Trans-epithelial electrical resistance measures were distinct from day 1-14, converged over days 16-32, and were statistically similar over the entire culture period (global P < 0.001). This agreed with end-point (day 32) measures of tight junction protein abundance which were non-significant for each analyte (P > 0.05). Transcript analysis for inflammatory markers demonstrated significant variation between nAEC and bAEC epithelial cultures, and favoured increased abundance in the nAEC model (e.g. TGFβ and IL-1β; P < 0.05). Conversely, the abundance of autophagy-related transcripts were comparable and the range of outcome measures for either model exhibited a considerably more confined uncertainty distribution than those observed for the inflammatory markers. Organotypic air-liquid interface models of nAEC are predictive of outcomes related to barrier function, mucociliary architecture and autophagy gene activity in corresponding bAEC models. However, inflammatory markers exhibited wide variation which may be explained by the sentinel immunological surveillance role of the sinonasal epithelium.
Collapse
Affiliation(s)
- Juliette Delhove
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.1694.aRespiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
| | - Moayed Alawami
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.460761.20000 0001 0323 4206Respiratory Department, Lyell McEwin Hospital, Adelaide, SA Australia
| | - Matthew Macowan
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Monash University, Melbourne, VIC Australia
| | - Susan E. Lester
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.278859.90000 0004 0486 659XDepartment of Rheumatology, The Queen Elizabeth Hospital, Adelaide, SA Australia
| | - Phan T. Nguyen
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia
| | - Hubertus P. A. Jersmann
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia
| | - Paul N. Reynolds
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia
| | - Eugene Roscioli
- grid.1010.00000 0004 1936 7304Adelaide Medical School, University of Adelaide, Adelaide, SA Australia ,grid.416075.10000 0004 0367 1221Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA Australia ,Adelaide Health and Medical Science, Building, Corner of North Terrace and George St, Adelaide, SA 5005 Australia
| |
Collapse
|
10
|
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D, Moein S, Vaghari-Tabari M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol Trace Elem Res 2022; 200:2556-2571. [PMID: 34368933 PMCID: PMC8349606 DOI: 10.1007/s12011-021-02859-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regulating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory viruses' vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship between zinc levels and the effectiveness of respiratory viruses' vaccines, especially influenza vaccines, is still unclear, and the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against respiratory viral infections and regulating the immune response in the respiratory tract.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mir-Meghdad Safari
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Melika Izadpanah
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
12
|
Wessels I, Rolles B, Slusarenko AJ, Rink L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr 2022; 127:214-232. [PMID: 33641685 PMCID: PMC8047403 DOI: 10.1017/s0007114521000738] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haematopoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system malfunction has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesion molecules and tight junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency both weakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous problems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even prevent infection, and the transition from mild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis with COVID-19 and registered studies in progress are listed.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074Aachen, Germany
| |
Collapse
|
13
|
Lee PH, Park S, Lee YG, Choi SM, An MH, Jang AS. The Impact of Environmental Pollutants on Barrier Dysfunction in Respiratory Disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:850-862. [PMID: 34734504 PMCID: PMC8569032 DOI: 10.4168/aair.2021.13.6.850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Respiratory epithelial cells form a selective barrier between the outside environment and underlying tissues. Epithelial cells are polarized and form specialized cell-cell junctions, known as the apical junctional complex (AJC). Assembly and disassembly of the AJC regulates epithelial morphogenesis and remodeling processes. The AJC consists of tight and adherens junctions, functions as a barrier and boundary, and plays a role in signal transduction. Endothelial junction proteins play important roles in tissue integrity and vascular permeability, leukocyte extravasation, and angiogenesis. Air pollutants such as particulate matter, ozone, and biologic contaminants penetrate deep into the airways, reaching the bronchioles and alveoli before entering the bloodstream to trigger airway inflammation. Pollutants accumulating in the lungs exacerbate the symptoms of respiratory diseases, including asthma and chronic obstructive lung disease. Biological contaminants include bacteria, viruses, animal dander and cat saliva, house dust mites, cockroaches, and pollen. Allergic inflammation develops in tissues such as the lung and skin with large epithelial surface areas exposed to the environment. Barrier dysfunction in the lung allows allergens and environmental pollutants to activate the epithelium and produce cytokines that promote the induction and development of immune responses. In this article, we review the impact of environmental pollutants on the cell barrier in respiratory diseases.
