1
|
Habiba SU, Choi HJ, Munni YA, Yang IJ, Haque MN, Moon IS. Neurotrophic Effects of Foeniculum vulgare Ethanol Extracts on Hippocampal Neurons: Role of Anethole in Neurite Outgrowth and Synaptic Development. Int J Mol Sci 2024; 25:12701. [PMID: 39684414 DOI: 10.3390/ijms252312701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Foeniculum vulgare Mill, commonly known as fennel, is an aromatic herb traditionally used for culinary and medicinal purposes, with potential therapeutic effects on neurological disorders. However, limited research has focused on its neurotrophic impact, particularly on neuronal maturation and synaptic development. This study investigates the neurotrophic effects of F. vulgare ethanol extracts (FVSE) on the maturation of rat primary hippocampal neurons. Results show that FVSE and its prominent component, anethole, significantly promote neurite outgrowth in a dose-dependent manner. Optimal axonal and dendritic growth occurred at concentrations of 40 µg/mL FVSE and 20 µM anethole, respectively, without causing cytotoxicity, underscoring the safety of FVSE for neuronal health. Additionally, FVSE enhances the formation of synapses, essential for neuronal communication. Network pharmacology analysis revealed that FVSE components influence critical neurotrophic pathways, including PI3K-AKT and Alzheimer's disease pathways. Specifically, FVSE modulates key proteins, including tropomyosin receptor kinase (Trk), glycogen synthase kinase 3 (GSK3βser9), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated protein kinase (Erk1/2). Anethole was found to play a key role in regulating these pathways, which was confirmed by immunocytochemistry experiments demonstrating its effect on promoting neuronal growth and synaptic development. In conclusion, this study highlights the neurotrophic properties of FVSE, with anethole emerging as a critical bioactive compound. These findings provide valuable insights into the therapeutic potential of fennel in treating neurological disorders, offering a basis for future research into interventions promoting neuronal growth and survival.
Collapse
Affiliation(s)
- Sarmin Ummey Habiba
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Medical Institute of Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Md Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Dumki 8602, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
2
|
Qiu Q, Li C, Zhao X, Yang M, Ding S, Liang H, Chen T. Farnesylthiosalicylic Acid Through Inhibition of Galectin-3 Improves Neuroinflammation in Alzheimer Disease via Multiple Pathways. CNS Neurosci Ther 2024; 30:e70127. [PMID: 39592913 PMCID: PMC11598744 DOI: 10.1111/cns.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
AIMS Many factors affect the neuroinflammatory response in patients with Alzheimer disease (AD). Galectin-3 (Gal-3) is closely related to microglial activation in the nervous system and can promote the aggregation of cancer cells in tumors. This study aimed to investigate the mechanism by which farnesylthiosalicylic acid (FTS) affects neuroinflammation in Aβ1-42 mice through Gal-3. METHODS We used the Morris water maze, reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence to conduct our study. RESULTS FTS reduced the levels of proinflammatory factors and microglial activation in Aβ1-42 mice. FTS inhibited total and membrane expression levels of Gal-3 in Aβ1-42 mice, and the anti-inflammatory effect of FTS was reversed by Gal-3-adeno-associated viral (AAV). FTS reduced the expression levels of toll-like receptors (TLRs), effects that were reversed by Gal-3-AAV. Moreover, FTS ameliorated Aβ oligomerization and accumulation in Aβ1-42 mice, effects that were also reversed by Gal-3-AAV. FTS, through the inhibition of the Gal-3-c-Jun N-terminal kinase (JNK) pathway, reduced PS1 expression; in addition, inhibition of Gal-3 increased the Aβ-degrading enzymes in Aβ1-42 mice. FTS-induced improvements in cognition in Aβ1-42 mice were reversed by Gal-3-AAV. CONCLUSION FTS may through inhibiting Gal-3 reduce the expression of TLR4 and CD14 and alleviate Aβ pathology, downregulating Aβ-stimulated TLR2, TLR4, and CD14 expression, and thus alleviate neuroinflammation in Aβ1-42 mice.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Cui Li
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Xiaoli Zhao
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Mengting Yang
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Shushu Ding
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Haiying Liang
- Department of PharmacyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianChina
| | - Tingting Chen
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| |
Collapse
|
3
|
