1
|
Al-Odat OS, Elbezanti WO, Gowda K, Srivastava SK, Amin SG, Jonnalagadda SC, Budak-Alpdogan T, Pandey MK. KS18, a Mcl-1 inhibitor, improves the effectiveness of bortezomib and overcomes resistance in refractory multiple myeloma by triggering intrinsic apoptosis. Front Pharmacol 2024; 15:1436786. [PMID: 39411073 PMCID: PMC11473443 DOI: 10.3389/fphar.2024.1436786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Despite a record number of clinical studies investigating various anti-myeloma treatments, the 5-year survival rate for multiple myeloma (MM) patients in the US is only 55%, and almost all patients relapse. Poor patient outcomes demonstrate that myeloma cells are "born to survive" which means they can adapt and evolve following treatment. Thus, new therapeutic approaches to combat survival mechanisms and target treatment resistance are required. Importantly, Mcl-1, anti-apoptotic protein, is required for the development of MM and treatment resistance. This study looks at the possibility of KS18, a selective Mcl-1 inhibitor, to treat MM and overcome resistance. Our investigation demonstrates that KS18 effectively induces cell death in MM by dual regulatory mechanisms targeting the Mcl-1 protein at both transcriptional and post-translational levels. Specifically, KS18 suppresses Mcl-1 activation via STAT-3 pathway and promotes Mcl-1 phosphorylation/ubiquitination/proteasome-dependent protein degradation (UPS). Significantly, KS18 triggered caspase-dependent apoptosis in MM patient samples and bortezomib-resistant cells, synergizing with venetoclax to boost apoptosis. KS18 promises to overcome bortezomib and venetoclax resistance and re-sensitize myeloma cells to chemotherapy. Furthermore, the study shows the tremendous impact of KS18 in inhibiting colony formation in bortezomib-resistant cells and demonstrates significant tumor shrinkage in KS18-treated NSG mice without notable toxicity signs after 4 weeks of therapy with a single acceptable dose each week, indicating its powerful anti-neoplastic and anti-resistance characteristics. This study strongly implies that KS18 may treat MM and provide new hope to patients who are experiencing recurrence or resistance.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Weam Othman Elbezanti
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
- Department of Surgery, Cooper University Health Care, Camden, NJ, United States
| | - Krishne Gowda
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | | | - Shantu G. Amin
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Subash C. Jonnalagadda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, United States
| | - Tulin Budak-Alpdogan
- Department of Hematology, Cooper University Health Care, Camden, NJ, United States
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
2
|
Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, Guo Y, Guo Y, Sun H, Liu X, Yang S, Mei Z, Zhu Y, Cheng Z, Chen S, Xu M, Zhang W, Wan N, Wang J, Ma Y, Zhang S, Luan X, Xu A, Li L, Wang H, Yang X, Hong Y, Xue H, Yuan X, Hu N, Song X, Wang Z, Liu X, Wang L, Liu Y. Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 2024; 143:1825-1836. [PMID: 38211332 PMCID: PMC11076911 DOI: 10.1182/blood.2023019706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuran Li
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Qin Wang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yingcai Feng
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haimei Xing
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuefei Yang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ying Guo
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yunhang Guo
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hanzi Sun
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaoxin Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shasha Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhu Mei
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yutong Zhu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhenzhen Cheng
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuaishuai Chen
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Min Xu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nanyan Wan
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Jia Wang
- Department of Bioinformatics, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yanwen Ma
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuo Zhang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xudong Luan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Aiying Xu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lin Li
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaolong Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yuan Hong
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hai Xue
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xi Yuan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nan Hu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaomin Song
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuesong Liu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lai Wang
- Research and Clinical Development, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Niu P, Xu H, Fan M. Discovery and optimization of (2-naphthylthio)acetic acid derivative as selective Bfl-1 inhibitor. Bioorg Med Chem Lett 2024; 101:129658. [PMID: 38373466 DOI: 10.1016/j.bmcl.2024.129658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Bcl-2 anti-apoptotic protein family suppresses cell death by deploying a surface groove to capture the critical BH3 α-helix of pro-apoptotic members. Bfl-1 is a relatively understudied member of this family, though it has been implicated in the pathogenesis and chemoresistance of a variety of human cancers. Reported small molecular Bfl-1 inhibitors encountered the issue of either lack in potency or poor selectivity against its most homologous member Mcl-1. In order to tackle this issue, compound library was screened and a hit compound UMI-77 was identified. We modified its chemical structure to remove the characteristic of PAINS (pan-assay interference compounds), demonstrated the real binding affinity and achieved selectivity against Mcl-1 under the guidance of computational modeling. After optimization 15 was obtained as leading compound to block Bfl-1/BIM interaction in vitro with more than 10-fold selectivity over Mcl-1. We believe 15 is of great value for the exploration of Bfl-1 biological function and its potential as therapeutic target.