Collapse
Affiliation(s)
- Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Shinhee Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yun-Gi Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seon-Muk Choi
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Min-Hyeok An
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
14
|
Razeghi Jahromi
S,
Moradi Tabriz
H, Togha M, Ariyanfar S, Ghorbani Z, Naeeni S, Haghighi S, Jazayeri A, Montazeri M, Talebpour M, Ashraf H, Ebrahimi M, Hekmatdoost A, Jafari E. The correlation between serum selenium, zinc, and COVID-19 severity: an observational study. BMC Infect Dis 2021; 21:899. [PMID: 34479494 PMCID: PMC8414458 DOI: 10.1186/s12879-021-06617-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without an adequate immune response, SARS-CoV2 virus can simply spread throughout the body of the host. Two of the well-known immunonutrients are selenium (Se) and zinc (Zn). Se and Zn deficiency might lead to inflammation, oxidative stress, and viral entry into the cells by decreasing ACE-2 expression; three factors that are proposed to be involved in COVID-19 pathogenesis. Thus, in the current study we aimed at evaluating the correlation between serum Se and Zn status and COVID-19 severity. METHODS Eighty-four COVID-19 patients were enrolled in this observational study. Patients were diagnosed based on an infectious disease specialist diagnosis, using WHO interim guidance and the recommendations of the Iranian National Committee of Covid-19. The patients with acute respiratory tract infection symptoms were checked for compatibility of chest computed tomography (CT) scan results with that of Covid-19 and Real-time polymerase chain reaction (RT-PCR) for corona virus infection. The severity of Covid-19 was categorized into three groups (mild, moderate, and severe) using CDC criteria. Serum Zn and Se level of all subjects was measured. The severity of the disease was determined only once at the onset of disease. RESULTS According to the results of linear regression test, there was a significant association between Zn and Se level and COVID-19 severity (β = - 0.28, P-value = 0.01 for Se; β = - 0.26, P-value = 0.02). However the significance disappeared after adjusting for confounding factors. Spearman correlation analysis showed a significant negative association between serum Zn, Se and CRP level (r = - 0.35, P-value = 0.001 for Se; r = - 0.41, P-value < 0.001 for Zn). CONCLUSION Results suggest that increasing levels of Se and Zn were accompanied by a decrease in serum CRP level. However, the significant association between Se, Zn, and disease severity was lost after adjusting for confounding factors.
Collapse
Affiliation(s)
- Soodeh
Razeghi Jahromi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedieh
Moradi Tabriz
- Present Address: Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurology ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Ariyanfar
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghorbani
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Clinical Nutrition, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sima Naeeni
- Neurology ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Haghighi
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neurology ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Aboozar Jazayeri
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Montazeri
- Department of Infectious Diseases, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Talebpour
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Ashraf
- Research Development Center, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ebrahimi
- Endocrinology Department, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jafari
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ghaemi F, Amiri A, Bajuri MY, Yuhana NY, Ferrara M. Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. SUSTAINABLE CITIES AND SOCIETY 2021; 72:103046. [PMID: 34055576 PMCID: PMC8146202 DOI: 10.1016/j.scs.2021.103046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
In 2019, a novel type of coronavirus emerged in China called SARS-COV-2, known COVID-19, threatens global health and possesses negative impact on people's quality of life, leading to an urgent need for its diagnosis and remedy. On the other hand, the presence of hazardous infectious waste led to the increase of the risk of transmitting the virus by individuals and by hospitals during the COVID-19 pandemic. Hence, in this review, we survey previous researches on nanomaterials that can be effective for guiding strategies to deal with the current COVID-19 pandemic and also decrease the hazardous infectious waste in the environment. We highlight the contribution of nanomaterials that possess potential to therapy, prevention, detect targeted virus proteins and also can be useful for large population screening, for the development of environmental sensors and filters. Besides, we investigate the possibilities of employing the nanomaterials in antiviral research and treatment development, examining the role of nanomaterials in antiviral- drug design, including the importance of nanomaterials in drug delivery and vaccination, and for the production of medical equipment. Nanomaterials-based technologies not only contribute to the ongoing SARS- CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Ferial Ghaemi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Amirhassan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia(UKM), Kuala Lumpur, Malaysia
| | - Nor Yuliana Yuhana
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Massimiliano Ferrara
- ICRIOS - The Invernizzi Centre for Research in Innovation, Organization, Strategy and Entrepreneurship, Bocconi University, Department of Management and Technology Via Sarfatti, 25 20136, Milano (MI), Italy
| |
Collapse
|
16
|
Salgo MP. COVID-19: Zinc and Angiotensin-Converting Enzyme 2 (ACE2) Deficiencies as Determinants of Risk and Severity of Disease: A Narrative Review. Infect Dis Ther 2021; 10:1215-1225. [PMID: 34251655 PMCID: PMC8273847 DOI: 10.1007/s40121-021-00478-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence supports the premise that deficiencies of zinc and angiotensin-converting enzyme 2 (ACE2, a zinc enzyme) determine severity of coronavirus disease 2019 (COVID-19). ACE2 is part of the renin-angiotensin system (RAS) and acts as a feedback control system moderating blood pressure, keeping blood pressure within normal limits. For a virus to infect a person, the virus has to get inside the person's cells. The virus that causes COVID-19 uses ACE2 to get into the cell. Think of this like an invader from outer space attacking your car by getting in through your cruise control; the RAS is like the cruise control of your car. What happens next depends on how robust your cruise control is. If your cruise control is young and healthy perhaps very little happens; your car may slow down or speed up a bit. But if your cruise control is in poor condition the attack might disrupt the entire speed control system; your car may brake suddenly or speed out of control and crash. Feedback control systems (natural or man-made) are designed to keep dynamic systems in control, but under certain situations can drive the system completely out of control. The RAS is composed of two feedback loops: the ACE loop provides amplification, increasing pro-inflammatory cytokines and blood pressure; the ACE2 loop provides fine control and mitigates the vasoconstrictive, pro-inflammatory, and thrombotic actions of the ACE loop. Usually, there is balance, but in the setting of COVID-19, underlying deficiencies of zinc and ACE2 can lead to an imbalance. Exacerbated by the severe downregulation of ACE2 seen with viral entry, a "tipping point" is reached with loss of control of the RAS system resulting in increased angiotensin II (Ang II) causing downstream vasoconstriction, inflammation, and thromboses. These, in turn, lead to complications often seen in "severe COVID-19" such as acute respiratory distress syndrome (ARDS) or cytokine storm, often seen in high-risk patients in the second week of illness. This model suggests that supplemental zinc could replenish zinc in ACE2, stabilize the ACE2 axis, and prevent disruption of the RAS. This would prevent the vasoconstrictive, inflammatory, and thrombotic actions of Ang II, thus preventing the severe COVID-19 complications which cause the high morbidity and mortality seen in high-risk patients with underlying zinc deficiency. Zinc supplements are available, easy to use, and relatively safe. Randomized clinical trials are needed to confirm safety and efficacy of zinc supplementation to decrease severity of and morality from COVID-19 in high-risk patients. Since replenishment of zinc and active ACE2 in patients in whom these are deficient may take weeks, supplementation in high-risk populations prior to COVID infection may be required. Such supplementation should not replace vaccination but may be useful in populations for whom vaccination is not available or for populations exposed to viral variants to which available vaccines have insufficient coverage.