Fang L, Cheng H, Chen W, Peng C, Liu Y, Zhang C. Therapeutic effects of Tanshinone IIA and Tetramethylpyrazine nanoemulsions on cognitive impairment and neuronal damage in Alzheimer's disease rat models. J Pharm Pharmacol 2024; 76:1169-1177. [PMID: 38934298 DOI: 10.1093/jpp/rgae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the therapeutic effects and related mechanisms of Tanshinone IIA and Tetramethylpyrazine O/W composite nanoemulsions on Alzheimer's disease (AD) rats. METHODS The therapeutic effect of TSN/TMP O/W NEs on AD rats was evaluated by behavioral tests, H&E, Nissl, and Immunohistochemistry staining. ELISA and Western blot were used to analyze the mechanism. KEY FINDINGS The results showed that TSN/TMP O/W NEs could down-regulate the expression of Bax and Caspase-3 proteins, decrease the level of MDA, increase the expression of SOD and GSH-Px, and alleviate cognitive impairment in AD rats. CONCLUSIONS TSN/TMP O/W NEs can inhibit MAPK/ERK/CREB signaling pathway and effectively alleviate cognitive impairment, oxidative stress injury, and neuronal apoptosis in AD rats.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Weidong Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Yuanxu Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| |
Collapse
|
4
|
Lu H, Chen M, Zhu C. Intranasal Administration of Apelin-13 Ameliorates Cognitive Deficit in Streptozotocin-Induced Alzheimer's Disease Model via Enhancement of Nrf2-HO1 Pathways. Brain Sci 2024; 14:488. [PMID: 38790466 PMCID: PMC11118954 DOI: 10.3390/brainsci14050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The discovery of novel diagnostic methods and therapies for Alzheimer's disease (AD) faces significant challenges. Previous research has shed light on the neuroprotective properties of Apelin-13 in neurodegenerative disorders. However, elucidating the mechanism underlying its efficacy in combating AD-related nerve injury is imperative. In this study, we aimed to investigate Apelin-13's mechanism of action in an in vivo model of AD induced by streptozocin (STZ). METHODS We utilized an STZ-induced nerve injury model of AD in mice to investigate the effects of Apelin-13 administration. Apelin-13 was administered intranasally, and cognitive impairment was assessed using standardized behavioral tests, primarily, behavioral assessment, histological analysis, and biochemical assays, in order to evaluate synaptic plasticity and oxidative stress signaling pathways. RESULTS Our findings indicate that intranasal administration of Apelin-13 ameliorated cognitive impairment in the STZ-induced AD model. Furthermore, we observed that this effect was potentially mediated by the enhancement of synaptic plasticity and the attenuation of oxidative stress signaling pathways. CONCLUSIONS The results of this study suggest that intranasal administration of Apelin-13 holds promise as a therapeutic strategy for preventing neurodegenerative diseases such as AD. By improving synaptic plasticity and mitigating oxidative stress, Apelin-13 may offer a novel approach to neuroprotection in AD and related conditions.
Collapse
Affiliation(s)
- Hai Lu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Fudan University, Shanghai 200032, China; (H.L.); (M.C.)
- College of Clinical Medicine, Jining Medical University, Jining 272067, China
| | - Ming Chen
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Fudan University, Shanghai 200032, China; (H.L.); (M.C.)
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Center for Brain Science, Fudan University, Shanghai 200032, China; (H.L.); (M.C.)
| |
Collapse
|
5
|
Zhang XY, Wang X, Ye T, Shao N, Wang J, Cai B, Xie DJ. Network pharmacology-based approach to understand the effect and mechanism of chrysophanol against cognitive impairment in Wilson disease. Metab Brain Dis 2024; 39:89-99. [PMID: 37999884 DOI: 10.1007/s11011-023-01321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Wilson disease (WD) is a rare hereditary copper metabolism disorder, wherein cognitive impairment is a common clinical symptom. Chrysophanol (CHR) is an active compound with neuroprotective effects. The study aims to investigate the neuroprotective effect of CHR in WD and attempted to understand the potential mechanisms. Network pharmacology analysis was applied to predict the core target genes of CHR against cognitive impairment in WD. The rats fed with copper-laden diet for 12 weeks, and the effect of CHR on the copper content in liver and 24-h urine, the learning and memory ability, the morphological changes and the apoptosis level of neurons in hippocampal CA1 region, the expression level of Bax, Bcl-2, Cleaved Caspase-3, p-PI3K, PI3K, p-AKT, and AKT proteins were detected. Network pharmacology analysis showed that cell apoptosis and PI3K-AKT signaling pathway might be the main participants in CHR against cognitive impairment in WD. The experiments showed that CHR could reduce the copper content in liver, increase the copper content in 24-h urine, improve the ability of the learning and memory, alleviate the damage and apoptosis level of hippocampal neurons, down-regulate the expression of Bax, Cleaved Caspase-3, and up-regulate the expressions of Bcl-2, p-PI3K/PI3K, p-AKT/AKT. These results suggested that CHR could alleviate cognitive impairment in WD by inhibiting cell apoptosis and triggering the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People's Republic of China
| | - Xie Wang
- The First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People's Republic of China
| | - Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People's Republic of China
| | - Nan Shao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People's Republic of China
| | - Jie Wang
- School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People's Republic of China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People's Republic of China
| | - Dao-Jun Xie
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People's Republic of China.
