1
|
Wu H, Wang S, Dai FB, Tang CL. Research progress in the clinical application of inhaled anesthetic sevoflurane. Med Gas Res 2025; 15:85-92. [PMID: 39436171 PMCID: PMC11515067 DOI: 10.4103/mgr.medgasres-d-23-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 10/23/2024] Open
Abstract
Sevoflurane has been widely used in clinical anesthesia as an inhalation anesthetic. With the development of medicine, there have been several new applications in recent years, such as daytime surgery, labor analgesia, and combined nerve block for some surgeries. Moreover, as research progresses, it has been found that it not only has potential organ protection effects but can also be used to treat severe asthma and relieve the tracheal spasm state. In addition, local administration can effectively treat vascular ulcers. We briefly review the organ protective effect of sevoflurane, its application in dental treatment, asthma treatment, vascular ulcer treatment and some new progress in clinical application.
Collapse
Affiliation(s)
- Hao Wu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Sheng Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Fei-Biao Dai
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
| | - Chao-Liang Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of Science and Technology of China, Hefei, Anhui Province, China
- Department of Anesthesiology, Anhui Provincial Cancer Hospital, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Wu Q, Zhang D, Dai S, Liu F, Zhang W, Shen T. Desflurane attenuates renal ischemia-reperfusion injury by modulating ITGB1/CD9 and reducing oxidative stress in tubular epithelial cells. Redox Biol 2025; 80:103490. [PMID: 39854938 PMCID: PMC11804601 DOI: 10.1016/j.redox.2025.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Renal ischemia-reperfusion (I/R) injury triggers significant oxidative stress and inflammation, leading to tubular epithelial cell (TEC) damage. This study investigates the protective role of Desflurane (DFE) in renal I/R by modulating the ITGB1/CD9 signaling pathway and mitigating oxidative damage. METHODS Single-cell RNA sequencing (scRNA-seq) and transcriptome analysis identified ITGB1 as a key regulatory gene in TECs during renal I/R. The effects of DFE on ITGB1/CD9 expression were evaluated through in vitro experiments using RT-qPCR, Western blot, and TUNEL assays. A mouse model of renal I/R was employed to assess renal function and oxidative stress markers under DFE treatment. RESULTS DFE reduced ITGB1 and CD9 expression, resulting in decreased TEC apoptosis and enhanced proliferation. In vivo, DFE-treated mice exhibited improved renal function, with significantly lower serum creatinine and blood urea nitrogen (BUN) levels. Additionally, DFE reduced oxidative stress, as indicated by decreased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, alongside increased superoxide dismutase (SOD) activity. CONCLUSION DFE confers renal protection against I/R by modulating the ITGB1/CD9 axis and reducing oxidative stress, offering a promising therapeutic strategy for mitigating kidney damage.
Collapse
Affiliation(s)
- Qiaoling Wu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Dongbo Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Siqi Dai
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Tu Shen
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China.
| |
Collapse
|
3
|
Liu W, Du M, Zhang M, Dai X, Wang H, Le Y, Zhi S, Bo L, Quan J. Impact of propofol versus desflurane anesthesia on postoperative hepatic and renal functions in infants with living-related liver transplantation: a randomized controlled trial. BMC Med 2024; 22:397. [PMID: 39285414 PMCID: PMC11406785 DOI: 10.1186/s12916-024-03622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The effects of anesthetics on liver and kidney functions after infantile living-related liver transplantation (LRLT) are unclear. This study aimed to investigate the effects of propofol-based total intravenous anesthesia (TIVA) or desflurane-based inhalation anesthesia on postoperative liver and kidney functions in infant recipients after LRLT and to evaluate hepatic ischemia-reperfusion injury (HIRI). METHODS Seventy-six infants with congenital biliary atresia scheduled for LRLT were randomly divided into two anesthesia maintenance groups: group D with continuous inhalation of desflurane and group P with an infusion of propofol. The primary focus was to assess alterations of liver transaminase and serum creatinine (Scr) levels within the first 7 days after surgery. And the peak aminotransferase level within 72 h post-surgery was used as a surrogate marker for HIRI. RESULTS There were no differences in preoperative hepatic and renal functions between the two groups. Upon the intensive care unit (ICU) arrival, the levels of aspartate aminotransferase (AST, P = 0.001) and alanine aminotransferase (ALT, P = 0.005) in group P were significantly lower than those in group D. These changes persisted until the fourth and sixth days after surgery. The peak AST and ALT levels within 72 h after surgery were also lower in group P than in group D (856 (552, 1221) vs. 1468 (732, 1969) U/L, P = 0.001 (95% CI: 161-777) and 517 (428, 704) vs. 730 (541, 1100) U/L, P = 0.006, (95% CI: 58-366), respectively). Patients in group P had lower levels of Scr upon the ICU arrival and on the first day after surgery, compared to group D (17.8 (15.2, 22.0) vs. 23.0 (20.8, 30.8) μmol/L, P < 0.001 (95% CI: 3.0-8.7) and 17.1 (14.9, 21.0) vs. 20.5 (16.5, 25.3) μmol/L, P = 0.02 (95% CI: 0.0-5.0) respectively). Moreover, the incidence of severe acute kidney injury was significantly lower in group P compared to that in group D (15.8% vs. 39.5%, P = 0.038). CONCLUSIONS Propofol-based TIVA might improve liver and kidney functions after LRLT in infants and reduce the incidence of serious complications, which may be related to the reduction of HIRI. However, further biomarkers will be necessary to prove these associations.