Collapse
|
17
|
Rani I, Goyal A, Bhatnagar M, Manhas S, Goel P, Pal A, Prasad R. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res 2021; 92:109-128. [PMID: 34284268 PMCID: PMC8200255 DOI: 10.1016/j.nutres.2021.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
Novel coronavirus disease 2019 (COVID-19) has spread across the globe; and surprisingly, no potentially protective or therapeutic antiviral molecules are available to treat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, zinc (Zn) and copper (Cu) have been shown to exert protective effects due to their antioxidant, anti-inflammatory, and antiviral properties. Therefore, it is hypothesized that supplementation with Zn and Cu alone or as an adjuvant may be beneficial with promising efficacy and a favorable safety profile to mitigate symptoms, as well as halt progression of the severe form of SARS-CoV-2 infection. The objective of this review is to discuss the proposed underlying molecular mechanisms and their implications for combating SARS-CoV-2 infection in response to Zn and Cu administration. Several clinical trials have also included the use of Zn as an adjuvant therapy with dietary regimens/antiviral drugs against COVID-19 infection. Overall, this review summarizes that nutritional intervention with Zn and Cu may offer an alternative treatment strategy by eliciting their virucidal effects through several fundamental molecular cascades, such as, modulation of immune responses, redox signaling, autophagy, and obstruction of viral entry and genome replication during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Anmol Goyal
- Department of Community Medicine, Gian Sagar Medical College and Hospital, Banur, Patiala, Punjab, India
| | - Mini Bhatnagar
- Department of General Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Sunita Manhas
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Parul Goel
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Amit Pal
- Department of Biochemistry, AIIMS Kalyani, West Bengal, India
| | - Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India.
| |
Collapse
|
18
|
Story MJ. Essential sufficiency of zinc, ω-3 polyunsaturated fatty acids, vitamin D and magnesium for prevention and treatment of COVID-19, diabetes, cardiovascular diseases, lung diseases and cancer. Biochimie 2021; 187:94-109. [PMID: 34082041 PMCID: PMC8166046 DOI: 10.1016/j.biochi.2021.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the development of a number of vaccines for COVID-19, there remains a need for prevention and treatment of the virus SARS-CoV-2 and the ensuing disease COVID-19. This report discusses the key elements of SARS-CoV-2 and COVID-19 that can be readily treated: viral entry, the immune system and inflammation, and the cytokine storm. It is shown that the essential nutrients zinc, ω-3 polyunsaturated fatty acids (PUFAs), vitamin D and magnesium provide the ideal combination for prevention and treatment of COVID-19: prevention of SARS-CoV-2 entry to host cells, prevention of proliferation of SARS-CoV-2, inhibition of excessive inflammation, improved control of the regulation of the immune system, inhibition of the cytokine storm, and reduction in the effects of acute respiratory distress syndrome (ARDS) and associated non-communicable diseases. It is emphasized that the non-communicable diseases associated with COVID-19 are inherently more prevalent in the elderly than the young, and that the maintenance of sufficiency of zinc, ω-3 PUFAs, vitamin D and magnesium is essential for the elderly to prevent the occurrence of non-communicable diseases such as diabetes, cardiovascular diseases, lung diseases and cancer. Annual checking of levels of these essential nutrients is recommended for those over 65 years of age, together with appropriate adjustments in their intake, with these services and supplies being at government cost. The cost:benefit ratio would be huge as the cost of the nutrients and the testing of their levels would be very small compared with the cost savings of specialists and hospitalization.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
19
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
20
|
Asl SH, Nikfarjam S, Majidi Zolbanin N, Nassiri R, Jafari R. Immunopharmacological perspective on zinc in SARS-CoV-2 infection. Int Immunopharmacol 2021; 96:107630. [PMID: 33882442 PMCID: PMC8015651 DOI: 10.1016/j.intimp.2021.107630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The novel SARS-CoV-2 which was first reported in China is the cause of infection known as COVID-19. In comparison with other coronaviruses such as SARS-CoV and MERS, the mortality rate of SARS-CoV-2 is lower but the transmissibility is higher. Immune dysregulation is the most common feature of the immunopathogenesis of COVID-19 that leads to hyperinflammation. Micronutrients such as zinc are essential for normal immune function. According to the assessment of WHO, approximately one-third of the world's society suffer from zinc deficiency. Low plasma levels of zinc are associated with abnormal immune system functions such as impaired chemotaxis of polymorphonuclear cells (PMNs) and phagocytosis, dysregulated intracellular killing, overexpression of the inflammatory cytokines, lymphopenia, decreased antibody production, and sensitivity to microbes especially viral respiratory infections. Zinc exerts numerous direct and indirect effects against a wide variety of viral species particularly RNA viruses. The use of zinc and a combination of zinc-pyrithione at low concentrations impede SARS-CoV replication in vitro. Accordingly, zinc can inhibit the elongation step of RNA transcription. Furthermore, zinc might improve antiviral immunity by up-regulation of IFNα through JAK/STAT1 signaling pathway in leukocytes. On the other hand, zinc supplementation might ameliorate tissue damage caused by mechanical ventilation in critical COVID-19 patients. Finally, zinc might be used in combination with antiviral medications for the management of COVID-19 patients. In the current review article, we review and discuss the immunobiological roles and antiviral properties as well as the therapeutic application of zinc in SARS-CoV-2 and related coronaviruses infections.