Collapse
Affiliation(s)
- Pengpeng Niu
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Huiqi Xu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
4
|
Tannoury M, Garnier D, Susin SA, Bauvois B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What's Coming Next? Cancers (Basel) 2022; 14:6026. [PMID: 36551511 PMCID: PMC9775488 DOI: 10.3390/cancers14246026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Resistance to death is one of the hallmarks of human B cell malignancies and often contributes to the lack of a lasting response to today's commonly used treatments. Drug discovery approaches designed to activate the death machinery have generated a large number of inhibitors of anti-apoptotic proteins from the B-cell lymphoma/leukemia 2 family and the B-cell receptor (BCR) signaling pathway. Orally administered small-molecule inhibitors of Bcl-2 protein and BCR partners (e.g., Bruton's tyrosine kinase and phosphatidylinositol-3 kinase) have already been included (as monotherapies or combination therapies) in the standard of care for selected B cell malignancies. Agonistic monoclonal antibodies and their derivatives (antibody-drug conjugates, antibody-radioisotope conjugates, bispecific T cell engagers, and chimeric antigen receptor-modified T cells) targeting tumor-associated antigens (TAAs, such as CD19, CD20, CD22, and CD38) are indicated for treatment (as monotherapies or combination therapies) of patients with B cell tumors. However, given that some patients are either refractory to current therapies or relapse after treatment, novel therapeutic strategies are needed. Here, we review current strategies for managing B cell malignancies, with a focus on the ongoing clinical development of more effective, selective drugs targeting these molecules, as well as other TAAs and signaling proteins. The observed impact of metabolic reprogramming on B cell pathophysiology highlights the promise of targeting metabolic checkpoints in the treatment of these disorders.
Collapse
Affiliation(s)
| | | | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France
| |
Collapse
|
5
|
Atene CG, Fiorcari S, Mesini N, Alboni S, Martinelli S, Maccaferri M, Leonardi G, Potenza L, Luppi M, Maffei R, Marasca R. Indoleamine 2, 3-Dioxygenase 1 Mediates Survival Signals in Chronic Lymphocytic Leukemia via Kynurenine/Aryl Hydrocarbon Receptor-Mediated MCL1 Modulation. Front Immunol 2022; 13:832263. [PMID: 35371054 PMCID: PMC8971515 DOI: 10.3389/fimmu.2022.832263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
The indoleamine 2,3-dioxygenase 1 (IDO1) metabolic circuitry, comprising the first tryptophan (Trp) catabolite L-kynurenine (Kyn) and the aryl hydrocarbon receptor (AHR), has emerged as a mechanism of cancer immune evasion. Here, we investigated the functional role of the IDO1/Kyn/AHR axis in chronic lymphocytic leukemia (CLL). Our data show that CLL cells expressed an active form of the IDO1 enzyme and microenvironmental stimuli can positively modulate its expression. Interferon (IFN)-γ induces IDO1 expression through the Jak/STAT1 pathway and mediates Kyn production concomitantly with Trp consumption in CLL-conditioned media, while INCB018424 (ruxolitinib), a JAK1/2 inhibitor, impaired both effects. To characterize the involvement of IDO1 in leukemic cell maintenance, we overexpressed IDO1 by vector transfection measuring enhanced resistance to spontaneous apoptosis. IDO1 pro-survival influence was confirmed by treating CLL cells with Kyn, which mediated the increase of induced myeloid leukemia cell differentiation protein (MCL1). Conversely, AHR silencing or its blockade via CH-223191 improved the apoptosis of leukemic clones and mitigated MCL1 expression. Moreover, Kyn-treated CLL cells are less affected by the pro-apoptotic effect of ABT-199 (venetoclax), while CH-223191 showed synergistic/additive cytotoxicity with this drug. Lastly, targeting directly MCL1 in CLL cells with AMG-176, we abrogate the pro-survival effect of Kyn. In conclusion, our data identify IDO1/Kyn/AHR signaling as a new therapeutic target for CLL, describing for the first time its role in CLL pathobiology.