Collapse
Affiliation(s)
- Wei Liu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Min Du
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Mingman Zhang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Xiaoke Dai
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Haoming Wang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Ying Le
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Shenshen Zhi
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lin Bo
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| | - Junjun Quan
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| |
Collapse
|
4
|
Huenchuguala S, Segura-Aguilar J. Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson's Disease According to the Single-Neuron Degeneration Model. Biomolecules 2024; 14:673. [PMID: 38927076 PMCID: PMC11201619 DOI: 10.3390/biom14060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson's disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson's disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
5
|
Huang D, Chen D, Hu T, Liang H. GATA2 promotes oxidative stress to aggravate renal ischemia-reperfusion injury by up-regulating Redd1. Mol Immunol 2023; 153:75-84. [PMID: 36444820 DOI: 10.1016/j.molimm.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022]
Abstract
Renal ischemia-reperfusion injury (RIRI) is a common pathophysiological process, and it is also an important cause of acute renal failure. Therefore, finding an effective therapeutic target for RIRI is extremely urgent. In our study, we constructed hypoxia-reoxygenation (HR) model in vitro and a renal ischemia-reperfusion (IR) model in vivo. Elevated levels of serum creatinine (Cr), blood urea nitrogen (BUN) tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and malondialdehyde (MDA) along with the decreased levels of superoxide dismutase (SOD) and glutathione (GSH) proved that kidney function was damaged after IR, and pathological changes of renal tissues were observed using HE staining and TUNEL staining. The protein of Redd1 expression level was detected to be upregulated after IR by western blot (WB). However, transfection of short hairpin RNA of Redd1 (sh-Redd1) alleviated the HR injury on LLC-PK1 cells, as evidenced by increased cell viability, proliferation and decreased cell apoptosis; additionally, the accumulation of ROS was inhibited. Sh-Redd1 also alleviated IR injury in the mouse model. Subsequently, GATA2 was proved to be upregulated in IR and HR models and was the transcription factor of Redd1. Knockdown of GATA2 efficiently mitigated the oxidative stress induced damages in vivo and in vitro, while these mitigations were reversed by transfection of Redd1 overexpression plasmid. In conclusion, our study clarified the possible underlying mechanism of protecting RIRI.
Collapse
Affiliation(s)
- Dan Huang
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Dan Chen
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China.
| | - Taotao Hu
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China
| | - Hongqing Liang
- Institutes Renal Division, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan 430022, China.
