1
|
Burggraaf-Sánchez de las Matas R, Torres-Cuevas I, Millán I, Desco MDC, Oblaré-Delgado C, Asensi M, Mena-Mollá S, Oger C, Galano JM, Durand T, Ortega ÁL. Potential of Pterostilbene as an Antioxidant Therapy for Delaying Retinal Damage in Diabetic Retinopathy. Antioxidants (Basel) 2025; 14:244. [PMID: 40227230 PMCID: PMC11939822 DOI: 10.3390/antiox14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic hyperglycemia is a major driver of neurovascular damage in diabetic retinopathy (DR), a leading cause of preventable blindness in adults. DR progression is often undetected until its advanced stages, with oxidative stress recognized as a primary contributor. In diabetes, oxidative stress disrupts retinal cellular balance, damaging proteins, DNA, and lipids, and triggering photoreceptor degeneration. Pterostilbene (Pter), a polyphenol with antioxidant properties, has demonstrated protective effects in DR animal models and was assessed in a pilot clinical study. DR patients treated with 250 mg/day of oral Pter showed a reduction in the development of retinal vascular alterations characteristic of the disease. Urinary analyses confirmed Pter's role in reducing the lipid peroxidation of polyunsaturated fatty acids (PUFAs), including arachidonic and adrenic acids, indicators of oxidative damage in DR. Pter also improved the GSH/GSSG ratio, reflecting a restored redox balance. However, after six months without treatment, retinal damage indicators reappeared, highlighting the importance of sustained intervention. These findings suggest that Pter may help slow the progression of DR by protecting against oxidative stress and highlight the importance of implementing antioxidant therapies from the diagnosis of diabetes, although its long-term impact and the development of consistent biomarkers deserve more research to optimize DR management.
Collapse
Affiliation(s)
| | - Isabel Torres-Cuevas
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Iván Millán
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Catedrático José Beltrán Martínez st, 46980 Paterna, Spain;
| | - María del Carmen Desco
- Vitreo-Retina Unit, Fundación de Oftalmología Médica de la Comunidad Valenciana (FOM), Pío Baroja st 12, 46015 Valencia, Spain;
- Department of Medicine and Surgery, Faculty of Health sciences, Universidad CEU Cardenal Herrera, Luis Vives st 1, 46115 Alfara del Patriarca, Spain
| | - Candela Oblaré-Delgado
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Miguel Asensi
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Salvador Mena-Mollá
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, 340093 Montpellier, France; (C.O.); (J.-M.G.); (T.D.)
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, 340093 Montpellier, France; (C.O.); (J.-M.G.); (T.D.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, 340093 Montpellier, France; (C.O.); (J.-M.G.); (T.D.)
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (I.T.-C.); (C.O.-D.); (M.A.); (S.M.-M.)
| |
Collapse
|
2
|
Li S, Ma H, Ding XQ. Resveratrol Protects Photoreceptors in Mouse Models of Retinal Degeneration. Antioxidants (Basel) 2025; 14:154. [PMID: 40002341 PMCID: PMC11851417 DOI: 10.3390/antiox14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Photoreceptor/retinal degeneration is the major cause of blindness. Induced and inherited mouse models of retinal degeneration are valuable tools for investigating disease mechanisms and developing therapeutic interventions. This study investigated the potential of the antioxidant resveratrol to relieve photoreceptor degeneration using mouse models. Clinical studies have shown a potential association between thyroid hormone (TH) signaling and age-related retinal degeneration. Excessive TH signaling induces oxidative stress/damage and photoreceptor death in mice. C57BL/6 (rod-dominant) and Nrl-/- (cone-dominant) mice at postnatal day 30 (P30) received triiodothyronine (T3) via drinking water (20 µg/mL) with or without concomitant treatment with resveratrol via drinking water (120 µg/mL) for 30 days, followed by evaluation of photoreceptor degeneration, oxidative damage, and retinal stress responses. In experiments using Leber congenital amaurosis model mice, mother Rpe65-/- and Rpe65-/-/Nrl-/- mice received resveratrol via drinking water (120 µg/mL) for 20 days and 10-13 days, respectively, beginning on the day when the pups were at P5, and pups were then evaluated for cone degeneration. Treatment with resveratrol significantly diminished the photoreceptor degeneration induced by T3 and preserved photoreceptors in Rpe65-deficient mice, manifested as preserved retinal morphology/outer nuclear layer thickness, increased cone density, reduced photoreceptor oxidative stress/damage and apoptosis, reduced upregulation of genes involved in cell death/inflammatory responses, and reduced macroglial cell activation. These findings demonstrate the role of oxidative stress in photoreceptor degeneration, associated with TH signaling and Rpe65 deficiency, and support the therapeutic potential of resveratrol/antioxidants in the management of retinal degeneration.
Collapse
Affiliation(s)
| | | | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.L.); (H.M.)
| |
Collapse
|
3
|
Gu X, Zhou H, Miao M, Hu D, Wang X, Zhou J, Teichmann AT, Yang Y, Wang C. Therapeutic Potential of Natural Resources Against Endometriosis: Current Advances and Future Perspectives. Drug Des Devel Ther 2024; 18:3667-3696. [PMID: 39188919 PMCID: PMC11345706 DOI: 10.2147/dddt.s464910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Endometriosis (EMS) is defined as the appearance, growth, infiltration, and repeated bleeding of endometrioid tissue (glands and stroma) outside the uterus cavity, which can form nodules and masses. Endometriosis is a chronic inflammatory estrogen-dependent disease and occurs in women of reproductive age. This disorder may significantly affect the quality of life of patients. The pathogenic processes involved in the development and maintenance of endometriosis remain unclear. Current treatment options for endometriosis mainly include drug therapy and surgery. Drug therapy mainly ties to the use of non-steroidal anti-inflammatory drugs (NSAIDs) and hormonal drugs. However, these drugs may produce adverse effects when used for long-term treatment of endometriosis, such as nausea, vomiting gastrointestinal reactions, abnormal liver and kidney function, gastric ulcers, and thrombosis. Although endometriosis lesions can be surgically removed, the disease has a high recurrence rate after surgical resection, with a recurrence rate of 21.5% within 2 years and 40% to 50% within 5 years. Thus, there is an urgent need to develop alternative or additional therapies for the treatment of endometriosis. In this review, we give a systematic summary of therapeutic multiple component prescriptions (including traditional Chinese medicine and so on), bioactive crude extracts of plants/herbs and purified compounds and their newly found mechanisms reported in literature in recent years against endometriosis.