Collapse
Affiliation(s)
- Sima Heydarzadeh Asl
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Nassiri
- Departments of Pharmacology and Community Medicine, Michigan State University, East Lansing, MI, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Khodajou-Masouleh H, Shahangian SS, Rasti B. Reinforcing our defense or weakening the enemy? A comparative overview of defensive and offensive strategies developed to confront COVID-19. Drug Metab Rev 2021; 53:508-541. [PMID: 33980089 DOI: 10.1080/03602532.2021.1928686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Developing effective strategies to confront coronavirus disease 2019 (COVID-19) has become one of the greatest concerns of the scientific community. In addition to the vast number of global mortalities due to COVID-19, since its outbreak, almost every aspect of human lives has changed one way or another. In the present review, various defensive and offensive strategies developed to confront COVID-19 are illustrated. The Administration of immune-boosting micronutrients/agents, as well as the inhibition of the activity of incompetent gatekeepers, including some host cell receptors (e.g. ACE2) and proteases (e.g. TMPRSS2), are some efficient defensive strategies. Antibody/phage therapies and specifically vaccines also play a prominent role in the enhancement of host defense against COVID-19. Nanotechnology, however, can considerably weaken the virulence of SARS-CoV-2, utilizing fake cellular locks (compounds mimicking cell receptors) to block the viral keys (spike proteins). Generally, two strategies are developed to interfere with the binding of spike proteins to the host cell receptors, either utilizing fake cellular locks to block the viral keys or utilizing fake viral keys to block the cellular locks. Due to their evolutionary conserved nature, viral enzymes, including 3CLpro, PLpro, RdRp, and helicase are highly potential targets for drug repurposing strategy. Thus, various steps of viral replication/transcription can effectively be blocked by their inhibition, leading to the elimination of SARS-CoV-2. Moreover, RNA decoy and CRISPR technologies likely offer the best offensive strategies after viral entry into the host cells, inhibiting the viral replication/assembly in the infected cells and substantially reducing the quantity of viral progeny.
Collapse
Affiliation(s)
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| |
Collapse
|
22
|
Alekseenko SI, Skalny AV, Karpischenko SA, Tinkov AA. Serum, Whole Blood, Hair, and Mucosal Essential Trace Element and Mineral Levels in Children with Verified Chronic Rhinosinusitis Undergoing Functional Endoscopic Sinus Surgery. Biol Trace Elem Res 2021; 199:2112-2120. [PMID: 32789642 DOI: 10.1007/s12011-020-02333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to assess hair, serum, whole blood, and excised tissue essential element content in children with chronic rhinosinusitis (CRS). Eighty-eight children with chronic rhinosinusitis and 66 healthy controls were enrolled in the present study. Evaluation of endoscopic Lund-Kennedy and computed tomography Lund-Mackay scores, as well as tissue sampling, was performed only in children with chronic rhinosinusitis. Assessment of Sino-Nasal Outcome Test-20 (SNOT-20) scores was performed in both cases and controls. Hair, whole blood, blood serum, and excised mucosal tissue (only in patients) analysis was performed using inductively coupled argon plasma mass-spectrometry. The obtained data demonstrate that whole blood Ca, Mg, Se, and Zn, as well as hair Ca, Cu, Mg, and Zn levels in the examined patients were significantly lower as compared with the control values. Only serum Zn concentration in children with CRS exceeded the respective control values, whereas serum Cu levels only tended to decrease in CRS. In turn, hair Fe content in children with CRS exceeded that in healthy controls. Regression analysis demonstrate that hair Ca levels, as well as whole blood Ca, Se, and Zn concentrations, were considered as negative predictors, whereas increased hair iron level was significantly directly associated with CRS. Significant associations between hair, serum, whole blood, and tissue element levels and Lund-Kennedy and Lund-Mackay scores were also revealed. Generally, the obtained data demonstrate that chronic rhinosinusitis is associated with impaired essential metal levels in pediatric patients with chronic rhinosinusitis. The observed alterations may contribute to CRS pathogenesis through modulation of mucociliary clearance, immunity, inflammatory response, and redox environment.
Collapse
Affiliation(s)
- Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Sergey A Karpischenko
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia
- First Pavlov State Medical University of Saint Petersburg, St. Petersburg, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia.
