1
|
Gabby ME, Bandara A, Outrata LM, Ebohon O, Ahmad SS, Dressler JM, McClune ME, Trimble RN, Mullen L, Jutras BL. A high-resolution screen identifies a preexisting beta-lactam that specifically treats Lyme disease in mice. Sci Transl Med 2025; 17:eadr9091. [PMID: 40267215 DOI: 10.1126/scitranslmed.adr9091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 04/25/2025]
Abstract
Lyme disease, caused by Borrelia burgdorferi in the United States, is an escalating human health problem that can cause severe disease if not properly treated. Doxycycline is the primary treatment option for Lyme disease; however, several concerns are associated with high-dose doxycycline treatment. For example, doxycycline is a broad-spectrum antibiotic and kills beneficial bacteria. Doxycycline is also known to produce unwanted off-target effects in eukaryotic cells. Some at-risk populations such as young children cannot be prescribed doxycycline, and in addition to these shortcomings, the treatment appears to fail in 10 to 20% of cases. We reasoned that safe, alternative therapies may currently exist but have not yet been found because of the challenges associated with drug screening approaches. We screened nearly 500 US Food and Drug Administration-approved compounds using an array of physiological, cellular, and molecular techniques. Top-performing candidates were counter screened to identify compounds that did not affect other bacterial phyla. Piperacillin emerged as a compound that eradicated B. burgdorferi at low-nanomolar concentrations by specifically interfering with the unusual, multizonal peptidoglycan synthesis pattern common to the Borrelia clade. Mechanistic in vitro studies identified the cellular target of piperacillin in B. burgdorferi and produced key insights that may explain both the specificity and efficacy of the compound. Further, in vivo studies using an experimental mouse infection model demonstrated that piperacillin treated animals at a 100-fold lower dose than the effective dose of doxycycline without affecting the murine microbiome. Our findings suggest that piperacillin may offer clinicians another therapeutic option for Lyme disease.
Collapse
Affiliation(s)
- Maegan E Gabby
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Abey Bandara
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - L M Outrata
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Osamudiamen Ebohon
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Saadman S Ahmad
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jules M Dressler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebecca N Trimble
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
| | - Lainey Mullen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Human Center for Immunobiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Kuvaldina M, Preston J, McClellan D, Pavlicova M, Brannagan TH, Fallon BA. A pilot study of disulfiram for individuals with persistent symptoms despite prior antibiotic treatment for Lyme disease. Front Med (Lausanne) 2025; 12:1549324. [PMID: 40265182 PMCID: PMC12013529 DOI: 10.3389/fmed.2025.1549324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction In vitro studies report that disulfiram is effective in killing Borrelia burgdorferi. Case series suggest disulfiram may help to reduce the symptoms of patients with persistent symptoms despite prior antibiotic treatment for Lyme disease. This pilot study assessed safety, tolerability, and signs of clinical response. Materials and methods Participants with a history of previously treated Lyme disease and persistent fatigue were randomly assigned in a double-blinded fashion to either Group A (disulfiram for 4 weeks and placebo for 4 weeks) or Group B (disulfiram for 8 weeks). Primary outcome endpoint was at 10 weeks with a follow-up at 14 weeks. The primary aim was to assess safety and tolerability. A clinical aim assessed signs of clinical improvement using well-validated measures, focusing on improvement in fatigue and quality of life. Target enrollment was 24 participants. Results 940 individuals were screened, 11 were enrolled and nine participated in the trial. Dosing started low and increased based on response and tolerance to a maximum of 500 mg daily. Safety. Two participants discontinued medication due to clinical worsening, one of whom was briefly hospitalized. Three additional participants were withdrawn from treatment due to lab test abnormalities. Tolerability. Only three of nine participants completed the full course of treatment (two in Group A and one in Group B). Lower doses were better tolerated than the highest dose. Clinical response. Of nine participants, clinically meaningful improvement was noted in fatigue for six and in quality of life for four. Among the six fatigue responders, improvement was also noted on a multiple domain symptom index (six of six), overall symptom burden (five of six), and functional impairment (four of six). The study was terminated early due to end of project funding, higher than expected adverse events, and recognition that sufficient information was gathered to inform future studies. Conclusions and relevance This study reveals the risks associated with disulfiram, especially at higher doses, while suggesting potential clinical benefits among some participants. Efficacy could not be assessed given the small sample size and the lack of a placebo-control group. Clinical trial registration https://clinicaltrials.gov/study/NCT03891667?cond=Lyme%20Disease&intr=disulfiram&rank=1, NCT03891667.
Collapse
Affiliation(s)
- Mara Kuvaldina
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Jessica Preston
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, United States
- Center for Neuroinflammatory and Somatic Disorders, New York State Psychiatric Institute, New York, NY, United States
| | - Denise McClellan
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, United States
- Center for Neuroinflammatory and Somatic Disorders, New York State Psychiatric Institute, New York, NY, United States
| | - Martina Pavlicova
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, United States
| | - Thomas H. Brannagan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Brian A. Fallon
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, United States
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Center for Neuroinflammatory and Somatic Disorders, New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
3
|
Zając V, Bell-Sakyi L, Wójcik-Fatla A. Use of Tick Cell Lines in Co-Infection Studies with a Preliminary Study of Co-Culture of Borrelia burgdorferi and Anaplasma phagocytophilum. Pathogens 2025; 14:78. [PMID: 39861039 PMCID: PMC11769331 DOI: 10.3390/pathogens14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Ixodes ricinus is an important vector of infectious human and livestock diseases in Europe. Co-infections of pathogens in ticks and hosts have been reported. Tick cell lines offer a useful model system for study of co-infections. We present a review of the existing literature on co-infections in tick cell lines. Previous studies have demonstrated the usefulness of tick cell lines in studies on co-infection of different pathogens and their interaction with the tick microbiome. We also carried out a preliminary study to investigate the effects of co-culturing Borrelia burgdorferi and Anaplasma phagocytophilum on their growth and interactions with the Ixodes ricinus cell line IRE/CTVM19 over a 13-day period. Replication of both pathogens was quantified by real-time PCR. The presence of A. phagocytophilum appeared to have a slight inhibitory effect on the multiplication of B. burgdorferi, that were added subsequently. In contrast, the prior presence of B. burgdorferi appeared to have a stimulatory effect on A. phagocytophilum after 6 days in culture. We conclude that the IRE/CTVM19 tick cell line is suitable for simultaneous and continuous cultivation of both bacteria and can be applied in future research.
Collapse
Affiliation(s)
- Violetta Zając
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Horowitz RI, Fallon J, Freeman PR. Combining Double-Dose and High-Dose Pulsed Dapsone Combination Therapy for Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome and Co-Infections, Including Bartonella: A Report of 3 Cases and a Literature Review. Microorganisms 2024; 12:909. [PMID: 38792737 PMCID: PMC11124288 DOI: 10.3390/microorganisms12050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Three patients with relapsing and remitting borreliosis, babesiosis, and bartonellosis, despite extended anti-infective therapy, were prescribed double-dose dapsone combination therapy (DDDCT) for 8 weeks, followed by one or several two-week courses of pulsed high-dose dapsone combination therapy (HDDCT). We discuss these patients' cases to illustrate three important variables required for long-term remission. First, diagnosing and treating active co-infections, including Babesia and Bartonella were important. Babesia required rotations of multiple anti-malarial drug combinations and herbal therapies, and Bartonella required one or several 6-day HDDCT pulses to achieve clinical remission. Second, all prior oral, intramuscular (IM), and/or intravenous (IV) antibiotics used for chronic Lyme disease (CLD)/post-treatment Lyme disease syndrome (PTLDS), irrespective of the length of administration, were inferior in efficacy to short-term pulsed biofilm/persister drug combination therapy i.e., dapsone, rifampin, methylene blue, and pyrazinamide, which improved resistant fatigue, pain, headaches, insomnia, and neuropsychiatric symptoms. Lastly, addressing multiple factors on the 16-point multiple systemic infectious disease syndrome (MSIDS) model was important in achieving remission. In conclusion, DDDCT with one or several 6-7-day pulses of HDDCT, while addressing abnormalities on the 16-point MSIDS map, could represent a novel effective clinical and anti-infective strategy in CLD/PTLDS and associated co-infections including Bartonella.