Collapse
Affiliation(s)
- Xia Gu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Gynaecology and Obstetrics, Leshan People’s Hospital, Leshan, 614003, People’s Republic of China
| | - Hui Zhou
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mengyue Miao
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Daifeng Hu
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinyue Wang
- The Basic Medical College, Army Medical University, Chongqing, 400038, People’s Republic of China
| | - Jing Zhou
- Department of Endocrinology, Chengdu Third People’s Hospital, Chengdu, 610014, People’s Republic of China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000, People’s Republic of China
| | - Chunyan Wang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
4
|
Tang Q, Buonfiglio F, Böhm EW, Zhang L, Pfeiffer N, Korb CA, Gericke A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants (Basel) 2024; 13:594. [PMID: 38790699 PMCID: PMC11117924 DOI: 10.3390/antiox13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.
Collapse
Affiliation(s)
- Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| | | | | | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| |
Collapse
|
5
|
Li M, Peng Y, Pang L, Wang L, Li J. Single-Cell RNA Sequencing Reveals Transcriptional Signatures and Cell-Cell Communication in Diabetic Retinopathy. Endocr Metab Immune Disord Drug Targets 2024; 24:1651-1663. [PMID: 38988068 DOI: 10.2174/0118715303286652240214110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of vision loss in workingage individuals worldwide. Cell-to-cell communication between retinal cells and retinal pigment epithelial cells (RPEs) in DR is still unclear, so this study aimed to generate a single-cell atlas and identify receptor‒ligand communication between retinal cells and RPEs. METHODS A mouse single-cell RNA sequencing (scRNA-seq) dataset was retrieved from the GEO database (GSE178121) and was further analyzed with the R package Seurat. Cell cluster annotation was performed to further analyze cell‒cell communication. The differentially expressed genes (DEGs) in RPEs were explored through pathway enrichment analysis and the protein‒ protein interaction (PPI) network. Core genes in the PPI were verified by quantitative PCR in ARPE-19 cells. RESULTS We observed an increased proportion of RPEs in STZ mice. Although some overall intercellular communication pathways did not differ significantly in the STZ and control groups, RPEs relayed significantly more signals in the STZ group. In addition, THBS1, ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 were found to be the core DEGs of the PPI network in RPEs. qPCR results showed that the expression of ITGB1, COL9A3, ITGB8, VTN, TIMP2, and FBN1 was higher and consistent with scRNA-seq results in ARPE-19 cells under hyperglycemic conditions. CONCLUSION Our study, for the first time, investigated how signals that RPEs relay to and from other cells underly the progression of DR based on scRNA-seq. These signaling pathways and hub genes may provide new insights into DR mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Muye Li
- Department of Vitreoretinopathy, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Yueling Peng
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, 030012, China
| | - Lin Pang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Lin Wang
- Department of Vitreoretinopathy, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Junhong Li
- Department of Strabismus and Pediatric, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| |
Collapse
|
6
|
Kan S, Liu C, Zhao X, Feng S, Zhu H, Ma B, Zhou M, Fu X, Hu W, Zhu R. Resveratrol improves the prognosis of rats after spinal cord injury by inhibiting mitogen-activated protein kinases signaling pathway. Sci Rep 2023; 13:19723. [PMID: 37957210 PMCID: PMC10643657 DOI: 10.1038/s41598-023-46541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Spinal cord injury (SCI) is a serious condition that results in irreparable nerve damage and severe loss of motor or sensory function. Resveratrol (3,4',5-trihy- droxystilbene) is a naturally occurring plant-based polyphenol that has demonstrated powerful antioxidative, anti-inflammatory, and anti-carcinogenic pharmaceutical properties in previous studies. In the central nervous system, it promotes neuronal recovery and protects residual function. However, the role of resveratrol in SCI recovery remains elusive. In this study, the potential mechanisms by which resveratrol affect SCI in rats were assessed by constructing a contusion model of SCI. Resveratrol was intraperitoneally administered to rats. Behavioral scores and electrophysiological examinations were performed to assess functional recovery. After magnetic resonance imaging and staining with hematoxylin and eosin (HE) and Luxor Fast Blue (LFB), tissue recovery was analyzed. Immunofluorescence with NeuN and glial fibrillary acidic protein (GFAP) was employed to evaluate neuronal survival and glial changes. TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to examine apoptotic rates. Moreover, network pharmacology was performed to identify relevant pathways of resveratrol for the treatment of SCI. Lastly, ELISA was performed to detect the expression levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Our findings revealed that resveratrol dramatically improved the hindlimb locomotor function and their electrophysiological outcomes. Notably, lesion size was significantly reduced on magnetic resonance imaging. HE and LFB staining exposed increased sparseness of tissue and myelin. GFAP and NeuN immunofluorescence assays at the lesion site determined that resveratrol boosted neuronal survival and attenuated glial cell overgrowth. In addition, resveratrol reduced the density and number of TUNEL-positive cells in rats after injury. Additionally, gene ontology analysis revealed that the enriched differentially expressed protein was associated with the JNK/p38MAPK (c-jun N-terminal kinase/p38 mitogen-activated protein kinase) signaling pathway. Following resveratrol treatment, the expression levels of IL-1β, TNF-α, and IL-6 were decreased. In summary, the administration of resveratrol protects motor function and neuronal survival in rats after SCI. Furthermore, resveratrol exerts an anti-inflammatory effect by blocking the JNK/p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Chengjiang Liu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Sa Feng