Collapse
Affiliation(s)
- Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Fiorcari
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicolò Mesini
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Alboni
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Martinelli
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
| | - Monica Maccaferri
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
| | - Giovanna Leonardi
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
| | - Leonardo Potenza
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
| | - Mario Luppi
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
| | - Rossana Maffei
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
| | - Roberto Marasca
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Section, Policlinico, Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria (A.O.U.) of Modena, Modena, Italy
- *Correspondence: Roberto Marasca,
| |
Collapse
|
6
|
Role of 1q21 in Multiple Myeloma: From Pathogenesis to Possible Therapeutic Targets. Cells 2021; 10:cells10061360. [PMID: 34205916 PMCID: PMC8227721 DOI: 10.3390/cells10061360] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of malignant plasma cells (PCs) in the bone marrow (BM). The amplification of 1q21 is one of the most common cytogenetic abnormalities occurring in around 40% of de novo patients and 70% of relapsed/refractory MM. Patients with this unfavorable cytogenetic abnormality are considered to be high risk with a poor response to standard therapies. The gene(s) driving amplification of the 1q21 amplicon has not been fully studied. A number of clear candidates are under investigation, and some of them (IL6R, ILF2, MCL-1, CKS1B and BCL9) have been recently proposed to be potential drivers of this region. However, much remains to be learned about the biology of the genes driving the disease progression in MM patients with 1q21 amp. Understanding the mechanisms of these genes is important for the development of effective targeted therapeutic approaches to treat these patients for whom effective therapies are currently lacking. In this paper, we review the current knowledge about the pathological features, the mechanism of 1q21 amplification, and the signal pathway of the most relevant candidate genes that have been suggested as possible therapeutic targets for the 1q21 amplicon.
Collapse
|
7
|
Luttwak E, Gurevich-Shapiro A, Azem F, Lishner M, Klieger C, Herishanu Y, Perry C, Avivi I. Novel agents for the treatment of lymphomas during pregnancy: A comprehensive literature review. Blood Rev 2021; 49:100831. [PMID: 33931297 DOI: 10.1016/j.blre.2021.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022]
Abstract
Lymphoproliferative diseases occurring during pregnancy present unique diagnostic and therapeutic challenges aiming to achieve maternal cure without impairing fetal health, growth, and survival. These goals are further complicated by the fast-paced emergence of novel therapies and their introduction as standard of care, even in newly diagnosed patients. Due to the rarity of hematological malignancies in pregnancy and the exclusion of pregnancy in almost all clinical trials, available data on the fetal effects of novel drugs are limited to animal models and case reports. The current review addresses the entire multidisciplinary team involved in treating pregnant patients with lymphoproliferative diseases. We describe novel agents according to their mechanism of action, and summarize our knowledge of their effects during the gestational period, particularly those associated with fetotoxicity. Therapeutic dilemmas associated with the employment of these new agents are also discussed.