Collapse
Affiliation(s)
- Richard I. Horowitz
- New York State Department of Health Tick-Borne Working Group, Albany, NY 12224, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - John Fallon
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA; (J.F.); (P.R.F.)
| |
Collapse
|
5
|
Jing S, Zhang Q, Li Y, Chang H, Xiang C, Han S, Yuan G, Fan J, He H. Identification of new drug candidates against Trichomonas gallinae using high-throughput screening. Int J Parasitol Drugs Drug Resist 2023; 23:19-27. [PMID: 37562241 PMCID: PMC10424085 DOI: 10.1016/j.ijpddr.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Trichomonas gallinae is a protozoan parasite that is the causative agent of trichomoniasis, and infects captive and wild bird species throughout the world. Although metronidazole has been the drug of choice against trichomoniasis for decades, most Trichomonas gallinae strains have developed resistance. Therefore, drugs with new modes of action or targets are urgently needed. Here, we report the development and application of a cell-based CCK-8 method for the high-throughput screening and identification of new inhibitors of Trichomonas gallinae as a beginning point for the development of new treatments for trichomoniasis. We performed the high-throughput screening of 173 anti-parasitic compounds, and found 16 compounds that were potentially effective against Trichomonas gallinae. By measuring the median inhibitory concentration (IC50) and median cytotoxic concentration (CC50), we identified 3 potentially safe and effective compounds against Trichomonas gallinae: anisomycin, fumagillin, and MG132. In conclusion, this research successfully established a high-throughput screening method for compounds and identified 3 new safe and effective compounds against Trichomonas gallinae, providing a new treatment scheme for trichomoniasis.
Collapse
Affiliation(s)
- Shengfan Jing
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China; National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing, 100076, China
| | - Yi Li
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Han Chang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Chen Xiang
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Shuyi Han
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Guohui Yuan
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Jinghui Fan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China.
| | - Hongxuan He
- National Research Center for Wildlife Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
6
|
Alruwaili Y, Jacobs MB, Hasenkampf NR, Tardo AC, McDaniel CE, Embers ME. Superior efficacy of combination antibiotic therapy versus monotherapy in a mouse model of Lyme disease. Front Microbiol 2023; 14:1293300. [PMID: 38075920 PMCID: PMC10703379 DOI: 10.3389/fmicb.2023.1293300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lyme disease (LD) results from the most prevalent tick-borne infection in North America, with over 476,000 estimated cases annually. The disease is caused by Borrelia burgdorferi (Bb) sensu lato which transmits through the bite of Ixodid ticks. Most cases treated soon after infection are resolved by a short course of oral antibiotics. However, 10-20% of patients experience chronic symptoms because of delayed or incomplete treatment, a condition called Post-Treatment Lyme Disease (PTLD). Some Bb persists in PTLD patients after the initial course of antibiotics and an effective treatment to eradicate the persistent Bb is needed. Other organisms that cause persistent infections, such as M. tuberculosis, are cleared using a combination of therapies rather than monotherapy. A group of Food and Drug Administration (FDA)-approved drugs previously shown to be efficacious against Bb in vitro were used in monotherapy or in combination in mice infected with Bb. Different methods of detection were used to assess the efficacy of the treatments in the infected mice including culture, xenodiagnosis, and molecular techniques. None of the monotherapies eradicated persistent Bb. However, 4 dual combinations (doxycycline + ceftriaxone, dapsone + rifampicin, dapsone + clofazimine, doxycycline + cefotaxime) and 3 triple combinations (doxycycline + ceftriaxone+ carbomycin, doxycycline + cefotaxime+ loratadine, dapsone+ rifampicin+ clofazimine) eradicated persistent Bb infections. These results suggest that combination therapy should be investigated in preclinical studies for treating human Lyme disease.
Collapse
Affiliation(s)
- Yasir Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Mary B. Jacobs
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Nicole R. Hasenkampf
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Amanda C. Tardo
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Celine E. McDaniel
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University, Covington, LA, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
7
|
Offutt A, Breitschwerdt EB. Case report: Substantial improvement of autism spectrum disorder in a child with learning disabilities in conjunction with treatment for poly-microbial vector borne infections. Front Psychiatry 2023; 14:1205545. [PMID: 37663607 PMCID: PMC10473095 DOI: 10.3389/fpsyt.2023.1205545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023] Open
Abstract
Poly-microbial vector-borne infections may have contributed to neuropsychiatric symptoms in a boy diagnosed with autism spectrum disorder. Targeted antimicrobial treatment resulted in substantial improvement in cognitive (such as learning disabilities, focus, concentration) and neurobehavioral (such as oppositional, defiant, anti-social, disordered mood, immaturity, tics) symptoms.
Collapse
Affiliation(s)
- Amy Offutt
- Heart and Soul Integrative Health, Marble Falls, TX, United States
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Sciences, and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
8
|
Shor SM, Schweig SK. The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses. Microorganisms 2023; 11:1759. [PMID: 37512931 PMCID: PMC10384908 DOI: 10.3390/microorganisms11071759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The primary objective of this paper is to provide an evidence-based update of the literature on the use of bioactive phytochemicals, nutraceuticals, and micronutrients (dietary supplements that provide health benefits beyond their nutritional value) in the management of persistent cases of Borrelia burgdorferi infection (Lyme disease) and two other tick-borne pathogens, Babesia and Bartonella species. Recent studies have advanced our understanding of the pathophysiology and mechanisms of persistent infections. These advances have increasingly enabled clinicians and patients to utilize a wider set of options to manage these frequently disabling conditions. This broader toolkit holds the promise of simultaneously improving treatment outcomes and helping to decrease our reliance on the long-term use of pharmaceutical antimicrobials and antibiotics in the treatment of tick-borne pathogens such as Borrelia burgdorferi, Babesia, and Bartonella.