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Haoqiang Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Boyuan Ma
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| |
Collapse
|
7
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Chronopoulos P, Manicam C, Zadeh JK, Laspas P, Unkrig JC, Göbel ML, Musayeva A, Pfeiffer N, Oelze M, Daiber A, Li H, Xia N, Gericke A. Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2023; 12:antiox12040853. [PMID: 37107227 PMCID: PMC10135068 DOI: 10.3390/antiox12040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia-reperfusion (I/R) events are involved in the development of various ocular pathologies, e.g., retinal artery or vein occlusion. We tested the hypothesis that resveratrol is protective against I/R injury in the murine retina. Intraocular pressure (IOP) was elevated in anaesthetized mice to 110 mm Hg for 45 min via a micropipette placed in the anterior chamber to induce ocular ischemia. In the fellow eye, which served as control, IOP was kept at a physiological level. One group received resveratrol (30 mg/kg/day p.o. once daily) starting one day before the I/R event, whereas the other group of mice received vehicle solution only. On day eight after the I/R event, mice were sacrificed and retinal wholemounts were prepared and immuno-stained using a Brn3a antibody to quantify retinal ganglion cells. Reactivity of retinal arterioles was measured in retinal vascular preparations using video microscopy. Reactive oxygen species (ROS) and nitrogen species (RNS) were quantified in ocular cryosections by dihydroethidium and anti-3-nitrotyrosine staining, respectively. Moreover, hypoxic, redox and nitric oxide synthase gene expression was quantified in retinal explants by PCR. I/R significantly diminished retinal ganglion cell number in vehicle-treated mice. Conversely, only a negligible reduction in retinal ganglion cell number was observed in resveratrol-treated mice following I/R. Endothelial function and autoregulation were markedly reduced, which was accompanied by increased ROS and RNS in retinal blood vessels of vehicle-exposed mice following I/R, whereas resveratrol preserved vascular endothelial function and autoregulation and blunted ROS and RNS formation. Moreover, resveratrol reduced I/R-induced mRNA expression for the prooxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Our data provide evidence that resveratrol protects from I/R-induced retinal ganglion cell loss and endothelial dysfunction in the murine retina by reducing nitro-oxidative stress possibly via suppression of NOX2 upregulation.
Collapse
Affiliation(s)
- Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- AbbVie Germany GmbH & Co., KG, 65189 Wiesbaden, Germany
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Johanna Charlotte Unkrig
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Marie Luise Göbel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
9
|
Liu J, Yao L, Wang Y. Resveratrol alleviates preeclampsia-like symptoms in rats through a mechanism involving the miR-363-3p/PEDF/VEGF axis. Microvasc Res 2023; 146:104451. [PMID: 36368448 DOI: 10.1016/j.mvr.2022.104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Preeclampsia (PE) is a hypertension-associated disease, and resveratrol (RES) is a polyphenol recognized to present beneficial effects in cardiovascular disease including hypertension. Recently, attentions have come to the therapeutic effect of RES in PE, but the underlying molecular mechanisms remain largely unknown. This study sought to delineate the mechanistic basis regarding bioinformatically identified miR-363-3p/PEDF/VEGF axis for RES treatment in PE. PE-like symptoms were induced in vivo in Sprague-Dawley rats by intraperitoneal injection with Ng-nitro-L-arginine methyl ester (L-NAME), and hypoxia was induced in vitro in trophoblasts by CoCl2. Accordingly, RES was found to enhance viability, migration, angiogenesis, and to repress the apoptosis of hypoxic trophoblasts in vitro. Furthermore, in vivo experiments noted that RES alleviated placental injury and promoted angiogenesis in rats with PE-like symptoms in vivo by increasing VEGF via promoting miR-363-3p-mediated PEDF suppression. Collectively, RES ameliorates PE by upregulating VEGF through miR-363-3p-mediated PEDF downregulation, the mechanism of which may be of promising significance to augment RES efficacy in PE treatment.
Collapse
Affiliation(s)
- Jun Liu
- Department of Obstetrics and Gynecology, Pingxiang Maternity and Child Care Hospital, Pingxiang 337000, PR China.
| | - Lifeng Yao
- Department of Obstetrics and Gynecology, Pingxiang Maternity and Child Care Hospital, Pingxiang 337000, PR China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Pingxiang Maternity and Child Care Hospital, Pingxiang 337000, PR China
| |
Collapse
|
10
|
Du Y, Yan B. Ocular immune privilege and retinal pigment epithelial cells. J Leukoc Biol 2023; 113:288-304. [PMID: 36805720 DOI: 10.1093/jleuko/qiac016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 02/04/2023] Open
Abstract
The ocular tissue microenvironment is immune-privileged and uses multiple immunosuppressive mechanisms to prevent the induction of inflammation. The retinal pigment epithelium plays an essential role in ocular immune privilege. In addition to serving as a blood barrier separating the fenestrated choriocapillaris from the retina, the retinal pigment epithelium is a source of immunosuppressive cytokines and membrane-bound negative regulators that modulate the activity of immune cells within the retina. This article reviews the current understanding of how retinal pigment epithelium cells mediate immune regulation, focusing on the changes under pathologic conditions.