| |
Collapse
|
6
|
Machado-Junior PA, de Souza ABF, Castro TDF, Perucci LO, Talvani A, Cangussú SD, Bezerra FS. The deleterious impact of exposure to different inhaled anesthetics is time dependent. Life Sci 2022; 309:121004. [PMID: 36170891 DOI: 10.1016/j.lfs.2022.121004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022]
Abstract
In this study, the effects of exposure to isoflurane, sevoflurane and desflurane on the oxidative response and inflammation at different times was analyzed in the lungs of adult C57BL/6 mice. 120 animals were divided into 3 groups (n = 40): Isoflurane (ISO), Sevoflurane (SEV) and Desflurane (DES) and exposed to these anesthetics for 1 h (n = 10), 2 h (n = 10) and 3 h (n = 10), at a minimum alveolar concentration (MAC) equal to 1. The control group (CG) (n = 10) was exposed to ambient air. 24 h after the experimental protocol, the animals were euthanized and the bronchoalveolar lavage fluid (BALF), blood and lung tissue samples were collected. In the BALF, animals exposed to isoflurane for 2 h and 3 h showed a greater influx of leukocytes, especially macrophages compared to the CG. The ISO3h had lower leukocyte counts in the peripheral blood compared to CG, ISO1h and ISO2h. There was an increase in CCL-2 levels in the ISO3h compared to the CG. Superoxide dismutase activity was higher in ISO1h compared to CG. The activity of catalase was higher in the ISO1h and ISO2h compared to the CG. The lipid peroxidation, as well as carbonylated protein were higher in the ISO3h compared to the CG (p < 0.05). Similar results were observed in the exposure of SEV and DES compared to inflammation and redox imbalance in different periods. This study demonstrated that time is a determinant to promote a local and systemic inflammatory response to different inhalational anesthetics in a healthy murine model.
Collapse
Affiliation(s)
- Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Centre of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Centre of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Centre of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Physics and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Physics and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Centre of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Centre of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil.
| |
Collapse
|
7
|
Zhao H, Wang Y, Zhu X. Chrysophanol exerts a protective effect against sepsis-induced acute myocardial injury through modulating the microRNA-27b-3p/Peroxisomal proliferating-activated receptor gamma axis. Bioengineered 2022; 13:12673-12690. [PMID: 35599576 PMCID: PMC9275920 DOI: 10.1080/21655979.2022.2063560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sepsis, a leading contributor to the death of inpatients, results in severe organ dysfunction as complications. The heart is one of the major organs attacked by sepsis, and the effective control of the inflammatory cascade reaction in sepsis is of great significance in alleviating sepsis-associated acute myocardial injury (S-AMI). Chrysophanol, a natural anthraquinone, has been discovered to carry anti-inflammatory effects. The aim of this paper is to probe the impact of Chrysophanol on S-AMI. An S-AMI model was engineered in rats via CLP. Pathological alterations in the myocardial tissues of rats were monitored. qRT-PCR, ELISA, and western blot measured the profiles of miR-27b-3p, Peroxisomal proliferating-activated receptor gamma (PPARG), inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8), and inflammatory response proteins (NF-κB-p65, MAPK-p38, JNK1/2). Besides, miR-27b-3p mimics were transfected into cardiomyocytes, and the proliferation and apoptosis of cardiomyocytes were examined through MTT and flow cytometry. As evidenced by the experimental outcomes, chrysophanol suppressed sepsis-mediated acute myocardial injury and LPS-mediated apoptosis in myocardial cells and lessened the release of pro-inflammatory cytokines and inflammatory response proteins. Moreover, chrysophanol cramped miR-27b-3p expression and heightened PPARG expression. miR-27b-3p targeted PPARG and restrained its expression. On the other hand, the PPARG agonist (RGZ) partially eliminated the apoptosis and pro-inflammatory responses of myocardial cells elicited by LPS. Therefore, this study revealed that Chrysophanol guarded against sepsis-mediated acute myocardial injury through dampening inflammation and apoptosis via the miR-27b-3p-PPARG axis, adding to the references for treating sepsis-AMI.
Collapse
Affiliation(s)
- Haiyan Zhao
- Dry Treatment Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xishan, China
| | - Yuping Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| | - Xiaolin Zhu
- Dry Treatment Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| |
Collapse
|
8
|
Huo Y, Yang D, Lai K, Tu J, Zhu Y, Ding W, Yang S. Antioxidant Effects of Resveratrol in Intervertebral Disk. J INVEST SURG 2021; 35:1135-1144. [PMID: 34670455 DOI: 10.1080/08941939.2021.1988771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intervertebral disk (IVD) degeneration (IVDD) can cause various spinal degenerative diseases. Cumulative evidence has indicated that IVDD can result from inflammation, apoptosis, autophagy, biomechanical changes and other factors. Currently, lack of conservative treatment for degenerative spinal diseases leads to an urgent demand for clinically applicable medication to ameliorate the progression of IVDD. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol compound extracted from red wine or grapes, has shown protective effects on IVD, alleviating the progression of IVDD. Resveratrol has been demonstrated as a scavenger of free radicals both in vivo and in vitro. The antioxidant effects of resveratrol are likely attributed to its regulation on mitochondrial dysfunction or the elimination of reactive oxygen species. This review will summarize the mechanisms of the reactive oxygen species production and elaborate the mechanisms of resveratrol in retarding IVDD progression, providing a comprehensive understanding of the antioxidant effects of resveratrol in IVD.