Collapse
Affiliation(s)
- Samuel M Shor
- Internal Medicine of Northern Virginia, George Washington University Health Care Sciences, Reston, VA 20190, USA
| | - Sunjya K Schweig
- California Center for Functional Medicine, Oakland, CA 94619, USA
| |
Collapse
|
9
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
10
|
Disulfiram: Mechanisms, Applications, and Challenges. Antibiotics (Basel) 2023; 12:antibiotics12030524. [PMID: 36978391 PMCID: PMC10044060 DOI: 10.3390/antibiotics12030524] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Since disulfiram’s discovery in the 1940s and its FDA approval for alcohol use disorder, other indications have been investigated. This review describes potential clinical applications, associated risks, and challenges. Methods: For this narrative review, a PubMed search was conducted for articles addressing in vivo studies of disulfiram with an emphasis on drug repurposing for the treatment of human diseases. The key search terms were “disulfiram” and “Antabuse”. Animal studies and in vitro studies highlighting important mechanisms and safety issues were also included. Results: In total, 196 sources addressing our research focus spanning 1948–2022 were selected for inclusion. In addition to alcohol use disorder, emerging data support a potential role for disulfiram in the treatment of other addictions (e.g., cocaine), infections (e.g., bacteria such as Staphylococcus aureus and Borrelia burgdorferi, viruses, parasites), inflammatory conditions, neurological diseases, and cancers. The side effects range from minor to life-threatening, with lower doses conveying less risk. Caution in human use is needed due to the considerable inter-subject variability in disulfiram pharmacokinetics. Conclusions: While disulfiram has promise as a “repurposed” agent in human disease, its risk profile is of concern. Animal studies and well-controlled clinical trials are needed to assess its safety and efficacy for non-alcohol-related indications.
Collapse
|
11
|
Grout MM, Mitchell KB. Disulfiram-Mitigating Unintended Effects. Antibiotics (Basel) 2023; 12:antibiotics12020262. [PMID: 36830172 PMCID: PMC9952438 DOI: 10.3390/antibiotics12020262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Lyme disease caused by infection with a multitude of vector-borne organisms can sometimes be successfully treated in its very early stages. However, if diagnosis is delayed, this infection can become disseminated and, like another spirochetal infection syphilis, can affect multiple organ systems in the body, causing a wide variety of life-altering symptoms. Conventional antibiotic therapy may not be effective in eradicating the symptoms of the disease we know as Lyme disease. The recent literature has suggested that disulfiram (DSM) may be a potent drug in the armamentarium of physicians who treat chronic Lyme disease. The use of disulfiram in the treatment of Lyme disease started with a researcher who determined that DSM is bactericidal to spirochete. Encouraged by published case reports of apparent recovery from chronic Lyme disease, having prescribed DSM ourselves in the past for alcoholics who had a desire to stop drinking and prescribing it now for patients with chronic Lyme disease, we observed both predictable and potentially avoidable side effects not necessarily related to the ingestion of alcohol. We reviewed the published literature in PubMed and Google Scholar, using the following key words: Lyme Disease; Borrelia burgdorferi treatment; and disulfiram toxicity. This paper outlines the results of that research to help avoid some of the pitfalls inherent in this novel use of an old and established medication in the practice of clinical medicine.
Collapse
Affiliation(s)
- Martha M. Grout
- Arizona Center for Advanced Medicine, Scottsdale, AZ 85258, USA
- Correspondence: ; Tel.: +1-480-240-2600
| | | |
Collapse
|
12
|
Delaney SL, Murray LA, Fallon BA. Neuropsychiatric Symptoms and Tick-Borne Diseases. Curr Top Behav Neurosci 2023; 61:279-302. [PMID: 36512289 DOI: 10.1007/7854_2022_406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In North America, Lyme disease (LD) is primarily caused by the spirochetal bacterium Borrelia burgdorferi, transmitted to humans by Ixodes species tick bites, at an estimated rate of 476,000 patients diagnosed per year. Acute LD often manifests with flu-like symptoms and an expanding rash known as erythema migrans (EM) and less often with neurologic, neuropsychiatric, arthritic, or cardiac features. Most acute cases of Lyme disease are effectively treated with antibiotics, but 10-20% of individuals may experience recurrent or persistent symptoms. This chapter focuses on the neuropsychiatric aspects of Lyme disease, as these are less widely recognized by physicians and often overlooked. Broader education about the potential complexity, severity, and diverse manifestations of tick-borne diseases is needed.
Collapse
Affiliation(s)
- Shannon L Delaney
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA.
| | - Lilly A Murray
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| | - Brian A Fallon
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Squadroni B, Newhard W, Carr D, Trinh H, Racine F, Zuck P, Howell B, Hazuda DJ, Cassaday J. Development of a fully automated platform for agar-based measurement of viable bacterial growth. SLAS Technol 2022; 27:247-252. [DOI: 10.1016/j.slast.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/08/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
14
|
Horowitz RI, Freeman PR. Efficacy of Short-Term High Dose Pulsed Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome (PTLDS) and Associated Co-Infections: A Report of Three Cases and Literature Review. Antibiotics (Basel) 2022; 11:912. [PMID: 35884166 PMCID: PMC9311795 DOI: 10.3390/antibiotics11070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Lyme disease and associated co-infections are increasing worldwide and approximately 20% of individuals develop chronic Lyme disease (CLD)/Post-Treatment Lyme Disease Syndrome (PTLDS) despite early antibiotics. A seven- to eight-week protocol of double dose dapsone combination therapy (DDDCT) for CLD/PTLDS results in symptom remission in approximately 50% of patients for one year or longer, with published culture studies indicating higher doses of dapsone demonstrate efficacy against resistant biofilm forms of Borrelia burgdorferi. The purpose of this study was, therefore, to evaluate higher doses of dapsone in the treatment of resistant CLD/PTLDS and associated co-infections. A total of 25 patients with a history of Lyme and associated co-infections, most of whom had ongoing symptoms despite several courses of DDDCT, took one or more courses of high dose pulsed dapsone combination therapy (200 mg dapsone × 3-4 days and/or 200 mg BID × 4 days), depending on persistent symptoms. The majority of patients noticed sustained improvement in eight major Lyme symptoms, including fatigue, pain, headaches, neuropathy, insomnia, cognition, and sweating, where dapsone dosage, not just the treatment length, positively affected outcomes. High dose pulsed dapsone combination therapy may represent a novel therapeutic approach for the treatment of resistant CLD/PTLDS, and should be confirmed in randomized, controlled clinical trials.
Collapse
|
15
|
Custodio MM, Sparks J, Long TE. Disulfiram: A Repurposed Drug in Preclinical and Clinical Development for the Treatment of Infectious Diseases. ANTI-INFECTIVE AGENTS 2022; 20:e040122199856. [PMID: 35782673 PMCID: PMC9245773 DOI: 10.2174/2211352520666220104104747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/01/2023]
Abstract
This article reviews preclinical and clinical studies on the repurposed use of disulfiram (Antabuse) as an antimicrobial agent. Preclinical research covered on the alcohol sobriety aid includes uses as an anti-MRSA agent, a carbapenamase inhibitor, antifungal drug for candidiasis, and treatment for parasitic diseases due to protozoa (e.g., giardiasis, leishmaniasis, malaria) and helminthes (e.g., schistosomiasis, trichuriasis). Past, current, and pending clinical studies on disulfiram as a post-Lyme disease syndrome (PTLDS) therapy, an HIV latency reversal agent, and intervention for COVID-19 infections are also reviewed..