Collapse
Affiliation(s)
- Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, No. 133, Hehua Road, Taibaihu New District, Jining, Shandong 272067, People's Republic of China
| |
Collapse
|
11
|
Dhankhar S, Chauhan S, Mehta DK, Nitika, Saini K, Saini M, Das R, Gupta S, Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15:17. [PMID: 36782201 PMCID: PMC9926720 DOI: 10.1186/s13098-023-00983-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Nitika
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Ganpati Institute of Pharmacy, Bilaspur, Yamunanagar, 135102, Haryana, India
| | - Kamal Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monika Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vinod Gautam
- Department of Pharmaceutical Sciences, IES Institute of Pharmacy, IES University, Bhopal, India
| |
Collapse
|
12
|
Stojanovic Gavrilovic AZ, Cekovic JM, Parandilovic AZ, Nikolov AB, Sazdanovic PS, Velickovic AM, Andjelkovic MV, Sorak MP. IL-6 of follicular fluid and outcome of in vitro fertilization. Medicine (Baltimore) 2022; 101:e29624. [PMID: 35866786 PMCID: PMC9302246 DOI: 10.1097/md.0000000000029624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The quality of an oocyte is influenced by its microenvironment, which includes cumulus cells and follicular fluid, as well as cells of the immune system and their products. The ovarian interleukins, which are secreted by the granulosa cells and other immune cells within the ovaries and follicles, regulate various functions between the cells. IL-6 is a cytokine that is present in the follicular fluid and may affect the quality of oocytes. There are some inconsistencies in the literature regarding the concentration of interleukin 6 in the follicular fluid. The main objective of this study was to examine whether the concentration of interleukin 6 in the follicular fluid affects the outcome of IVF. This study involved 83 patients who underwent IVF. Follicular fluid was used as the biological material for the analysis. Examination of the obtained follicular fluid and collection of oocytes under a stereomicroscope was performed in the embryological laboratory. The concentration of IL-6 in the follicular fluid was analyzed. IVF and ICSI methods were used as the fertilization methods. Pregnancy was confirmed by the positive serum β-hCG level. The software package SPSS 20 was used for statistical data processing. Analysis of the follicular fluid samples showed a correlation between the concentration of IL-6 in the follicular fluid and the outcome of IVF. The concentration of IL-6 in the follicular fluid was higher in patients with confirmed pregnancy (9.55 ± 7.47 ng/ml). Based on our results, we conclude that the concentration of IL-6 affects the outcome of IVF. If the range of IL-6 concentration is between 3,67 ng/ml and 10 ng/ml, we can expect good IVF outcome with vital pregnancy.
Collapse
Affiliation(s)
- Aleksandra Z. Stojanovic Gavrilovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, PhD student, Kragujevac, Serbia
| | - Jelena M. Cekovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Aida Z. Parandilovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Aleksandar B. Nikolov
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
| | - Predrag S. Sazdanovic
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Anatomy, Kragujevac, Serbia
| | - Aleksandra M. Velickovic
- Clinical Center Kragujevac, Department of Laboratory Diagnostics, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Kragujevac, Serbia
| | - Marija V. Andjelkovic
- Clinical Center Kragujevac, Department of Laboratory Diagnostics, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Biochemistry, Kragujevac, Serbia
| | - Marija P. Sorak
- Clinical Center Kragujevac, Clinic of Gynecology and Obstetrics, Department of Biomedically Assisted Fertilization, Kragujevac, Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Gynecology and Obstetrics, Kragujevac, Serbia
- *Correspondence: Marija Sorak, Faculty of Medical Sciences, University of Kragujevac, 34 000 Kragujevac, SerbiaUniversity Clinical Center Kragujevac, Center for Biomedical Assisted Fertilization, 34 000 Kragujevac, Serbia (e-mail: )
| |
Collapse
|
13
|
Wei W, Hu P, Qin M, Chen G, Wang F, Yao S, Jin M, Xie Z, Zhang X. SIRT4 Is Highly Expressed in Retinal Müller Glial Cells. Front Neurosci 2022; 16:840443. [PMID: 35185463 PMCID: PMC8854368 DOI: 10.3389/fnins.2022.840443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuin 4 (SIRT4) is one of seven mammalian sirtuins that possesses ADP-ribosyltransferase, lipoamidase and deacylase activities and plays indispensable role in metabolic regulation. However, the role of SIRT4 in the retina is not clearly understood. The purpose of this study was to explore the location and function of SIRT4 in the retina. Therefore, immunofluorescence was used to analyze the localization of SIRT4 in rat, mouse and human retinas. Western blotting was used to assess SIRT4 and glutamine synthetase (GS) protein expression at different developmental stages in C57BL/6 mice retinas. We further analyzed the retinal structure, electrophysiological function and the expression of GS protein in SIRT4-deficient mice. Excitotoxicity was caused by intravitreal injection of glutamate (50 nmol) in mice with long-term intraperitoneal injection of resveratrol (20 mg/Kg), and then retinas were subjected to Western blotting and paraffin section staining to analyze the effect of SIRT4 on excitotoxicity. We show that SIRT4 co-locates with Müller glial cell markers (GS and vimentin). The protein expression pattern of SIRT4 was similar to that of GS, and both increased with development. There were no significant retinal structure or electrophysiological function changes in 2-month SIRT4-deficient mice, while the expression of GS protein was decreased. Moreover, long-term administration of resveratrol can upregulate the expression of SIRT4 and GS while reducing the retinal injury caused by excessive glutamate. These results suggest that SIRT4 is highly expressed in retinal Müller glial cells and is relevant to the expression of GS. SIRT4 does not appear to be essential in retinal development, but resveratrol, as an activator of SIRT4, can upregulate GS protein expression and protect the retina from excitotoxicity.