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
23
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
24
|
Yu W, Ye T, Ding J, Huang Y, Peng Y, Xia Q, Cuntai Z. miR-4456/CCL3/CCR5 Pathway in the Pathogenesis of Tight Junction Impairment in Chronic Obstructive Pulmonary Disease. Front Pharmacol 2021; 12:551839. [PMID: 33953665 PMCID: PMC8089484 DOI: 10.3389/fphar.2021.551839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
Background: Cigarette smoke exposure (CSE) is a major cause of chronic obstructive pulmonary disease (COPD). The smoke disrupts cell-cell adhesion by inducing epithelial barrier damage to the tight junction (TJ) proteins. Even though the inflammatory mechanism of chemokine (C-C motif) ligand 3 (CCL3) in COPD has gained increasing attention in the research community, however, the underlying signaling pathway, remains unknown. Objectives: To identify the relationship of CCL3 in the pathogenesis of tight junction impairment in COPD and the pathway through which CSE causes damage to TJ in COPD via CCL3, both in vivo and in vitro. Methods: We screened the inflammatory factors in the peripheral blood mononuclear cells (PBMCs) from healthy controls and patients at each GOLD 1-4 stage of chronic obstructive pulmonary disease. RT-PCR, western blot, and ELISA were used to detect the levels of CCL3, ZO-1, and occludin after Cigarette smoke exposure. Immunofluorescence was applied to examine the impairment of the TJs in 16-HBE and A549 cells. The reverse assay was used to detect the effect of a CCR5 antagonist (DAPTA) in COPD. In the CSE-induced COPD mouse model, H&E staining and lung function tests were used to evaluate the pathological and physical states in each group. Immunofluorescence was used to assess the impairment of TJs in each group. ELISA and RT-PCR were used to examine the mRNA or protein expression of CCL3 or miR-4456 in each group. Results: The in vivo and in vitro results showed that CCL3 expression was increased in COPD compared with healthy controls. CCL3 caused significant injury to TJs through its C-C chemokine receptor type 5 (CCR5), while miR-4456 could suppress the effect of CCL3 on TJs by binding to the 3′-UTR of CCL3. Conclusion: miR-4456/CCL3/CCR5 pathway may be a potential target pathway for the treatment of COPD.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Ye
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Ding
- Urology Department of Xin Hua Hospital, Xin Hua Hospital Affliated to Shanghai Jiao Tong University, Shanghai, China
| | - Yi Huang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Peng
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Xia
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Cuntai
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Hamdi M, Abdel-Bar HM, Elmowafy E, El-khouly A, Mansour M, Awad GA. Investigating the Internalization and COVID-19 Antiviral Computational Analysis of Optimized Nanoscale Zinc Oxide. ACS OMEGA 2021; 6:6848-6860. [PMID: 33748599 PMCID: PMC7970579 DOI: 10.1021/acsomega.0c06046] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Global trials are grappling toward identifying prosperous remediation against the ever-emerging and re-emerging pathogenic respiratory viruses. Battling coronavirus, as a model respiratory virus, via repurposing existing therapeutic agents could be a welcome move. Motivated by its well-demonstrated curative use in herpes simplex and influenza viruses, utilization of the nanoscale zinc oxide (ZnO) would be an auspicious approach. In this direction, ZnO nanoparticles (NPs) were fabricated herein and relevant aspects related to the formulation such as optimization, structure, purity, and morphology were elucidated. In silico molecular docking was conducted to speculate the possible interaction between ZnO NPs and COVID-19 targets including the ACE2 receptor, COVID-19 RNA-dependent RNA polymerase, and main protease. The cellular internalization of ZnO NPs using human lung fibroblast cells was also assessed. Optimized hexagonal and spherical ZnO nanostructures of a crystallite size of 11.50 ± 0.71 nm and positive charge were attained. The pure and characteristic hexagonal wurtzite P63mc crystal structure was also observed. Interestingly, felicitous binding of ZnO NPs with the three tested COVID-19 targets, via hydrogen bond formation, was detected. Furthermore, an enhanced dose-dependent cellular uptake was demonstrated. The obtained results infer a rationale, awaiting validation from further biological and therapeutic studies.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Hend Mohamed Abdel-Bar
- Department
of Pharmaceutics, Faculty of Pharmacy, University
of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Enas Elmowafy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed El-khouly
- Department
of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Jerash University, Jerash, Jordan
| | - Mai Mansour
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Gehanne A.S. Awad
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Parisi GF, Carota G, Castruccio Castracani C, Spampinato M, Manti S, Papale M, Di Rosa M, Barbagallo I, Leonardi S. Nutraceuticals in the Prevention of Viral Infections, including COVID-19, among the Pediatric Population: A Review of the Literature. Int J Mol Sci 2021; 22:2465. [PMID: 33671104 PMCID: PMC7957644 DOI: 10.3390/ijms22052465] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been a growth in scientific interest in nutraceuticals, which are those nutrients in foods that have beneficial effects on health. Nutraceuticals can be extracted, used for food supplements, or added to foods. There has long been interest in the antiviral properties of nutraceuticals, which are especially topical in the context of the ongoing COVID-19 pandemic. Therefore, the purpose of this review is to evaluate the main nutraceuticals to which antiviral roles have been attributed (either by direct action on viruses or by modulating the immune system), with a focus on the pediatric population. Furthermore, the possible applications of these substances against SARS-CoV-2 will be considered.
Collapse
Affiliation(s)
- Giuseppe Fabio Parisi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87 95125 Catania, Italy; (G.C.); (M.S.); (M.D.R.)
| | - Carlo Castruccio Castracani
- The Children’s Hospital of Philadelphia (CHOP), Department of Pediatrics, Division of Hematology Leonard and Madlyn Abramson Pediatric Research Center, Philadelphia, PA 19104, USA;
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87 95125 Catania, Italy; (G.C.); (M.S.); (M.D.R.)
| | - Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| | - Maria Papale
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87 95125 Catania, Italy; (G.C.); (M.S.); (M.D.R.)
| | - Ignazio Barbagallo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Salvatore Leonardi
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (G.F.P.); (S.M.); (M.P.); (S.L.)