Collapse
Affiliation(s)
- Marco M. Custodio
- Chesapeake Regional Medical Center, 736 Battlefield Blvd. N Chesapeake, VA 23320, USA
| | - Jennifer Sparks
- Department of Pharmacy Practice, Administration and Research, Marshall University School of Pharmacy, One John Marshall Drive, Huntington WV 24755-0001, USA
| | - Timothy E. Long
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, One John Marshall, Drive Huntington WV 24755-0001, USA
| |
Collapse
|
16
|
Irwin SV, Deardorff LM, Deng Y, Fisher P, Gould M, June J, Kent RS, Qin Y, Yadao F. Sulfite preservatives effects on the mouth microbiome: Changes in viability, diversity and composition of microbiota. PLoS One 2022; 17:e0265249. [PMID: 35390016 PMCID: PMC8989357 DOI: 10.1371/journal.pone.0265249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/26/2022] Open
Abstract
OVERVIEW Processed foods make up about 70 percent of the North American diet. Sulfites and other food preservatives are added to these foods largely to limit bacterial contamination. The mouth microbiota and its associated enzymes are the first to encounter food and therefore likely to be the most affected. METHODS Eight saliva samples from ten individuals were exposed to two sulfite preservatives, sodium sulfite and sodium bisulfite. One sample set was evaluated for bacteria composition utilizing 16s rRNA sequencing, and the number of viable cells in all sample sets was determined utilizing ATP assays at 10 and 40-minute exposure times. All untreated samples were analyzed for baseline lysozyme activity, and possible correlations between the number of viable cells and lysozyme activity. RESULTS Sequencing indicated significant increases in alpha diversity with sodium bisulfite exposure and changes in relative abundance of 3 amplicon sequence variants (ASV). Sodium sulfite treated samples showed a significant decrease in the Firmicutes/Bacteroidetes ratio, a marginally significant change in alpha diversity, and a significant change in the relative abundance for Proteobacteria, Firmicutes, Bacteroidetes, and for 6 ASVs. Beta diversity didn't show separation between groups, however, all but one sample set was observed to be moving in the same direction under sodium sulfite treatment. ATP assays indicated a significant and consistent average decrease in activity ranging from 24-46% at both exposure times with both sulfites. Average initial rates of lysozyme activity between all individuals ranged from +/- 76% compared to individual variations of +/- 10-34%. No consistent, significant correlation was found between ATP and lysozyme activity in any sample sets. CONCLUSIONS Sulfite preservatives, at concentrations regarded as safe by the FDA, alter the relative abundance and richness of the microbiota found in saliva, and decrease the number of viable cells, within 10 minutes of exposure.
Collapse
Affiliation(s)
- Sally V. Irwin
- Department of Science, Technology, Engineering and Mathematics, University of Hawai’i Maui College, Kahului, Hawai’i, United States of America
| | - Luz Maria Deardorff
- Department of Natural Sciences, University of Hawai’i at Manoa, Honolulu, Hawai’i, United States of America
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawai’I, United States of America
| | - Peter Fisher
- Department of Science, Technology, Engineering and Mathematics, University of Hawai’i Maui College, Kahului, Hawai’i, United States of America
| | - Michelle Gould
- Department of Science, Technology, Engineering and Mathematics, University of Hawai’i Maui College, Kahului, Hawai’i, United States of America
| | - Junnie June
- Department of Science, Technology, Engineering and Mathematics, University of Hawai’i Maui College, Kahului, Hawai’i, United States of America
| | - Rachael S. Kent
- Department of Science, Technology, Engineering and Mathematics, University of Hawai’i Maui College, Kahului, Hawai’i, United States of America
| | - Yujia Qin
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawai’I, United States of America
| | - Fracesca Yadao
- Department of Science, Technology, Engineering and Mathematics, University of Hawai’i Maui College, Kahului, Hawai’i, United States of America
| |
Collapse
|
17
|
A systematic review of disulfiram as an antibacterial agent: What is the evidence? Int J Antimicrob Agents 2022; 59:106578. [DOI: 10.1016/j.ijantimicag.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 03/20/2022] [Indexed: 11/18/2022]
|
18
|
Abstract
In vivo diagnostic imaging of bacterial infections is currently reliant on targeting their metabolic pathways, an ineffective method to identify microbial species with low metabolic activity. Here, we establish HS-198 as a small-molecule fluorescent conjugate that selectively targets the highly conserved bacterial protein HtpG (high-temperature protein G), within Borrelia burgdorferi, the bacterium responsible for Lyme disease. We describe the use of HS-198 to target morphologic forms of B. burgdorferi in both the logarithmic growth phase and the metabolically dormant stationary phase as well as in inactivated spirochetes. Furthermore, in a murine infection model, systemically injected HS-198 identified B. burgdorferi as revealed by imaging in postnecropsy tissue sections. These findings demonstrate how small-molecule probes directed at conserved bacterial protein targets can function to identify the microbe using noninvasive imaging and potentially as scaffolds to deliver antimicrobial agents to the pathogen.
Collapse
|
19
|
Khan DA, Hamdani SDA, Iftikhar S, Malik SZ, Zaidi NUSS, Gul A, Babar MM, Ozturk M, Turkyilmaz Unal B, Gonenc T. Pharmacoinformatics approaches in the discovery of drug-like antimicrobials of plant origin. J Biomol Struct Dyn 2021; 40:7612-7628. [PMID: 33663347 DOI: 10.1080/07391102.2021.1894982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Medicinal plants have served as an important source for addressing the ailments of humans and animals alike. The emergence of advanced technologies in the field of drug discovery and development has helped in isolating various bioactive phytochemicals and developing them as drugs. Owing to their significant pharmacological benefits and minimum adverse effects, they not only serve as good candidates for therapeutics themselves but also help in the identification and development of related drug like molecules against various metabolic and infectious diseases. The ever-increasing diversity, severity and incidence of infectious diseases has resulted in an exaggerated mortality and morbidity levels. Geno-proteomic mutations in microbes, irrational prescribing of antibiotics, antimicrobial resistance and human population explosion, all call for continuous efforts to discover and develop alternated therapeutic options against the microbes. This review article describes the pharmacoinformatics tools and methods which are currently used in the discovery of bioactive phytochemicals, thus making the process more efficient and effective. The pharmacological aspects of the drug discovery and development process have also been reviewed with reference to the in silico activities. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Duaa Ahmad Khan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Syed Damin Abbas Hamdani
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sahar Iftikhar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najam-Us-Sahar Sadaf Zaidi
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Arts & Sciences Faculty, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Tuba Gonenc
- Department of Pharmacognosy, Faculty of Pharmacy, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
20
|
Haynes AM, Giacani L, Mayans MV, Ubals M, Nieto C, Pérez-Mañá C, Quintó L, Romeis E, Mitjà O. Efficacy of linezolid on Treponema pallidum, the syphilis agent: A preclinical study. EBioMedicine 2021; 65:103281. [PMID: 33721817 PMCID: PMC7973135 DOI: 10.1016/j.ebiom.2021.103281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Penicillin G, the current standard treatment for syphilis, has important drawbacks, but virtually no preclinical or clinical studies have been performed to identify viable alternatives. We tested, both in vitro and in vivo, three marketed antibiotics with adequate pharmacological properties to treat syphilis. METHODS We used an in vitro culturing system of T. pallidum to perform drug susceptibility testing and applied quantitative PCR targeting the tp0574 gene to measure bacterial growth. To confirm in vivo efficacy, fifteen rabbits were infected intradermally with T. pallidum at eight sites each and randomly allocated to an experimental treatment (linezolid, moxifloxacin, clofazimine) or a control arm (benzathine penicillin G [BPG], untreated). The primary outcome was treatment efficacy defined as the time to lesion healing measured from the date of treatment start. Secondary outcomes were absence of treponemes or treponemal mRNA in injection sites, absence of seroconversion, and cerebrospinal fluid (CSF) abnormalities and negative rabbit infectivity tests (RIT). FINDINGS Linezolid showed in vitro bactericidal activity at concentrations of 0.5 µg/mL or higher. When administered orally to experimentally infected rabbits, it induced healing of early lesions at a time similar to BPG (hazard ratio 3.84; 95% CI 2.05-7.17; p < 0.0001 compared to untreated controls). In linezolid-treated animals, dark-field microscopy and qPCR assessment showed no presence of treponemes after day 3 post-treatment start, serologic test did not convert to positive, CSF had no abnormalities, and RIT was negative. Moxifloxacin and clofazimine failed to inhibit bacterial growth in vitro and could not cure the infection in the rabbit model. INTERPRETATION Linezolid, a low-cost oxazolidinone, has in vitro and in vivo activity against T. pallidum, with efficacy similar to BPG in treating treponemal lesions in the animal model. Our findings warrant further research to assess the efficacy of linezolid as an alternative to penicillin G to treat syphilis in human clinical trials. FUNDING European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 850450).