Collapse
|
14
|
Santos DF, Pais M, Santos CN, Silva GA. Polyphenol Metabolite Pyrogallol- O-Sulfate Decreases Microglial Activation and VEGF in Retinal Pigment Epithelium Cells and Diabetic Mouse Retina. Int J Mol Sci 2021; 22:ijms222111402. [PMID: 34768833 PMCID: PMC8583739 DOI: 10.3390/ijms222111402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
(Poly)phenol-derived metabolites are small molecules resulting from (poly)phenol metabolization after ingestion that can be found in circulation. In the last decade, studies on the impact of (poly)phenol properties in health and cellular metabolism accumulated evidence that (poly)phenols are beneficial against human diseases. Diabetic retinopathy (DR) is characterized by inflammation and neovascularization and targeting these is of therapeutic interest. We aimed to study the effect of pyrogallol-O-sulfate (Pyr-s) metabolite in the expression of proteins involved in retinal glial activation, neovascularization, and glucose transport. The expression of PEDF, VEGF, and GLUT-1 were analyzed upon pyrogallol-O-sulfate treatment in RPE cells under high glucose and hypoxia. To test its effect on a diabetic mouse model, Ins2Akita mice were subjected to a single intraocular injection of the metabolite and the expression of PEDF, VEGF, GLUT-1, Iba1, or GFAP measured in the neural retina and/or retinal pigment epithelium (RPE), two weeks after treatment. We observed a significant decrease in the expression of pro-angiogenic VEGF in RPE cells. Moreover, pyrogallol-O-sulfate significantly decreased the expression of microglial marker Iba1 in the diabetic retina at different stages of disease progression. These results highlight the potential pyrogallol-O-sulfate metabolite as a preventive approach towards DR progression, targeting molecules involved in both inflammation and neovascularization.
Collapse
Affiliation(s)
- Daniela F. Santos
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
- ProRegeM PhD Programme—NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Mariana Pais
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
| | - Cláudia N. Santos
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
| | - Gabriela A. Silva
- iNOVA4HEALTH, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (D.F.S.); (M.P.); (C.N.S.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
15
|
Resveratrol Can Attenuate Astrocyte Activation to Treat Spinal Cord Injury by Inhibiting Inflammatory Responses. Mol Neurobiol 2021; 58:5799-5813. [PMID: 34410605 PMCID: PMC8374881 DOI: 10.1007/s12035-021-02509-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Several preclinical and clinical studies have attempted to elucidate the pathophysiological mechanism associated with spinal cord injury. However, investigations have been unable to define the precise related mechanisms, and this has led to the lack of effective therapeutic agents for the condition. Neuroinflammation is one of the predominant processes that hinder spinal cord injury recovery. Resveratrol is a compound that has several biological features, such as antioxidation, antibacterial, and antiinflammation. Herein, we reviewed preclinical and clinical studies to delineate the role of toll-like receptors, nod-like receptors, and astrocytes in neuroinflammation. In particular, the alteration of astrocytes in SCI causes glial scar formation that impedes spinal cord injury recovery. Therefore, to improve injury recovery would be to prevent the occurrence of this process. Resveratrol is safe and effective in the significant modulation of neuroinflammatory factors, particularly those mediated by astrocytes. Thus, its potential ability to enhance the injury recovery process and ameliorate spinal cord injury.
Collapse
|
16
|
Al-Hussaini H, Kittaneh RS, Kilarkaje N. Effects of trans-resveratrol on type 1 diabetes-induced up-regulation of apoptosis and mitogen-activated protein kinase signaling in retinal pigment epithelium of Dark Agouti rats. Eur J Pharmacol 2021; 904:174167. [PMID: 33974882 DOI: 10.1016/j.ejphar.2021.174167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022]
Abstract
Microvascular changes and retinal degeneration precede diabetic retinopathy. Oxidative stress alters several intracellular signaling pathways, which form the basis of diabetic retinopathy. Many antioxidants have been investigated as possible preventive and therapeutic remedies for diabetic retinopathy. The current study investigated the modulatory effects of trans-resveratrol on streptozotocin-induced type 1 diabetes mediated changes in the transcription and levels of apoptosis-related proteins and mitogen-activated protein kinases (MAPKs) in the retinal pigment epithelium (RPE) of adult male dark Agouti rats. In control rats, 5 mg/kg/d trans-resveratrol administration for 30 days increased gene expressions of tumor suppressor protein 53, Bcl2-associated X protein, B-cell lymphoma-2 (Bcl2), Caspase-3 (CASP3), CASP8 and CASP9, p38αMAPK, c-Jun N-terminal kinase-1 (JNK1), and extracellular signal-regulated kinase-1 (ERK1). On the other hand, diabetes decreased gene expressions of CASP3, CASP8, p38αMAPK, JNK, and ERK1. Trans-resveratrol reversed the inhibited gene expressions of CASP8, p38αMAPK, JNK, and ERK1 to normal control levels in diabetic rats. Trans-resveratrol normalized diabetes-induced upregulation of CASP3 and -9, cytochrome-c, Bcl-2, and ERK1 proteins. In conclusion, Trans-resveratrol-induced alterations in gene expressions do not seem to affect RPE functions as they do not reflect as altered protein functions. Trans-resveratrol imparts its protective effects by normalizing apoptosis-related proteins and ERK1 but does not affect JNK proteins. Trans-resveratrol causes cytostasis in RPE of normal rats by upregulating Bcl2 protein and apoptotic proteins.
Collapse
Affiliation(s)
- Heba Al-Hussaini
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | |
Collapse
|
17
|
Jin D, Zhang Y, Zhang Y, Huang W, Meng X, Yang F, Bao Q, Zhang M, Yang Y, Ni Q, Lian F, Tong X. Efficacy and Safety of TangWang Prescription for Type 2 Non-Proliferative Diabetic Retinopathy: A Study Protocol for a Randomized Controlled Trial. Front Pharmacol 2021; 12:594308. [PMID: 33790783 PMCID: PMC8005869 DOI: 10.3389/fphar.2021.594308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/01/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Diabetic retinopathy (DR) is one of the most common and severe microvascular complications of diabetes mellitus (DM), which results in blindness among adults worldwide. Presently, the efficacy of drug treatments for diabetic retinopathy (DR) is not satisfactory, thus urgently necessitating effective drug treatment measures. TangWang prescription (TWP) has been found to have retinal protection effects in previous clinical and basic research. However, there is a lack of rigorous, randomized, and controlled studies. This study aims to evaluate the efficacy and safety of TWP in delaying the development of DR. Methods: This study is a randomized, double-blind, placebo-controlled, parallel-group, multicenter clinical trial, consisting of 384 participants to be randomized in a 1:1 ratio in the treatment and control groups. Furthermore, the treatment and control groups will be administered the TangWang prescription and the placebo, respectively, each at a dose of one bag twice a day. The study period will last for 48 weeks. The primary outcome measure will be the changes in the degree of retinal microvascular lesions before and after treatment. The secondary outcome will be changes in the degree of hemangioma, microvascular bleeding, microvascular leakage, macular edema, and vision. All statistical tests will be two-sided, and a p < 0.05 will be considered statistically significant. Discussion: We hypothesize that the patients with DR will benefit from TangWang prescription, and in addition to the central random system and platform of dynamic information collection, the patients’ conditions will be monitored, and the data collected for analysis. If successful, this study will provide evidence that the TWP formulation delays in the progression of DR. Trial registration: The design of this trial has been registered with the ClinicalTrials.gov (NCT03025399).