| |
Collapse
|
27
|
Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14:527-550. [PMID: 33679136 PMCID: PMC7930604 DOI: 10.2147/jir.s295377] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Oyagbemi AA, Ajibade TO, Aboua YG, Gbadamosi IT, Adedapo ADA, Aro AO, Adejumobi OA, Thamahane-Katengua E, Omobowale TO, Falayi OO, Oyagbemi TO, Ogunpolu BS, Hassan FO, Ogunmiluyi IO, Ola-Davies OE, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Kayoka-Kabongo PN, Oguntibeju OO, Yakubu MA. Potential health benefits of zinc supplementation for the management of COVID-19 pandemic. J Food Biochem 2021; 45:e13604. [PMID: 33458853 PMCID: PMC7995057 DOI: 10.1111/jfbc.13604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the Coronavirus Disease 2019 (COVID-19). The COVID-19 pandemic has created unimaginable and unprecedented global health crisis. Since the outbreak of COVID-19, millions of dollars have been spent, hospitalization overstretched with increasing morbidity and mortality. All these have resulted in unprecedented global economic catastrophe. Several drugs and vaccines are currently being evaluated, tested, and administered in the frantic efforts to stem the dire consequences of COVID-19 with varying degrees of successes. Zinc possesses potential health benefits against COVID-19 pandemic by improving immune response, minimizing infection and inflammation, preventing lung injury, inhibiting viral replication through the interference of the viral genome transcription, protein translation, attachment, and host infectivity. However, this review focuses on the various mechanisms of action of zinc and its supplementation as adjuvant for vaccines an effective therapeutic regimen in the management of the ravaging COVID-19 pandemic. PRACTICAL APPLICATIONS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the Coronavirus Disease 2019 (COVID-19), has brought unprecedented untold hardship to both developing and developed countries. The global race for vaccine development against COVID-19 continues with success in sight with attendant increasing hospitalization, morbidity, and mortality. Available drugs with anti-inflammatory actions have become alternative to stem the tide of COVID-19 with attendant global financial crises. However, Zinc is known to modulate several physiological functions including intracellular signaling, enzyme function, gustation, and olfaction, as well as reproductive, skeletal, neuronal, and cardiovascular systems. Hence, achieving a significant therapeutic approach against COVID-19 could imply the use of zinc as a supplement together with available drugs and vaccines waiting for emergency authorization to win the battle of COVID-19. Together, it becomes innovative and creative to supplement zinc with currently available drugs and vaccines.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Yapo Guillaume Aboua
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | | | | - Abimbola Obemisola Aro
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Olumuyiwa Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Emma Thamahane-Katengua
- Department of Health Information Management, Faculty of Health and Education, Botho University, Gaborone, Botswana
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Taiwo Olaide Oyagbemi
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Iyanuoluwa Omolola Ogunmiluyi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Prudence Ngalula Kayoka-Kabongo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Oxidative Stress Research Centre, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Vascular Biology Unit, Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Center for Cardiovascular Diseases, Texas Southern University, Houston, TX, USA
| |
Collapse
|
29
|
Valenzano MC, Rybakovsky E, Chen V, Leroy K, Lander J, Richardson E, Yalamanchili S, McShane S, Mathew A, Mayilvaganan B, Connor L, Urbas R, Huntington W, Corcoran A, Trembeth S, McDonnell E, Wong P, Newman G, Mercogliano G, Zitin M, Etemad B, Thornton J, Daum G, Raines J, Kossenkov A, Fong LY, Mullin JM. Zinc Gluconate Induces Potentially Cancer Chemopreventive Activity in Barrett's Esophagus: A Phase 1 Pilot Study. Dig Dis Sci 2021; 66:1195-1211. [PMID: 32415564 PMCID: PMC7677901 DOI: 10.1007/s10620-020-06319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/02/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chemopreventive effects of zinc for esophageal cancer have been well documented in animal models. This prospective study explores if a similar, potentially chemopreventive action can be seen in Barrett's esophagus (BE) in humans. AIMS To determine if molecular evidence can be obtained potentially indicating zinc's chemopreventive action in Barrett's metaplasia. METHODS Patients with a prior BE diagnosis were placed on oral zinc gluconate (14 days of 26.4 mg zinc BID) or a sodium gluconate placebo, prior to their surveillance endoscopy procedure. Biopsies of Barrett's mucosa were then obtained for miRNA and mRNA microarrays, or protein analyses. RESULTS Zinc-induced mRNA changes were observed for a large number of transcripts. These included downregulation of transcripts encoding proinflammatory proteins (IL32, IL1β, IL15, IL7R, IL2R, IL15R, IL3R), upregulation of anti-inflammatory mediators (IL1RA), downregulation of transcripts mediating epithelial-to-mesenchymal transition (EMT) (LIF, MYB, LYN, MTA1, SRC, SNAIL1, and TWIST1), and upregulation of transcripts that oppose EMT (BMP7, MTSS1, TRIB3, GRHL1). miRNA arrays showed significant upregulation of seven miRs with tumor suppressor activity (-125b-5P, -132-3P, -548z, -551a, -504, -518, and -34a-5P). Of proteins analyzed by Western blot, increased expression of the pro-apoptotic protein, BAX, and the tight junctional protein, CLAUDIN-7, along with decreased expression of BCL-2 and VEGF-R2 were noteworthy. CONCLUSIONS When these mRNA, miRNA, and protein molecular data are considered collectively, a cancer chemopreventive action by zinc in Barrett's metaplasia may be possible for this precancerous esophageal tissue. These results and the extensive prior animal model studies argue for a future prospective clinical trial for this safe, easily-administered, and inexpensive micronutrient, that could determine if a chemopreventive action truly exists.