Collapse
Affiliation(s)
- Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Marti Vall Mayans
- Fight Aids and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Maria Ubals
- Fight Aids and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | - Clara Pérez-Mañá
- Clinical Pharmacology Unit, Hospital, Universitari Germans Trias i Pujol, Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), Badalona, Spain; Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Llorenç Quintó
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Manhiça Health Research Institute (CISM), Maputo, Mozambique
| | - Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Oriol Mitjà
- Fight Aids and Infectious Diseases Foundation, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain; Lihir Medical Centre-International SOS, Lihir Island, Papua New Guinea.
| |
Collapse
|
21
|
Gao J, Gong Z, Montesano D, Glazer E, Liegner K. "Repurposing" Disulfiram in the Treatment of Lyme Disease and Babesiosis: Retrospective Review of First 3 Years' Experience in One Medical Practice. Antibiotics (Basel) 2020; 9:antibiotics9120868. [PMID: 33291557 PMCID: PMC7761882 DOI: 10.3390/antibiotics9120868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
A total of 71 patients with Lyme disease were identified for analysis in whom treatment with disulfiram was initiated between 15 March 2017 and 15 March 2020. Four patients were lost to follow-up, leaving 67 evaluable patients. Our retrospective review found patients to fall into a “high-dose” group (≥4 mg/kg/day) and a “low-dose” group (<4 mg/kg/day). In total, 62 of 67 (92.5%) patients treated with disulfiram were able to endorse a net benefit of the treatment with regard to their symptoms. Moreover, 12 of 33 (36.4%) patients who completed one or two courses of “high-dose” therapy enjoyed an “enduring remission”, defined as remaining clinically well for ≥6 months without further anti-infective treatment. The most common adverse reactions from disulfiram treatment in the high-dose group were fatigue (66.7%), psychiatric symptoms (48.5%), peripheral neuropathy (27.3%), and mild to moderate elevation of liver enzymes (15.2%). We observed that although patients on high dose experienced a higher risk for adverse reactions than those on a low dose, high-dose patients were significantly more likely to achieve enduring remission.
Collapse
Affiliation(s)
- Jiachen Gao
- College of Arts and Sciences, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA;
| | - Zhaodi Gong
- CT Integrated Pain Consultants, LLC, 60 Katona Drive, Suite 25, Fairfield, CT 06824, USA;
| | - Dawn Montesano
- P.C. Lyme Borreliosis & Related Disorders, 592 Route 22, Suite 1B, Pawling, NY 12564, USA; (D.M.); (E.G.)
| | - Erica Glazer
- P.C. Lyme Borreliosis & Related Disorders, 592 Route 22, Suite 1B, Pawling, NY 12564, USA; (D.M.); (E.G.)
| | - Kenneth Liegner
- P.C. Lyme Borreliosis & Related Disorders, 592 Route 22, Suite 1B, Pawling, NY 12564, USA; (D.M.); (E.G.)
- Northwell System, Northern Westchester Hospital Center, Mount Kisco, NY 10549, USA
- Nuvance Health System, Sharon Hospital, Sharon, CT 06069, USA
- Correspondence:
| |
Collapse
|
22
|
I. Horowitz R, R. Freeman P. Efficacy of Double-Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome (PTLDS) and Associated Co-infections: A Report of Three Cases and Retrospective Chart Review. Antibiotics (Basel) 2020; 9:E725. [PMID: 33105645 PMCID: PMC7690415 DOI: 10.3390/antibiotics9110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 02/03/2023] Open
Abstract
Three patients with multi-year histories of relapsing and remitting Lyme disease and associated co-infections despite extended antibiotic therapy were each given double-dose dapsone combination therapy (DDD CT) for a total of 7-8 weeks. At the completion of therapy, all three patients' major Lyme symptoms remained in remission for a period of 25-30 months. A retrospective chart review of 37 additional patients undergoing DDD CT therapy (40 patients in total) was also performed, which demonstrated tick-borne symptom improvements in 98% of patients, with 45% remaining in remission for 1 year or longer. In conclusion, double-dose dapsone therapy could represent a novel and effective anti-infective strategy in chronic Lyme disease/ post-treatment Lyme disease syndrome (PTLDS), especially in those individuals who have failed regular dose dapsone combination therapy (DDS CT) or standard antibiotic protocols. A randomized, blinded, placebo-controlled trial is warranted to evaluate the efficacy of DDD CT in those individuals with chronic Lyme disease/PTLDS.
Collapse
Affiliation(s)
- Richard I. Horowitz
- HHS Babesia and Tick-borne Pathogens Subcommittee, Washington, DC 20201, USA
- Hudson Valley Healing Arts Center, Hyde Park, NY 12538, USA;
| | | |
Collapse
|
23
|
Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics (Basel) 2020; 9:antibiotics9090633. [PMID: 32971817 PMCID: PMC7557442 DOI: 10.3390/antibiotics9090633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Lyme disease caused by the Borrelia burgdorferi (Bb or B. burgdorferi) is the most common vector-borne, multi-systemic disease in the USA. Although most Lyme disease patients can be cured with a course of the first line of antibiotic treatment, some patients are intolerant to currently available antibiotics, necessitating the development of more effective therapeutics. We previously found several drugs, including disulfiram, that exhibited effective activity against B. burgdorferi. In the current study, we evaluated the potential of repurposing the FDA-approved drug, disulfiram for its borreliacidal activity. Our results indicate disulfiram has excellent borreliacidal activity against both the log and stationary phase B. burgdorferi sensu stricto B31 MI. Treatment of mice with disulfiram eliminated the B. burgdorferi sensu stricto B31 MI completely from the hearts and urinary bladder by day 28 post infection. Moreover, disulfiram-treated mice showed reduced expressions of inflammatory markers, and thus they were protected from histopathology and cardiac organ damage. Furthermore, disulfiram-treated mice showed significantly lower amounts of total antibody titers (IgM and IgG) at day 21 and total IgG2b at day 28 post infection. FACS analysis of lymph nodes revealed a decrease in the percentage of CD19+ B cells and an increase in total percentage of CD3+ T cells, CD3+ CD4+ T helpers, and naive and effector memory cells in disulfiram-treated mice. Together, our findings suggest that disulfiram has the potential to be repurposed as an effective antibiotic for treating Lyme disease.