Collapse
Affiliation(s)
- De Jin
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Huang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang Meng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Bao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meizhen Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Yang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Ni
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Tao QR, Chu YM, Wei L, Tu C, Han YY. Antiangiogenic therapy in diabetic nephropathy: A double‑edged sword (Review). Mol Med Rep 2021; 23:260. [PMID: 33655322 PMCID: PMC7893700 DOI: 10.3892/mmr.2021.11899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes and the associated complications are becoming a serious global threat and an increasing burden to human health and the healthcare systems. Diabetic nephropathy (DN) is the primary cause of end-stage kidney disease. Abnormal angiogenesis is well established to be implicated in the morphology and pathophysiology of DN. Factors that promote or inhibit angiogenesis serve an important role in DN. In the present review, the current issues associated with the vascular disease in DN are highlighted, and the challenges in the development of treatments are discussed.
Collapse
Affiliation(s)
- Qian-Ru Tao
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ying-Ming Chu
- Department of Integrated Traditional Chinese Medicine, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lan Wei
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Chao Tu
- Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan-Yuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
19
|
Yuan M, He Q, Long Z, Zhu X, Xiang W, Wu Y, Lin S. Exploring the Pharmacological Mechanism of Liuwei Dihuang Decoction for Diabetic Retinopathy: A Systematic Biological Strategy-Based Research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5544518. [PMID: 34394383 PMCID: PMC8356007 DOI: 10.1155/2021/5544518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the pharmacological mechanism of Liuwei Dihuang decoction (LDD) for diabetic retinopathy (DR). METHODS The potential targets of LDD were predicted by PharmMapper. GeneCards and other databases were used to collect DR genes. Cytoscape was used to construct and analyze network DR and LDD's network, and DAVID was used for Gene Ontology (GO) and pathway enrichment analysis. Finally, animal experiments were carried out to verify the results of systematic pharmacology. RESULTS Five networks were constructed and analyzed: (1) diabetic retinopathy genes' PPI network; (2) compound-compound target network of LDD; (3) LDD-DR PPI network; (4) compound-known target network of LDD; (5) LDD known target-DR PPI network. Several DR and treatment-related targets, clusters, signaling pathways, and biological processes were found. Animal experiments found that LDD can improve the histopathological changes of the retina. LDD can also increase erythrocyte filtration rate and decrease the platelet adhesion rate (P < 0.05) and decrease MDA and TXB2 (P < 0.05). Compared with the model group, the retinal VEGF and HIF-1α expression in the LDD group decreased significantly (P < 0.05). CONCLUSION The therapeutic effect of LDD on DR may be achieved by interfering with the biological processes (such as response to insulin, glucose homeostasis, and regulation of angiogenesis) and signaling pathways (such as insulin, VEGF, HIF-1, and ErbB signaling pathway) related to the development of DR that was found in this research.
Collapse
Affiliation(s)
- Mengxia Yuan
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou City, Guangdong Province, China
| | - Qi He
- Hunan University of Chinese Medicine Affiliated People's Hospital of Ningxiang City, Ningxiang City, Hunan Province, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Xiaofei Zhu
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Wang Xiang
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yonghe Wu
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Shibin Lin
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou City, Guangdong Province, China
| |
Collapse
|
20
|
Zhou Y, Chen J, Li LH, Chen L. β-elemene down-regulates HIF-lα, VEGF and iNOS in human retinal pigment epithelial cells under high glucose conditions. Int J Ophthalmol 2020; 13:1887-1894. [PMID: 33344186 DOI: 10.18240/ijo.2020.12.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the effects and mechanism of β-elemene on the expressions of hypoxia-inducible factor-1α (HIF-lα), vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS) in human retinal pigment epithelial (RPE) cells under high glucose conditions. METHODS ARPE-19 cell line was cultured under eight conditions: 1) low glucose (LG; 5.5 mmol/L); 2) high glucose (HG; 33 mmol/L); 3) high glucose with 20 µg/mL β-elemene (HG+20E); 4) high glucose with 40 µg/mL β-elemene (HG+40E); 5) high glucose with SB203590 [HG+SB203590, p38-mitogen-activated protein kinase (p38-MAPK) pathway inhibitor]; 6) high glucose with LY294002 [HG+LY294002, phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway inhibitor]; 7) high glucose with 40 µg/mL β-elemene and SB203590 (HG+40E+SB203590); and 8) high glucose with 40 µg/mL β-elemene and LY294002 (HG+40E+LY294002). Cells were treated in conditions 1-4 for 24 and 48h, while for 48h in conditions 5-8. Then mRNA and protein levels of HIF-1α, VEGF and iNOS in cells were measured by real-time polymerase chain reaction (qPCR), immunofluorescence and Western blotting, respectively. Furthermore, protein levels of total p38-MAPK, phosphorylated p38-MAPK (p38-MAPK-P), total Akt and phosphorylated Akt (Akt-P) in cells of conditions 2 and 4 which treated for 48h were measured by Western blotting. RESULTS The mRNA levels and protein levels of HIF-1α, VEGF and iNOS in cells were significantly reduced in conditions 3-8 when compared with those in condition 2 (P<0.05). These reductions were more obvious in conditions treated for 48h than in conditions treated for 24h. The protein levels of p38-MAPK-P and Akt-P in cells of condition 4 were significantly lower than in condition 2 (P<0.01). CONCLUSION β-elemene down-regulates HIF-1α, VEGF and iNOS in ARPE-19 cells under a high glucose condition. The inhibitory effect of β-elemene is more significant when its concentration and treatment time are increased, as well as it is combined with SB203590 or LY294002 treatment. P38-MAPK and PI3K/Akt signaling pathways may play a role in this inhibitory effect.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jun Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Hua Li