Collapse
Affiliation(s)
- M C Valenzano
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - E Rybakovsky
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - V Chen
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - K Leroy
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - J Lander
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - E Richardson
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S Yalamanchili
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S McShane
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - A Mathew
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - B Mayilvaganan
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - L Connor
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - R Urbas
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - W Huntington
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - A Corcoran
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S Trembeth
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - E McDonnell
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - P Wong
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Newman
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Mercogliano
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - M Zitin
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - B Etemad
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - J Thornton
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Daum
- The Department of Pathology, Lankenau Medical Center, Wynnewood, USA
| | - J Raines
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | - L Y Fong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Mullin
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA.
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Nitz M, Smith D, Wysocki B, Knoell D, Wysocki T. Modeling of an immune response: Queuing network analysis of the impact of zinc and cadmium on macrophage activation. Biotechnol Bioeng 2020; 118:412-422. [PMID: 32970332 DOI: 10.1002/bit.27579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease is characterized by progressive, irreversible airflow obstruction resulting from an abnormal inflammatory response to noxious gases and particles. Alveolar macrophages rely on the transcription factors, nuclear factor κB and mitogen-activated protein kinase, among others, to facilitate the production of inflammatory mediators designed to help rid the lung of foreign pathogens and noxious stimuli. Building a kinetic model using queuing networks, provides a quantitative approach incorporating an initial number of individual molecules along with rates of the reactions in any given pathway. Accordingly, this model has been shown useful to model cell behavior including signal transduction, transcription, and metabolic pathways. The aim of this study was to determine whether a queuing theory model that involves lipopolysaccharide-mediated macrophage activation in tandem with changes in intracellular Cd and zinc (Zn) content or a lack thereof, would be useful to predict their impact on immune activation. We then validate our model with biologic cytokine output from human macrophages relative to the timing of innate immune activation. We believe that our results further prove the validity of the queuing theory approach to model intracellular molecular signaling and postulate that it can be useful to predict additional cell signaling pathways and the corresponding biological outcomes.
Collapse
Affiliation(s)
- Marissa Nitz
- Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Deandra Smith
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Beata Wysocki
- Biology, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Daren Knoell
- Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tadeusz Wysocki
- Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
31
|
Sahin E, Orhan C, Uckun FM, Sahin K. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients. Front Nutr 2020; 7:580504. [PMID: 33195370 PMCID: PMC7642511 DOI: 10.3389/fnut.2020.580504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 caused a major global pandemic and continues to be an unresolved global health crisis. The supportive care interventions for reducing the severity of symptoms along with participation in clinical trials of investigational treatments are the mainstay of COVID-19 management because there is no effective standard therapy for COVID-19. The comorbidity of COVID-19 rises in obese patients. Micronutrients may boost the host immunity against viral infections, including COVID-19. In this review, we discuss the clinical impact potential of supplemental nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Fatih M. Uckun
- COVID-19 Task Force, Reven Pharmaceuticals, Golden, CO, United States
- Department of Developmental Therapeutics, Immunology and Integrative Medicine, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Kazim Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
32
|
Pecora F, Persico F, Argentiero A, Neglia C, Esposito S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020; 12:E3198. [PMID: 33092041 PMCID: PMC7589163 DOI: 10.3390/nu12103198] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | | | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, via Gramsci 14, 43126 Parma, Italy; (F.P.); (F.P.); (A.A.); (C.N.)
| |
Collapse
|
33
|
Wessels I, Rolles B, Rink L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front Immunol 2020; 11:1712. [PMID: 32754164 PMCID: PMC7365891 DOI: 10.3389/fimmu.2020.01712] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
During the current corona pandemic, new therapeutic options against this viral disease are urgently desired. Due to the rapid spread and immense number of affected individuals worldwide, cost-effective, globally available, and safe options with minimal side effects and simple application are extremely warranted. This review will therefore discuss the potential of zinc as preventive and therapeutic agent alone or in combination with other strategies, as zinc meets all the above described criteria. While a variety of data on the association of the individual zinc status with viral and respiratory tract infections are available, study evidence regarding COVID-19 is so far missing but can be assumed as was indicated by others and is detailed in this perspective, focusing on re-balancing of the immune response by zinc supplementation. Especially, the role of zinc in viral-induced vascular complications has barely been discussed, so far. Interestingly, most of the risk groups described for COVID-19 are at the same time groups that were associated with zinc deficiency. As zinc is essential to preserve natural tissue barriers such as the respiratory epithelium, preventing pathogen entry, for a balanced function of the immune system and the redox system, zinc deficiency can probably be added to the factors predisposing individuals to infection and detrimental progression of COVID-19. Finally, due to its direct antiviral properties, it can be assumed that zinc administration is beneficial for most of the population, especially those with suboptimal zinc status.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Benjamin Rolles