Collapse
|
24
|
Alvarez-Manzo HS, Zhang Y, Shi W, Zhang Y. Evaluation of Disulfiram Drug Combinations and Identification of Other More Effective Combinations against Stationary Phase Borrelia burgdorferi. Antibiotics (Basel) 2020; 9:E542. [PMID: 32858987 PMCID: PMC7559458 DOI: 10.3390/antibiotics9090542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Lyme disease, caused by Borrelia burgdorferi, is the most common vector-borne disease in USA, and 10-20% of patients will develop persistent symptoms despite treatment ("post-treatment Lyme disease syndrome"). B. burgdorferi persisters, which are not killed by the current antibiotics for Lyme disease, are considered one possible cause. Disulfiram has shown to be active against B. burgdorferi, but its activity against persistent forms is not well characterized. We assessed disulfiram as single drug and in combinations against stationary-phase B. burgdorferi culture enriched with persisters. Disulfiram was not very effective in the drug exposure experiment (survival rate (SR) 46.3%) or in combinations. Clarithromycin (SR 41.1%) and nitroxoline (SR 37.5%) were equally effective when compared to the current Lyme antibiotic cefuroxime (SR 36.8%) and more active than disulfiram. Cefuroxime + clarithromycin (SR 25.9%) and cefuroxime + nitroxoline (SR 27.5%) were significantly more active than cefuroxime + disulfiram (SR 41.7%). When replacing disulfiram with clarithromycin or nitroxoline in three-drug combinations, bacterial viability decreased significantly and subculture studies showed that combinations with these two drugs (cefuroxime + clarithromycin/nitroxoline + furazolidone/nitazoxanide) inhibited the regrowth, while disulfiram combinations did not (cefuroxime + disulfiram + furazolidone/nitazoxanide). Thus, clarithromycin and nitroxoline should be further assessed to determine their role as potential treatment alternatives in the future.
Collapse
Affiliation(s)
| | | | | | - Ying Zhang
- Department of Molecular microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; (H.S.A.-M.); (Y.Z.); (W.S.)
| |
Collapse
|
25
|
Trautmann A, Gascan H, Ghozzi R. Potential Patient-Reported Toxicities With Disulfiram Treatment in Late Disseminated Lyme Disease. Front Med (Lausanne) 2020; 7:133. [PMID: 32373619 PMCID: PMC7184924 DOI: 10.3389/fmed.2020.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, disulfiram has been proposed as a promising treatment for people suffering from persistent symptoms of Lyme Disease. Disulfiram has several distinct molecular targets. The most well-known is alcohol dehydrogenase, a key enzyme for detoxifying the organism after alcohol ingestion. Other targets and modes of action of disulfiram, that may present problematic side effects, are less commonly mentioned. The French Federation against Tick Borne Diseases (French acronym, FFMVT), which associates three main Lyme patient organizations, MDs and PhDs, has recently been alerted to severe and persistent toxic events in a patient suffering from a late disseminated form of Lyme Disease following disulfiram intake. FFMVT reacted by launching a national call to examine whether other patients in France following a similar treatment could be identified, and what benefits, or side effects could be reported. The statements of 16 patients taking disulfiram have been collected and are presented here. Thirteen out of 16 patients reported toxic events, and seven out of 16 reported benefits for at least part of their symptoms. Based on the collected observations, it seems too early to promote disulfiram as a promising new treatment until the reasons underlying the reported toxicities have been explored, and the results of a well-conducted double blind clinical trial published. The importance of taking into account patient-reported outcomes in Lyme Disease is underlined by the present study.
Collapse
Affiliation(s)
- Alain Trautmann
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Hugues Gascan
- Institut de Génétique et Développement de Rennes (IGDR), Rennes, France
| | - Raouf Ghozzi
- Centre Hospitalier de Lannemezan, Lannemezan, France
| |
Collapse
|
26
|
Baker PJ. A Review of Antibiotic-Tolerant Persisters and Their Relevance to Posttreatment Lyme Disease Symptoms. Am J Med 2020; 133:429-431. [PMID: 31926865 DOI: 10.1016/j.amjmed.2019.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/28/2023]
Abstract
Several well-controlled clinical trials have shown that prolonged antibiotic therapy has no benefit in relieving posttreatment Lyme disease symptoms. However, some insist that such symptoms are due to a persistent Borrelia burgdorferi infection requiring prolonged antibiotic therapy to resolve. This unproven view is bolstered by the results of in vitro experiments where small numbers of viable B. burgdorferi can be detected after treatment with antibiotics. The results described in the present work suggest that the presence of persisters can best be explained by classic biochemical kinetics and that there are alternative explanations for this phenomenon that appears to have no clinical significance.
Collapse
|
27
|
Pothineni VR, Potula HHSK, Ambati A, Mallajosyula VVA, Sridharan B, Inayathullah M, Ahmed MS, Rajadas J. Azlocillin can be the potential drug candidate against drug-tolerant Borrelia burgdorferi sensu stricto JLB31. Sci Rep 2020; 10:3798. [PMID: 32123189 PMCID: PMC7052277 DOI: 10.1038/s41598-020-59600-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
Lyme disease is one of most common vector-borne diseases, reporting more than 300,000 cases annually in the United States. Treating Lyme disease during its initial stages with traditional tetracycline antibiotics is effective. However, 10-20% of patients treated with antibiotic therapy still shows prolonged symptoms of fatigue, musculoskeletal pain, and perceived cognitive impairment. When these symptoms persists for more than 6 months to years after completing conventional antibiotics treatment are called post-treatment Lyme disease syndrome (PTLDS). Though the exact reason for the prolongation of post treatment symptoms are not known, the growing evidence from recent studies suggests it might be due to the existence of drug-tolerant persisters. In order to identify effective drug molecules that kill drug-tolerant borrelia we have tested two antibiotics, azlocillin and cefotaxime that were identified by us earlier. The in vitro efficacy studies of azlocillin and cefotaxime on drug-tolerant persisters were done by semisolid plating method. The results obtained were compared with one of the currently prescribed antibiotic doxycycline. We found that azlocillin completely kills late log phase and 7-10 days old stationary phase B. burgdorferi. Our results also demonstrate that azlocillin and cefotaxime can effectively kill in vitro doxycycline-tolerant B. burgdorferi. Moreover, the combination drug treatment of azlocillin and cefotaxime effectively killed doxycycline-tolerant B. burgdorferi. Furthermore, when tested in vivo, azlocillin has shown good efficacy against B. burgdorferi in mice model. These seminal findings strongly suggests that azlocillin can be effective in treating B. burgdorferi sensu stricto JLB31 infection and furthermore in depth research is necessary to evaluate its potential use for Lyme disease therapy.
Collapse
Affiliation(s)
- Venkata Raveendra Pothineni
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Hari-Hara S K Potula
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Aditya Ambati
- Center for sleep sciences and medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, California, 94304, USA
| | | | - Brindha Sridharan
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, 600 034, Tamil Nadu, India
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Mohamed Sohail Ahmed
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, California, 94304, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Palo Alto, California, 94304, USA.