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Lei Chen
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
21
|
Yang J, Yang X, Yang H, Bai Y, Zha H, Jiang F, Meng Y. Interleukin 6 in follicular fluid reduces embryo fragmentation and improves the clinical pregnancy rate. J Assist Reprod Genet 2020; 37:1171-1176. [PMID: 32189182 PMCID: PMC7244683 DOI: 10.1007/s10815-020-01737-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the role of interleukin 6 in embryo development in the in vitro fertilization cycles. METHODS This was a retrospective cohort study. One hundred and three women undergoing in vitro fertilization and embryo transfer due to a tubal factor were included in the study. The follicular fluid IL-6 levels on oocyte retrieval day from each patient were determined by ELISA. The relationships between follicular fluid IL-6 levels and IVF cycle parameters were investigated. RESULTS The levels of follicular fluid IL-6 were not affected by the use of drugs for superovulation or by estrogen. In addition, follicular fluid IL-6 levels did not affect the number of oocytes retrieved or the MII oocyte rate. High levels of follicular fluid IL-6 correlated with a significant increase in the rates of clinical pregnancy. Follicular fluid IL-6 levels did not affect the cell number or the blastomere symmetry of day 3 embryos, but it did significantly reduce the embryo fragmentation rate. CONCLUSIONS High levels of follicular fluid IL-6 improved the rates of clinical pregnancy and reduce embryo fragmentation.
Collapse
Affiliation(s)
- Jie Yang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Xiaoling Yang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Hong Yang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Yang Bai
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Hao Zha
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Fangjie Jiang
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China
| | - Yushi Meng
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan Province, China.
| |
Collapse
|
22
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
23
|
Molecular Basis of the Beneficial Actions of Resveratrol. Arch Med Res 2020; 51:105-114. [PMID: 32111491 DOI: 10.1016/j.arcmed.2020.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
Resveratrol modulates the transcription factor NF-κB, cytochrome P450 isoenzyme CYP1A1, expression and activity of cyclooxygenase (COX) enzymes, Fas/Fas ligand mediated apoptosis, p53, mTOR and cyclins and various phospho-diesterases resulting in an increase in cytosolic cAMP levels. Cyclic AMP, in turn, activates Epac1/CaMKKβ/AMPK/SIRT1/PGC-1α pathway that facilitates increased oxidation of fatty acids, mitochondrial respiration and their biogenesis and gluconeogenesis. Resveratrol triggers apoptosis of activated T cells and suppresses tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17) and other pro-inflammatory molecules and inhibits expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) that may explain its anti-inflammatory actions. Polyunsaturated fatty acids (PUFAs) and their anti-inflammatory metabolites lipoxin A4, resolvins, protectins and maresins have a significant role in obesity, type 2 diabetes mellitus (T2DM), metabolic syndrome and cancer. We observed that PUFAs (especially arachidonic acid, AA) and BDNF (brain-derived neurotrophic factor) protect against the cytotoxic actions of alloxan, streptozotocin, benzo(a)pyrene (BP) and doxorubicin. Thus, there is an overlap in the beneficial actions of resveratrol, PUFAs and BDNF suggesting that these molecules may interact and augment synthesis and action of each other. This is supported by the observation that resveratrol and PUFAs modulate gut microbiota and influence stem cell proliferation and differentiation. Since resveratrol is not easily absorbed from the gut it is likely that it may act on endocannabinoid and light, odor, and taste receptors located in the gut, which, in turn, convey their messages to the various organs via vagus nerve.
Collapse
|
24
|
Zhao L, Liao Q, Zhang Y, Tan S, Li S, Ke T. Ischemic Postconditioning Mitigates Retinopathy in Tree Shrews with Diabetic Cerebral Ischemia. J Diabetes Res 2020; 2020:6286571. [PMID: 32104713 PMCID: PMC7037873 DOI: 10.1155/2020/6286571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/25/2022] Open
Abstract
Ischemic postconditioning (PC) is proved to efficiently protect diabetic patients with acute myocardial infarction from ischemia-reperfusion injury. We aimed to explore the protective roles of ischemic PC on diabetic retinopathy in tree shrews with diabetic cerebral ischemia. A diabetic tree shrew model was established through high-fat diet feeding combined with streptozotocin (STZ) injection, while cortical thrombotic cerebral ischemia was induced photochemically. Tree shrews were divided into the normal control group, sham operation group, diabetes mellitus group, diabetes mellitus+cerebral ischemia group, and diabetes mellitus+cerebral ischemia+PC group (in which the tree shrews with diabetic cerebral ischemia were treated with ischemic PC). H&E staining was used to examine the pathological changes in the retina, and immunohistochemistry was performed to determine the retinal expression of VEGF (vascular endothelial growth factor). The modeling resulted in 77% tree shrews with diabetes. Ischemic PC reduced the blood glucose levels in the tree shrews with diabetic cerebral ischemia. Tree shrews with diabetes had thinned retina with disordered structures, and these pathological changes were aggravated after cerebral ischemia. The retinopathy was alleviated after ischemic PC. Retina expression of VEGF was mainly distributed in the ganglion cell layer in tree shrews. Diabetes and cerebral ischemia increased retinal VEGF expression in a step-wise manner, while additional ischemic PC reduced retinal VEGF expression. Therefore, ischemic PC effectively alleviates retinopathy in tree shrews with diabetic cerebral ischemia, and this effect is associated with reduced retinal VEGF expression.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Qiwei Liao
- Department of Cardiology, The Yan-an Affiliated Hospital of Kunming Medical University, Yunnan 650051, China
| | - Yueting Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Shufen Tan
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| | - Shuqing Li