Collapse
Affiliation(s)
- E Luttwak
- Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - A Gurevich-Shapiro
- Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - F Azem
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; IVF Unit, Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical, Tel Aviv, Israel
| | - M Lishner
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Research Institue, Meir Medical Center, Kfar Saba, Israel
| | - C Klieger
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; IVF Unit, Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical, Tel Aviv, Israel
| | - Y Herishanu
- Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C Perry
- Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - I Avivi
- Division of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Agarwal S, Kowalski A, Schiffer M, Zhao J, Bewersdorf JP, Zeidan AM. Venetoclax for the treatment of elderly or chemotherapy-ineligible patients with acute myeloid leukemia: a step in the right direction or a game changer? Expert Rev Hematol 2021; 14:199-210. [PMID: 33459064 DOI: 10.1080/17474086.2021.1876559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy with poor prognosis and high rates of relapse, especially in elderly patients who are ineligible to receive intensive chemotherapy. Venetoclax, an oral BCL-2 inhibitor, is approved by the Food and Drug Administration in combination with hypomethylating agents or low-dose cytarabine in newly-diagnosed AML patients who are ineligible to receive intensive chemotherapy. Confirmatory phase III VIALE-A and VIALE-C trials showed a composite complete remission rate of 66.4% and 48%, respectively. Thus, further validating venetoclax as an attractive therapeutic option in the AML treatment landscape. AREAS COVERED A review of venetoclax in AML, focusing on preclinical and clinical data, toxicity profile, and mechanisms of resistance; and its strengths and weaknesses in regards to its current and future role in AML treatment is discussed. To find relevant studies, authors searched PubMed/Medline and ClinicalTrials.gov. EXPERT OPINION The introduction of venetoclax-based combination therapies has greatly expanded the therapeutic options for elderly and chemotherapy-ineligible AML patients. Additional studies with extended follow-up are necessary to address remaining open questions such as (I) durability of responses, (II) head-to-head comparisons with intensive chemotherapy in selected patients (e.g. TP53 mutations), and (III) novel triplet combinations using an HMA-venetoclax backbone.
Collapse
Affiliation(s)
- Sonal Agarwal
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Andrew Kowalski
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Molly Schiffer
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Jennifer Zhao
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | | | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, and Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
9
|
Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ 2020; 28:108-122. [PMID: 33162554 PMCID: PMC7852532 DOI: 10.1038/s41418-020-00654-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Axonal degeneration and neuronal cell death are fundamental processes in development and contribute to the pathology of neurological disease in adults. Both processes are regulated by BCL-2 family proteins which orchestrate the permeabilization of the mitochondrial outer membrane (MOM). MOM permeabilization (MOMP) results in the activation of pro-apoptotic molecules that commit neurons to either die or degenerate. With the success of small-molecule inhibitors targeting anti-apoptotic BCL-2 proteins for the treatment of lymphoma, we can now envision the use of inhibitors of apoptosis with exquisite selectivity for BCL-2 family protein regulation of neuronal apoptosis in the treatment of nervous system disease. Critical to this development is deciphering which subset of proteins is required for neuronal apoptosis and axon degeneration, and how these two different outcomes are separately regulated. Moreover, noncanonical BCL-2 family protein functions unrelated to the regulation of MOMP, including impacting necroptosis and other modes of cell death may reveal additional potential targets and/or confounders. This review highlights our current understanding of BCL-2 family mediated neuronal cell death and axon degeneration, while identifying future research questions to be resolved to enable regulating neuronal survival pharmacologically.
Collapse
|
10
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020; 11:941. [PMID: 33139702 PMCID: PMC7608616 DOI: 10.1038/s41419-020-03144-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Defects in apoptosis can promote tumorigenesis and impair responses of malignant B cells to chemotherapeutics. Members of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins are key regulators of the intrinsic, mitochondrial apoptotic pathway. Overexpression of antiapoptotic BCL-2 family proteins is associated with treatment resistance and poor prognosis. Thus, inhibition of BCL-2 family proteins is a rational therapeutic option for malignancies that are dependent on antiapoptotic BCL-2 family proteins. Venetoclax (ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor that represents the first approved agent of this class and is currently widely used in the treatment of chronic lymphocytic leukemia (CLL) as well as acute myeloid leukemia (AML). Despite impressive clinical activity, venetoclax monotherapy for a prolonged duration can lead to drug resistance or loss of dependence on the targeted protein. In this review, we provide an overview of the mechanism of action of BCL-2 inhibition and the role of this approach in the current treatment paradigm of B-cell malignancies. We summarize the drivers of de novo and acquired resistance to venetoclax that are closely associated with complex clonal shifts, interplay of expression and interactions of BCL-2 family members, transcriptional regulators, and metabolic modulators. We also examine how tumors initially resistant to venetoclax become responsive to it following prior therapies. Here, we summarize preclinical data providing a rationale for efficacious combination strategies of venetoclax to overcome therapeutic resistance by a targeted approach directed against alternative antiapoptotic BCL-2 family proteins (MCL-1, BCL-xL), compensatory prosurvival pathways, epigenetic modifiers, and dysregulated cellular metabolism/energetics for durable clinical remissions.