- Bioengineering and Therapeutic Sciences, UCSF School of Pharmacy, University of California, San Francisco, CA, 94158, USA.
| |
Collapse
|
28
|
Rebman AW, Aucott JN. Post-treatment Lyme Disease as a Model for Persistent Symptoms in Lyme Disease. Front Med (Lausanne) 2020; 7:57. [PMID: 32161761 PMCID: PMC7052487 DOI: 10.3389/fmed.2020.00057] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
It has long been observed in clinical practice that a subset of patients with Lyme disease report a constellation of symptoms such as fatigue, cognitive difficulties, and musculoskeletal pain, which may last for a significant period of time. These symptoms, which can range from mild to severe, have been reported throughout the literature in both prospective and population-based studies in Lyme disease endemic regions. The etiology of these symptoms is unknown, however several illness-causing mechanisms have been hypothesized, including microbial persistence, host immune dysregulation through inflammatory or secondary autoimmune pathways, or altered neural networks, as in central sensitization. Evaluation and characterization of persistent symptoms in Lyme disease is complicated by potential independent, repeat exposures to B. burgdorferi, as well as the potential for co-morbid diseases with overlapping symptom profiles. Antibody testing for B. burgdorferi is an insensitive measure after treatment, and no other FDA-approved tests currently exist. As such, diagnosis presents a complex challenge for physicians, while the lived experience for patients is one marked by uncertainty and often illness invalidation. Currently, there are no FDA-approved pharmaceutical therapies, and the safety and efficacy of off-label and/or complementary therapies have not been well studied and are not agreed-upon within the medical community. Post-treatment Lyme disease represents a narrow, defined, mechanistically-neutral subset of this larger, more heterogeneous group of patients, and is a useful definition in research settings as an initial subgroup of study. The aim of this paper is to review the current literature on the diagnosis, etiology, risk factors, and treatment of patients with persistent symptoms in the context of Lyme disease. The meaning and relevance of existing patient subgroups will be discussed, as will future research priorities, including the need to develop illness biomarkers, elucidate the biologic mechanisms of disease, and drive improvements in therapeutic options.
Collapse
Affiliation(s)
- Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Novel targets and strategies to combat borreliosis. Appl Microbiol Biotechnol 2020; 104:1915-1925. [PMID: 31953560 PMCID: PMC7222997 DOI: 10.1007/s00253-020-10375-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/05/2020] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Lyme borreliosis is a bacterial infection that can be spread to humans by infected ticks and may severely affect many organs and tissues. Nearly four decades have elapsed since the discovery of the disease agent called Borrelia burgdorferi. Although there is a plethora of knowledge on the infectious agent and thousands of scientific publications, an effective way on how to combat and prevent Lyme borreliosis has not been found yet. There is no vaccine for humans available, and only one active vaccine program in clinical development is currently running. A spirited search for possible disease interventions is of high public interest as surveillance data indicates that the number of cases of Lyme borreliosis is steadily increasing in Europe and North America. This review provides a condensed digest of the history of vaccine development up to new promising vaccine candidates and strategies that are targeted against Lyme borreliosis, including elements of the tick vector, the reservoir hosts, and the Borrelia pathogen itself.
Collapse
|
30
|
Jung JH, Hwang J, Kim JH, Sim DY, Im E, Park JE, Park WY, Shim BS, Kim B, Kim SH. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms. Semin Cancer Biol 2019; 68:164-174. [PMID: 31883914 DOI: 10.1016/j.semcancer.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/18/2019] [Accepted: 12/15/2019] [Indexed: 12/24/2022]
Abstract
Though limited success through chemotherapy, radiotherapy and surgery has been obtained for efficient cancer therapy for modern decades, cancers are still considered high burden to human health worldwide to date. Recently repurposing drugs are attractive with lower cost and shorter time compared to classical drug discovery, just as Metformin from Galega officinalis, originally approved for treating Type 2 diabetes by FDA, is globally valued at millions of US dollars for cancer therapy. As most previous reviews focused on FDA approved drugs and synthetic agents, current review discussed the anticancer potential of phytochemicals originally approved for treatment of cardiovascular diseases, diabetes, infectious diarrhea, depression and malaria with their molecular mechanisms and efficacies and suggested future research perspectives.
Collapse
Affiliation(s)
- Ji Hoon Jung
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ju-Ha Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Eunji Im
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Woon Yi Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bum-Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea.
| |
Collapse
|
31
|
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens 2019; 8:E299. [PMID: 31888245 PMCID: PMC6963551 DOI: 10.3390/pathogens8040299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Lyme disease is a complex tick-borne zoonosis that poses an escalating public health threat in several parts of the world, despite sophisticated healthcare infrastructure and decades of effort to address the problem. Concepts like the true burden of the illness, from incidence rates to longstanding consequences of infection, and optimal case management, also remain shrouded in controversy. At the heart of this multidisciplinary issue are the causative spirochetal pathogens belonging to the Borrelia Lyme complex. Their unusual physiology and versatile lifestyle have challenged microbiologists, and may also hold the key to unlocking mysteries of the disease. The goal of this review is therefore to integrate established and emerging concepts of Borrelia biology and pathogenesis, and position them in the broader context of biomedical research and clinical practice. We begin by considering the conventions around diagnosing and characterizing Lyme disease that have served as a conceptual framework for the discipline. We then explore virulence from the perspective of both host (genetic and environmental predispositions) and pathogen (serotypes, dissemination, and immune modulation), as well as considering antimicrobial strategies (lab methodology, resistance, persistence, and clinical application), and borrelial adaptations of hypothesized medical significance (phenotypic plasticity or pleomorphy).
Collapse
Affiliation(s)
| | | | | | | | - Melanie K. B. Wills
- G. Magnotta Lyme Disease Research Lab, Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (V.V.B.); (J.T.K.); (I.L.M.); (V.P.S.)
| |
Collapse
|
32
|
Cornell KA, Knippel RJ, Cortright GR, Fonken M, Guerrero C, Hall AR, Mitchell KA, Thurston JH, Erstad P, Tao A, Xu D, Parveen N. Characterization of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases from Borrelia burgdorferi: Antibiotic targets for Lyme disease. Biochim Biophys Acta Gen Subj 2019; 1864:129455. [PMID: 31669585 DOI: 10.1016/j.bbagen.2019.129455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Borrelia burgdorferi causes Lyme disease, the most common tick-borne illness in the United States. The Center for Disease Control and Prevention estimates that the occurrence of Lyme disease in the U.S. has now reached approximately 300,000 cases annually. Early stage Borrelia burgdorferi infections are generally treatable with oral antibiotics, but late stage disease is more difficult to treat and more likely to lead to post-treatment Lyme disease syndrome. METHODS Here we examine three unique 5'-methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidases (MTNs or MTANs, EC 3.2.2.9) responsible for salvage of adenine and methionine in B. burgdorferi and explore their potential as antibiotic targets to treat Lyme disease. Recombinant Borrelia MTNs were expressed and purified from E. coli. The enzymes were extensively characterized for activity, specificity, and inhibition using a UV spectrophotometric assay. In vitro antibiotic activities of MTN inhibitors were assessed using a bioluminescent BacTiter-Glo™ assay. RESULTS The three Borrelia MTNs showed unique activities against the native substrates MTA, SAH, and 5'-deoxyadenosine. Analysis of substrate analogs revealed that specific activity rapidly dropped as the length of the 5'-alkylthio substitution increased. Non-hydrolysable nucleoside transition state analogs demonstrated sub-nanomolar enzyme inhibition constants. Lastly, two late stage transition state analogs exerted in vitro IC50 values of 0.3-0.4 μg/mL against cultured B. burgdorferi cells. CONCLUSION B. burgdorferi is unusual in that it expresses three distinct MTNs (cytoplasmic, membrane bound, and secreted) that are effectively inactivated by nucleoside analogs. GENERAL SIGNIFICANCE The Borrelia MTNs appear to be promising targets for developing new antibiotics to treat Lyme disease.