Collapse
Affiliation(s)
- Yachong Huo
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China.,Hebei Medical University, Shijiazhuang, PR China
| | - Dalong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Kaitao Lai
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, PR China.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
9
|
Chien LH, Wu CT, Deng JS, Jiang WP, Huang WC, Huang GJ. Salvianolic Acid C Protects against Cisplatin-Induced Acute Kidney Injury through Attenuation of Inflammation, Oxidative Stress and Apoptotic Effects and Activation of the CaMKK-AMPK-Sirt1-Associated Signaling Pathway in Mouse Models. Antioxidants (Basel) 2021; 10:antiox10101620. [PMID: 34679755 PMCID: PMC8533075 DOI: 10.3390/antiox10101620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden reduction in kidney activity and has a high mortality rate. Salvianolic acid C (SAC), one of the main polyphenolic components of Salvia miltiorrhiza, displays significant pharmacologically active effects. An animal model of cisplatin-induced kidney injury was used to study the potential of SAC to improve AKI. First, SAC was administered intraperitoneally in mice for 10 consecutive days, and then cisplatin was administered intraperitoneally on day 7 to establish a nephrotoxicity mouse model. SAC mitigated renal histological changes, blood creatinine (CRE) and blood urea nitrogen (BUN) production and the levels of inflammatory mediators in the cisplatin-induced AKI. Furthermore, malondialdehyde (MDA) levels were reduced and glutathione (GSH) was increased after intraperitoneal injection (i.p.) administration of SAC. In addition, based on Western blot data, SAC reduced the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in mouse renal tissues. Finally, SAC diminished the level of TLR-4 expression and enhanced the production of several antioxidative enzymes (superoxidase dismutase (SOD1), glutathione peroxidase (GPx3), catalase, nuclear-factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1)), Sirtuin 1 (Sirt1), p-AMP-activated protein kinase (AMPK) and p-Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). In addition, Sirt1 inhibition (EX 527) inverted the effect of SAC against cisplatin-induced nephrotoxicity. Collectively, SAC provides a therapeutic target with promising clinical potential after cisplatin treatment by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Chien-Ta Wu
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan;
- International Master’s Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5508)
| |
Collapse
|
10
|
Pharmacological Protection against Ischemia-Reperfusion Injury by Regulating the Nrf2-Keap1-ARE Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060823. [PMID: 34063933 PMCID: PMC8224095 DOI: 10.3390/antiox10060823] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is associated with substantial clinical implications, including a wide range of organs such as the brain, kidneys, lungs, heart, and many others. I/R injury (IRI) occurs due to the tissue injury following the reestablishment of blood supply to ischemic tissues, leading to enhanced aseptic inflammation and stimulation of oxidative stress via reactive oxygen and nitrogen species (ROS/RNS). Since ROS causes membrane lipids’ peroxidation, triggers loss of membrane integrity, denaturation of proteins, DNA damage, and cell death, oxidative stress plays a critical part in I/R pathogenesis. Therefore, ROS regulation could be a promising therapeutic strategy for IRI. In this context, Nrf2 (NF-E2-related factor 2) is a transcription factor that regulates the expression of several factors involved in the cellular defense against oxidative stress and inflammation, including heme oxygenase-1 (HO-1). Numerous studies have shown the potential role of the Nrf2/HO-1 pathway in IRI; thus, we will review the molecular aspects of Nrf2/Kelch-like ECH-associated protein 1 (Keap1)/antioxidant response element (ARE) signaling pathway in I/R, and we will also highlight the recent insights into targeting this pathway as a promising therapeutic strategy for preventing IRI.
Collapse
|