Collapse
|
12
|
Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting. Blood Adv 2020; 3:4202-4214. [PMID: 31856269 DOI: 10.1182/bloodadvances.2019000702] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Prosurvival BCL-2 family proteins are potent inhibitors of apoptosis and often overexpressed in lymphoid malignancies. In multiple myeloma (MM), MCL-1 expression contributes to survival of malignant plasma cells, and overexpression correlates with poor prognosis. In this study, we investigated whether sensitivity to the novel MCL-1 inhibitor S63845 could be predicted using cytogenetics, focusing on amplification of 1q21, the chromosomal region that contains the MCL1 locus. In addition, we studied the relation of MCL-1 inhibitor sensitivity with other diagnostic characteristics and BCL-2 family protein expression. In 31 human myeloma cell lines and in bone marrow aspirates from 47 newly diagnosed MM patients, we measured the effect of S63845 alone, or combined with BCL-2 inhibitor ABT-199 (venetoclax), and BCL-XL inhibitor A-1155463 or A-1331852 on cell viability. We demonstrated for the first time that MM cells from patients with 1q21 amplification are significantly more sensitive to inhibition of MCL-1. We suggest that this increased sensitivity results from high relative MCL1 expression resulting from amplification of 1q21. Additionally, and partially independent from 1q21 status, high serum β2 microglobulin level and presence of renal insufficiency correlated with increased sensitivity to MCL-1 inhibitor treatment. Combining S63845 with other BH3 mimetics synergistically enhanced apoptosis compared with single inhibitors, and sensitivity to inhibitor combinations was found in a large proportion of MM insensitive to MCL-1 inhibition alone. Collectively, our data indicate that amplification of 1q21 identifies an MM subset highly sensitive to MCL-1 inhibitor treatment and can be used as a predictive marker to guide selection of therapy.
Collapse
|
13
|
Relation of Neutrophil Gelatinase-Associated Lipocalin Overexpression to the Resistance to Apoptosis of Tumor B Cells in Chronic Lymphocytic Leukemia. Cancers (Basel) 2020; 12:cancers12082124. [PMID: 32751884 PMCID: PMC7465759 DOI: 10.3390/cancers12082124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The resistance to apoptosis of chronic lymphocytic leukemia (CLL) cells partly results from the deregulated production of survival signals from leukemic cells. Despite the development of new therapies in CLL, drug resistance and disease relapse still occur. Recently, neutrophil gelatinase-associated lipocalin (NGAL), a secreted glycoprotein, has been suggested to have a critical role in the biology of tumors. Thus, we investigated the relevance of NGAL in CLL pathogenesis, analyzed the expression of its cellular receptor (NGAL-R) on malignant B cells and tested whether CLL cells are resistant to apoptosis through an autocrine process involving NGAL and NGAL-R. We observed that NGAL concentrations were elevated in the serum of CLL patients at diagnosis. After treatment (and regardless of the therapeutic regimen), serum NGAL levels normalized in CLL patients in remission but not in relapsed patients. In parallel, NGAL and NGAL-R were upregulated in leukemic cells from untreated CLL patients when compared to normal peripheral blood mononuclear cells (PBMCs), and returned to basal levels in PBMCs from patients in remission. Cultured CLL cells released endogenous NGAL. Anti-NGAL-R antibodies enhanced NGAL-R+ leukemia cell death. Conversely, recombinant NGAL protected NGAL-R+ CLL cells against apoptosis by activating a STAT3/Mcl-1 signaling pathway. Our results suggest that NGAL and NGAL-R, overexpressed in untreated CLL, participate in the deregulation of the apoptotic machinery in CLL cells, and may be potential therapeutic clues for CLL treatment.