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI, Svistunov AA, Petrakis D, Spandidos DA, Aaseth J, Tsatsakis A, Tinkov AA. Zinc and respiratory tract infections: Perspectives for COVID‑19 (Review). Int J Mol Med 2020; 46:17-26. [PMID: 32319538 PMCID: PMC7255455 DOI: 10.3892/ijmm.2020.4575] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
In view of the emerging COVID‑19 pandemic caused by SARS‑CoV‑2 virus, the search for potential protective and therapeutic antiviral strategies is of particular and urgent interest. Zinc is known to modulate antiviral and antibacterial immunity and regulate inflammatory response. Despite the lack of clinical data, certain indications suggest that modulation of zinc status may be beneficial in COVID‑19. In vitro experiments demonstrate that Zn2+ possesses antiviral activity through inhibition of SARS‑CoV RNA polymerase. This effect may underlie therapeutic efficiency of chloroquine known to act as zinc ionophore. Indirect evidence also indicates that Zn2+ may decrease the activity of angiotensin‑converting enzyme 2 (ACE2), known to be the receptor for SARS‑CoV‑2. Improved antiviral immunity by zinc may also occur through up‑regulation of interferon α production and increasing its antiviral activity. Zinc possesses anti‑inflammatory activity by inhibiting NF‑κB signaling and modulation of regulatory T‑cell functions that may limit the cytokine storm in COVID‑19. Improved Zn status may also reduce the risk of bacterial co‑infection by improving mucociliary clearance and barrier function of the respiratory epithelium, as well as direct antibacterial effects against S. pneumoniae. Zinc status is also tightly associated with risk factors for severe COVID‑19 including ageing, immune deficiency, obesity, diabetes, and atherosclerosis, since these are known risk groups for zinc deficiency. Therefore, Zn may possess protective effect as preventive and adjuvant therapy of COVID‑19 through reducing inflammation, improvement of mucociliary clearance, prevention of ventilator‑induced lung injury, modulation of antiviral and antibacterial immunity. However, further clinical and experimental studies are required.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, D-52062 Aachen, Germany
| | - Olga P. Ajsuvakova
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Michael Aschner
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| | - Svetlana I. Alekseenko
- I.I. Mechnikov North-Western State Medical University, 191015 St. Petersburg
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, 191000 St. Petersburg, Russia
| | - Andrey A. Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Jan Aaseth
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Research Department, Innlandet Hospital Trust, 3159894 Brumunddal, Norway
| | - Aristidis Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Center of Toxicology Science and Research
| | - Alexey A. Tinkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow
- Yaroslavl State University, 150003 Yaroslavl, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg
| |
Collapse
|
35
|
Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway Epithelial Dynamics in Allergy and Related Chronic Inflammatory Airway Diseases. Front Cell Dev Biol 2020; 8:204. [PMID: 32292784 PMCID: PMC7118214 DOI: 10.3389/fcell.2020.00204] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic rhinitis, chronic rhinosinusitis, and asthma are highly prevalent, multifactorial chronic airway diseases. Several environmental and genetic factors affect airway epithelial dynamics leading to activation of inflammatory mechanisms in the airways. This review links environmental factors to host epithelial immunity in airway diseases. Understanding altered homeostasis of the airway epithelium might provide important targets for diagnostics and therapy of chronic airway diseases.
Collapse
Affiliation(s)
- Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sanna Katriina Toppila-Salmi
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Annika Luukkainen
- Haartman Institute, Medicum, University of Helsinki, Helsinki, Finland
| | - Robert Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
36
|
Roscioli E, Hamon R, Lester SE, Jersmann HPA, Reynolds PN, Hodge S. Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD. Respir Res 2018; 19:234. [PMID: 30486816 PMCID: PMC6263553 DOI: 10.1186/s12931-018-0945-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Individuals with respiratory disease are being increasingly exposed to wildfire smoke as populations encroach further into forested regions and climate change continues to bring higher temperatures with lower rainfall. Frequent exposures have significant potential to accelerate conditions such as chronic obstructive pulmonary disease (COPD) which is characterised by an exaggerated inflammatory response to environmental stimuli. Here we employ models of human airway epithelium exposed to wildfire smoke-extract (WFSE) to examine modulation in airway epithelial cell (AEC) survival, fragility and barrier function. METHODS Submerged cultures of small airway epithelial cells (SAEC) and differentiated air-liquid interface (ALI) cultures of primary bronchial AEC (bAEC) were treated for 1-24 h with 1-10% WFSE generated from plant species found in the Australian bushland. Autophagy (LC3-II and Sequestosome), apoptosis (Poly-(ADP)-Ribose Polymerase (PARP) cleavage) and tight junction proteins were measured using western blot. Barrier function was assessed via permeability of fluorescein tracers and measuring trans-epithelial electrical resistance. The production of IL-6 was assessed using ELISA. RESULTS Primary epithelial models exposed to WFSE exhibited a significant blockade in autophagy as evidenced by an increase in LC3-II coupled with a concomitant elevation in Sequestosome abundance. These exposures also induced significant PARP cleavage indicative of apoptotic changes. ALI cultures of bAEC treated with 5% WFSE demonstrated barrier dysfunction with significant increases in paracellular molecular permeability and ionic conductance, and a reduction in the abundance of the tight junction proteins ZO-1 and Claudin-1. These cultures also exhibited increased IL-6 secretion consistent with the aberrant and pro-inflammatory repair response observed in the COPD airways. Further, blocks in autophagy and barrier disruption were significantly elevated in response to WFSE in comparison to similar exposures with cigarette smoke-extract. CONCLUSION WFSE inhibits autophagic flux and induces barrier dysfunction in the airway epithelium. As autophagy is a central regulator of cellular repair, viability, and inflammation, targeting the block in autophagic flux may ameliorate the consequences of wildfire smoke-exposure for individuals with pre-existing respiratory conditions.
Collapse
Affiliation(s)
- Eugene Roscioli
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia. .,Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Health and Medical Science Building, Corner of North Terrace and George St, Adelaide, South Australia, 5005, Australia.
| | - Rhys Hamon
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Susan E Lester
- Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Rheumatology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Hubertus P A Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Deptartment of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|