- Department of Pathophysiology, Kunming Medical University, Yunnan 650050, China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital of Kunming Medical University, Yunnan 650101, China
| |
Collapse
|
25
|
Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World J Stem Cells 2019; 11:957-967. [PMID: 31768222 PMCID: PMC6851013 DOI: 10.4252/wjsc.v11.i11.957] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative disorders, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration or glaucoma, represent the most common causes of loss of vision and blindness. In spite of intensive research, treatment options to prevent, stop or cure these diseases are limited. Newer therapeutic approaches are offered by stem cell-based therapy. To date, various types of stem cells have been evaluated in a range of models. Among them, mesenchymal stem/stromal cells (MSCs) derived from bone marrow or adipose tissue and used as autologous cells have been proposed to have the potential to attenuate the negative manifestations of retinal diseases. MSCs delivered to the vicinity of the diseased retina can exert local anti-inflammatory and repair-promoting/regenerative effects on retinal cells. However, MSCs also produce numerous factors that could have negative impacts on retinal regeneration. The secretory activity of MSCs is strongly influenced by the cytokine environment. Therefore, the interactions among the molecules produced by the diseased retina, cytokines secreted by inflammatory cells and factors produced by MSCs will decide the development and propagation of retinal diseases. Here we discuss the interactions among cytokines and other factors in the environment of the diseased retina treated by MSCs, and we present results supporting immunoregulatory and trophic roles of molecules secreted in the vicinity of the retina during MSC-based therapy.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Barbora Hermankova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Magdalena Krulova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
26
|
Effect of Resveratrol on In Vitro and In Vivo Models of Diabetic Retinophathy: A Systematic Review. Int J Mol Sci 2019; 20:ijms20143503. [PMID: 31319465 PMCID: PMC6678653 DOI: 10.3390/ijms20143503] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
A large number of preclinical studies suggest the involvement of resveratrol in the prevention and treatment of eye diseases induced by oxidative stress and inflammation. We tested the hypothesis that resveratrol influences many pathways of in vitro and in vivo models of diabetic retinopathy through a systematic literature review of original articles. The review was conducted in accordance with the PRISMA guidelines. A literature search of all original articles published until April 2019 was performed. The terms “resveratrol” in combination with “retina”, “retinal pathology”, “diabetic retinopathy” and “eye” were searched. Possible biases were identified with the adopted SYRCLE’s tool. Eighteen articles met inclusion/exclusion criteria for full-text review. Eleven of them included in vitro experiments, 11 studies reported in vivo data and 3 studies described both in vitro and in vivo experiments. Most of the in vivo studies did not include data that would allow exclusion of bias risks, according to SYRCLE’s risk of bias tool. Both in vitro and in vivo data suggest anti-apoptotic, anti-inflammatory and anti-oxidative actions of resveratrol in models of diabetic retinopathy. However, results on its anti-angiogenic effects are contradictory and need more rigorous studies.
Collapse
|
27
|
Ruginǎ D, Ghiman R, Focșan M, Tăbăran F, Copaciu F, Suciu M, Pintea A, Aștilean S. Resveratrol-delivery vehicle with anti-VEGF activity carried to human retinal pigmented epithelial cells exposed to high-glucose induced conditions. Colloids Surf B Biointerfaces 2019; 181:66-75. [PMID: 31125919 DOI: 10.1016/j.colsurfb.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/14/2023]
Abstract
As an integrated approach to defeat diabetic retinopathy, a common complication of diabetes leading to vision loss, a delivery vehicle able to transport resveratrol (Rv) directly into retina pigmented epithelial D407 cells was designed. Rv, a molecule with known therapeutic potential, was successfully inserted into a microcapsule based on porous CaCO3 templates revealing an encapsulation efficiency of 96.8 ± 4.0%. Four alternative layers of polyelectrolytes were deposited via electrostatic-driven layer-by-layer assembly approach on the template and covered by rhodamine 6G (Rh6G). The as-designed PMs-Rv-Rh6G microcapsules were internalized into D407 cells grown in normal and high glucose-induced inflammation conditions, being able to cross the cellular membrane and localize near the nucleus after 24 h treatment. The metabolic activity of D407 cells was not diminished by PMs-Rv-Rh6G even after 24 h treatment, meaning that the microcapsules do not exert any toxicity toward the cells, based on WST-1 and lactate dehydrogenase assays. Notably, the PMs-Rv-Rh6G treatment is able to inhibit the vascular endothelial growth factor (VEGF) protein, as was proved by the ELISA assay. Therefore, the proposed PMs-Rv-Rh6G microcapsules could be implemented as a potential self-reporting intraocular Rv-delivery vehicle with anti-VEGF activity in the management of diabetic retinopathy.
Collapse
Affiliation(s)
- Dumitrita Ruginǎ
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania
| | - Raluca Ghiman
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No. 42, Cluj-Napoca 400271, Romania
| | - Monica Focșan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No. 42, Cluj-Napoca 400271, Romania
| | - Flaviu Tăbăran
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania
| | - Florina Copaciu
- Biochemistry Department, Faculty of Animal Sciences and Biotechnologies, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania
| | - Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath No. 67-103, Cluj-Napoca 400293, Romania; Biology and Geology Faculty, Babes-Bolyai University Cluj-Napoca, Clinicilor, No. 5-7, Cluj-Napoca 400006, Romania
| | - Adela Pintea
- Biochemistry Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Calea Manastur, No. 3-5, Cluj-Napoca 400372, Romania.
| | - Simion Aștilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No. 42, Cluj-Napoca 400271, Romania.
| |
Collapse
|
28
|
Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11:nu11040771. [PMID: 30987058 PMCID: PMC6520779 DOI: 10.3390/nu11040771] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|