Collapse
|
14
|
Nguyen TH, Koneru B, Wei SJ, Chen WH, Makena MR, Urias E, Kang MH, Reynolds CP. Fenretinide via NOXA Induction, Enhanced Activity of the BCL-2 Inhibitor Venetoclax in High BCL-2–Expressing Neuroblastoma Preclinical Models. Mol Cancer Ther 2019; 18:2270-2282. [DOI: 10.1158/1535-7163.mct-19-0385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
|
15
|
Žigart N, Časar Z. A literature review of the patent publications on venetoclax - a selective Bcl-2 inhibitor: discovering the therapeutic potential of a novel chemotherapeutic agent. Expert Opin Ther Pat 2019; 29:487-496. [PMID: 31154862 DOI: 10.1080/13543776.2019.1627327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Studies presented in patents show that a novel chemotherapeutic agent, venetoclax, might be useful in additional therapeutic indications. Venetoclax is approved in America for the treatment of patients with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). Venetoclax selectively inhibits the B-cell lymphoma-2 (Bcl-2) protein, an anti-apoptotic protein that can be overexpressed in most B-cell lymphoid malignancies. AREAS COVERED This is a review of all the patents granted until November 2018, with venetoclax in the examples or claim section of the patent document. The patents include the synthesis, polymorphism, formulations, in vitro and in vivo efficacy as well as the therapeutic application of venetoclax. EXPERT OPINION The approved indications for treatment with venetoclax are limited but expanding rapidly. Studies suggest that venetoclax might be useful in several other therapeutic indications, mostly other hematological malignancies. Numerous studies use venetoclax in combinations with other therapeutic agents. Such combinational treatment shows promising results in additional indications as well as drug-resistant cancers. Venetoclax is an interesting new therapeutic involved in a variety of clinical research. Patent applications in recent years even include venetoclax in somewhat exotic fields such as type 1 diabetes, asthma, and Zika virus treatment.
Collapse
Affiliation(s)
- Nina Žigart
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia.,b Analytics Department , Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia , Ljubljana , Slovenia
| | - Zdenko Časar
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia.,b Analytics Department , Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia , Ljubljana , Slovenia
| |
Collapse
|
16
|
Maschmeyer G, De Greef J, Mellinghoff SC, Nosari A, Thiebaut-Bertrand A, Bergeron A, Franquet T, Blijlevens NMA, Maertens JA. Infections associated with immunotherapeutic and molecular targeted agents in hematology and oncology. A position paper by the European Conference on Infections in Leukemia (ECIL). Leukemia 2019; 33:844-862. [PMID: 30700842 PMCID: PMC6484704 DOI: 10.1038/s41375-019-0388-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/31/2018] [Accepted: 01/11/2019] [Indexed: 02/08/2023]
Abstract
A multitude of new agents for the treatment of hematologic malignancies has been introduced over the past decade. Hematologists, infectious disease specialists, stem cell transplant experts, pulmonologists and radiologists have met within the framework of the European Conference on Infections in Leukemia (ECIL) to provide a critical state-of-the-art on infectious complications associated with immunotherapeutic and molecular targeted agents used in clinical routine. For brentuximab vedotin, blinatumomab, CTLA4- and PD-1/PD-L1-inhibitors as well as for ibrutinib, idelalisib, HDAC inhibitors, mTOR inhibitors, ruxolitinib, and venetoclax, a detailed review of data available until August 2018 has been conducted, and specific recommendations for prophylaxis, diagnostic and differential diagnostic procedures as well as for clinical management have been developed.