Collapse
Affiliation(s)
- Kenneth A Cornell
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA; Biomolecular Research Center, Boise State University, Boise, ID, USA.
| | - Reece J Knippel
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Gerald R Cortright
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Meghan Fonken
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Christian Guerrero
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Amy R Hall
- Department of Chemistry & Biochemistry, Boise State University, Boise, ID, USA
| | - Kristen A Mitchell
- Biomolecular Research Center, Boise State University, Boise, ID, USA; Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - John H Thurston
- Department of Chemistry, The College of Idaho, Caldwell, ID, USA
| | - Patrick Erstad
- Department of Chemistry, The College of Idaho, Caldwell, ID, USA; Department of Biomedical & Pharmaceutical Sciences, Idaho State University, Meridian, ID, USA
| | - Aoxiang Tao
- Department of Biomedical & Pharmaceutical Sciences, Idaho State University, Meridian, ID, USA
| | - Dong Xu
- Department of Biomedical & Pharmaceutical Sciences, Idaho State University, Meridian, ID, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
33
|
Liegner KB. Disulfiram (Tetraethylthiuram Disulfide) in the Treatment of Lyme Disease and Babesiosis: Report of Experience in Three Cases. Antibiotics (Basel) 2019; 8:antibiotics8020072. [PMID: 31151194 PMCID: PMC6627205 DOI: 10.3390/antibiotics8020072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/20/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022] Open
Abstract
Three patients, each of whom had required intensive open-ended antimicrobial therapy for control of the symptoms of chronic relapsing neurological Lyme disease and relapsing babesiosis, were able to discontinue treatment and remain clinically well for periods of observation of 6–23 months following the completion of a finite course of treatment solely with disulfiram. One patient relapsed at six months and is being re-treated with disulfiram.
Collapse
Affiliation(s)
- Kenneth B Liegner
- 592 Route 22-Suite 1B, Pawling, NY 12564, USA.
- Northwell System, Northern Westchester Hospital, Mount Kisco, NY 10549, USA.
- Health Quest System, Sharon Hospital, Sharon, CT 06069, USA.
| |
Collapse
|
34
|
Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol 2019; 4:565-577. [PMID: 30833727 DOI: 10.1038/s41564-019-0357-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance continues to be a public threat on a global scale. The ongoing need to develop new antimicrobial drugs that are effective against multi-drug-resistant pathogens has spurred the research community to invest in various drug discovery strategies, one of which is drug repurposing-the process of finding new uses for existing drugs. While still nascent in the antimicrobial field, the approach is gaining traction in both the public and private sector. While the approach has particular promise in fast-tracking compounds into clinical studies, it nevertheless has substantial obstacles to success. This Review covers the art of repurposing existing drugs for antimicrobial purposes. We discuss enabling screening platforms for antimicrobial discovery and present encouraging findings of novel antimicrobial therapeutic strategies. Also covered are general advantages of repurposing over de novo drug development and challenges of the strategy, including scientific, intellectual property and regulatory issues.
Collapse
Affiliation(s)
- Maya A Farha
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Michael G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
35
|
Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. High Throughput and Computational Repurposing for Neglected Diseases. Pharm Res 2018; 36:27. [PMID: 30560386 PMCID: PMC6792295 DOI: 10.1007/s11095-018-2558-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Purpose Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. Methods We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. Results Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. Conclusions In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches. Electronic supplementary material The online version of this article (10.1007/s11095-018-2558-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Melinda Soeung
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA
| | | | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Jair Lage de Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
36
|
Pothineni VR, Parekh MB, Babar MM, Ambati A, Maguire P, Inayathullah M, Kim KM, Tayebi L, Potula HHS, Rajadas J. In vitro and in vivo evaluation of cephalosporins for the treatment of Lyme disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2915-2921. [PMID: 30254421 PMCID: PMC6141111 DOI: 10.2147/dddt.s164966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Lyme disease accounts for >90% of all vector-borne disease cases in the United States and affect ~300,000 persons annually in North America. Though traditional tetracycline antibiotic therapy is generally prescribed for Lyme disease, still 10%–20% of patients treated with current antibiotic therapy still show lingering symptoms. Methods In order to identify new drugs, we have evaluated four cephalosporins as a therapeutic alternative to commonly used antibiotics for the treatment of Lyme disease by using microdilution techniques like minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). We have determined the MIC and MBC of four drugs for three Borrelia burgdorferi s.s strains namely CA8, JLB31 and NP40. The binding studies were performed using in silico analysis. Results The MIC order of the four drugs tested is cefoxitin (1.25 µM/mL) > cefamandole (2.5 µM/mL), > cefuroxime (5 µM/mL) > cefapirin (10 µM/mL). Among the drugs that are tested in this study using in vivo C3H/HeN mouse model, cefoxitin effectively kills B. burgdorferi. The in silico analysis revealed that all four cephalosporins studied binds effectively to B. burgdorferi proteins, SecA subunit penicillin-binding protein (PBP) and Outer surface protein E (OspE). Conclusion Based on the data obtained, cefoxitin has shown high efficacy killing B. burgdorferi at concentration of 1.25 µM/mL. In addition to it, cefoxitin cleared B. burgdorferi infection in C3H/HeN mice model at 20 mg/kg.
Collapse
Affiliation(s)
- Venkata Raveendra Pothineni
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Mansi B Parekh
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Mustafeez Mujtaba Babar
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Aditya Ambati
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Peter Maguire
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Kwang-Min Kim
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Hari-Hara Sk Potula
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA,
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery, Stanford Cardiovascular Pharmacology Division, Cardiovascular Institute, School of Medicine, Stanford University, Palo Alto, CA, USA, .,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA,
| |
Collapse
|
37
|
Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2018; 62:AAC.00146-18. [PMID: 29661867 DOI: 10.1128/aac.00146-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
One of the most important clinical obstacles in cystic fibrosis (CF) treatment is antibiotic treatment failure due to biofilms produced by Pseudomonas aeruginosa The ability of this pathogen to survive eradication by tobramycin and pathoadapt into a hyperbiofilm state leading to chronic infections is key to its success. Retrospective studies have demonstrated that preventing this pathoadaptation by improving eradication is essential to extend the lives of CF patients. To identify adjuvants that enhance tobramycin eradication of P. aeruginosa, we performed a high-throughput screen of 6,080 compounds from four drug-repurposing libraries. We identified that the Food and Drug Administration (FDA)-approved compound triclosan, in combination with tobramycin, resulted in a 100-fold reduction of viable cells within biofilms at 6 h, but neither compound alone had significant antimicrobial activity against biofilms. This synergistic treatment significantly accelerated the killing of biofilms compared to that with tobramycin treatment alone, and the combination was effective against 6/7 CF clinical isolates compared to tobramycin treatment alone, including a tobramycin-resistant strain. Further, triclosan and tobramycin killed persister cells, causing a 100-fold reduction by 8 h and complete eradication by 24 h. Triclosan also enhances tobramycin killing of multiple Burkholderia cenocepacia and Staphylococcus aureus clinical isolates grown as biofilms. Additionally, triclosan showed synergy with other aminoglycosides, such as gentamicin or streptomycin. Triclosan is a well-tolerated aminoglycoside adjuvant shown to be safe for human use that could improve the treatment of biofilm-based infections.
Collapse
|
38
|
Screening of NCI-DTP library to identify new drug candidates for Borrelia burgdorferi. J Antibiot (Tokyo) 2016; 70:308-312. [PMID: 27826144 DOI: 10.1038/ja.2016.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 12/23/2022]
|