Collapse
Affiliation(s)
- Georg Maschmeyer
- Department of Hematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Charlottenstrasse 72, 14467, Potsdam, Germany.
| | - Julien De Greef
- Department of Internal Medicine and Infectious Diseases, Saint-Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
- Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Hematology, Henri Mondor Teaching Hospital, Créteil, France
| | - Sibylle C Mellinghoff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Annamaria Nosari
- Department of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Anne Bergeron
- Department of Pneumology, Université Paris Diderot, APHP Saint-Louis Hospital, Paris, France
| | - Tomas Franquet
- Department of Radiology, Hospital de Sant Pau, Barcelona, Spain
| | | | - Johan A Maertens
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Slomp A, Peperzak V. Role and Regulation of Pro-survival BCL-2 Proteins in Multiple Myeloma. Front Oncol 2018; 8:533. [PMID: 30524962 PMCID: PMC6256118 DOI: 10.3389/fonc.2018.00533] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022] Open
Abstract
Apoptosis plays a key role in protection against genomic instability and maintaining tissue homeostasis, and also shapes humoral immune responses. During generation of an antibody response, multiple rounds of B-cell expansion and selection take place in germinal centers (GC) before high antigen affinity memory B-cells and long-lived plasma cells (PC) are produced. These processes are tightly regulated by the intrinsic apoptosis pathway, and malignant transformation throughout and following the GC reaction is often characterized by apoptosis resistance. Expression of pro-survival BCL-2 family protein MCL-1 is essential for survival of malignant PC in multiple myeloma (MM). In addition, BCL-2 and BCL-XL contribute to apoptosis resistance. MCL-1, BCL-2, and BCL-XL expression is induced and maintained by signals from the bone marrow microenvironment, but overexpression can also result from genetic lesions. Since MM PC depend on these proteins for survival, inhibiting pro-survival BCL-2 proteins using novel and highly specific BH3-mimetic inhibitors is a promising strategy for treatment. This review addresses the role and regulation of pro-survival BCL-2 family proteins during healthy PC differentiation and in MM, as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
- Anne Slomp
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Victor Peperzak
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Abstract
Despite significant progress in our understanding and the development of novel therapies, most patients with multiple myeloma will experience relapse of their disease. Therapy of relapsed myeloma has improved due to the availability of novel agents that are highly active against the disease. However, the selection of therapy can be challenging due to the emergence of toxicities, comorbidities and frailty. In the following we discuss our approach to the treatment of the patient with relapsed myeloma.
Collapse
Affiliation(s)
- Mohammed A Aljama
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - M Hasib Sidiqi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Dingli
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA -
| |
Collapse
|
19
|
Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 2018; 834:188-196. [DOI: 10.1016/j.ejphar.2018.07.034] [Citation(s) in RCA: 661] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
|
20
|
Small-molecule Mcl-1 inhibitors: Emerging anti-tumor agents. Eur J Med Chem 2018; 146:471-482. [PMID: 29407973 DOI: 10.1016/j.ejmech.2018.01.076] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 11/23/2022]
Abstract
The anti-apoptotic members of B-cell lymphoma-2 (Bcl-2) proteins family, such as Bcl-2 and myeloid cell leukemia-1 (Mcl-1), are the key regulators of the intrinsic pathway of apoptosis and overexpressed in many tumor cells, which have been confirmed as potential drug targets for cancers. A number of Bcl-2 proteins inhibitors have been developed and conducted clinical trials, but no Mcl-1 inhibitors are presented in the clinics. In addition, Mcl-1 is an important reason for the resistance to radio- and chemotherapies, including inhibitors that target other Bcl-2 family members. For example, the recently launched Bcl-2-selective inhibitor ABT-199 displays highly potency in the treatment of chronic lymphocytic leukemia (CLL), but it cannot induce the apoptosis controlled by Mcl-1 in some tumor cell lines. Therefore, developing potent Mcl-1 inhibitors become urgently needed in clinical therapy. This review briefly introduces the structure of Mcl-1 protein, the role in cancers and focuses on the progress of small-molecule Mcl-1 inhibitors from 2012 to 2017.
Collapse
|
21
|
Leung N, Thomé SD, Dispenzieri A. Venetoclax induced a complete response in a patient with immunoglobulin light chain amyloidosis plateaued on cyclophosphamide, bortezomib and dexamethasone. Haematologica 2018; 103:e135-e137. [PMID: 29351984 DOI: 10.3324/haematol.2017.183749] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nelson Leung
- Division of Hematology, Rochester, MN, USA .,Division of Nephrology and Hypertension, Rochester, MN, USA
| | - Stephan D Thomé
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|