| |
Collapse
|
6
|
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues. Apoptosis 2023:10.1007/s10495-023-01848-y. [PMID: 37186274 DOI: 10.1007/s10495-023-01848-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of hyperphosphorylated tau and amyloid-β (Aβ) protein resulting in synaptic loss and apoptosis. Aβ and tau deposition trigger apoptotic pathways that result in neuronal death. Apoptosis is considered to be responsible for manifestations associated with AD under pathological conditions. It regulates via extrinsic and intrinsic pathways. It activates various proteins including Bcl-2 family proteins like Bax, Bad, Bid, Bcl-XS, Bcl-XL and caspases comprising of initiator, effector and inflammatory caspases carried out through a cascade of events that finally lead to cell disintegration. The apoptotic elements interact with trophic factors, signaling molecules including Ras-ERK, JNK, GSK-3β, BDNF/TrkB/CREB and PI3K/AKT/mTOR. Ras-ERK signaling is involved in the progression of cell cycle and apoptosis. JNK pathway is also upregulated in AD which results in decreased expression of anti-apoptotic proteins. JAK-STAT triggers caspase-3 mediated apoptosis leading to neurodegeneration. The imbalance between autophagy and apoptosis is regulated by PI3K/Akt/mTOR pathway. GSK-3β is involved in the stimulation of pro-apoptotic factors resulting in dysregulation of apoptosis. Drugs like filgrastim, epigallocatechin gallate, curcumin, nicergoline and minocycline are under development which target these pathways and modulate the disease condition. This study sheds light on apoptotic pathways that are cardinal for neuronal survival and perform crucial role in the occurrence of AD along with the trends in therapeutics targeting apoptosis induced AD. To develop prospective treatments for AD, it is desirable to elucidate potential targets including restoration apoptotic balance, regulation of caspases, Bcl-2 and other crucial proteins involved in apoptosis mediated AD.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
7
|
Medicinal Herbs and Their Derived Ingredients Protect against Cognitive Decline in In Vivo Models of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms231911311. [PMID: 36232612 PMCID: PMC9569503 DOI: 10.3390/ijms231911311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) has pathological hallmarks including amyloid beta (Aβ) plaque formation. Currently approved single-target drugs cannot effectively ameliorate AD. Medicinal herbs and their derived ingredients (MHDIs) have multitarget and multichannel properties, engendering exceptional AD treatment outcomes. This review delineates how in in vivo models MHDIs suppress Aβ deposition by downregulating β- and γ-secretase activities; inhibit oxidative stress by enhancing the antioxidant activities and reducing lipid peroxidation; prevent tau hyperphosphorylation by upregulating protein phosphatase 2A expression and downregulating glycogen synthase kinase-3β expression; reduce inflammatory mediators partly by upregulating brain-derived neurotrophic factor/extracellular signal-regulated protein kinase 1/2-mediated signaling and downregulating p38 mitogen-activated protein kinase (p38 MAPK)/c-Jun N-terminal kinase (JNK)-mediated signaling; attenuate synaptic dysfunction by increasing presynaptic protein, postsynaptic protein, and acetylcholine levels and preventing acetylcholinesterase activity; and protect against neuronal apoptosis mainly by upregulating Akt/cyclic AMP response element-binding protein/B-cell lymphoma 2 (Bcl-2)-mediated anti-apoptotic signaling and downregulating p38 MAPK/JNK/Bcl-2-associated x protein (Bax)/caspase-3-, Bax/apoptosis-inducing factor-, C/EBP homologous protein/glucose-regulated protein 78-, and autophagy-mediated apoptotic signaling. Therefore, MHDIs listed in this review protect against Aβ-induced cognitive decline by inhibiting Aβ accumulation, oxidative stress, tau hyperphosphorylation, inflammation, synaptic damage, and neuronal apoptosis in the cortex and hippocampus during the early and late AD phases.
Collapse
|
8
|
Modulation of MAPK- and PI3/AKT-Dependent Autophagy Signaling by Stavudine (D4T) in PBMC of Alzheimer’s Disease Patients. Cells 2022; 11:cells11142180. [PMID: 35883623 PMCID: PMC9322713 DOI: 10.3390/cells11142180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Aβ42 deposition plays a pivotal role in AD pathogenesis by inducing the activation of microglial cells and neuroinflammation. This process is antagonized by microglia-mediated clearance of Aβ plaques. Activation of the NLRP3 inflammasome is involved in neuroinflammation and in the impairments of Aβ-plaque clearance. On the other hand, stavudine (D4T) downregulates the NLRP3 inflammasome and stimulates autophagy-mediated Aβ-clearing in a THP-1-derived macrophages. Methods: We explored the effect of D4T on Aβ autophagy in PBMC from AD patients that were primed with LPS and stimulated with Aβ oligomers in the absence/presence of D4T. We analyzed the NLRP3 activity by measuring NLRP3-ASC complex formation by AMNIS FlowSight and pro-inflammatory cytokine (IL-1β, IL-18 and Caspase-1) production by ELISA. The phosphorylation status of p38, ERK, AKT, p70, and the protein expression of CREB, LAMP2A, beclin-1, Caspase-3 and Bcl2 were analyzed by Western blot. Results: Data showed that D4T: (1) downregulates NLRP3 inflammasome activation and the production of down-stream pro-inflammatory cytokines in PBMC; (2) stimulates the phosphorylation of AKT, ERK and p70 as well as LAMP2A, beclin-1 and Bcl2 expression and reduces Caspase-3 expression, suggesting an effect of this compound on autophagy; (3) increases phospho-CREB, which is a downstream target of p-ERK and p-AKT, inducing anti-inflammatory cytokine production and resulting in a possible decrease of Aβ-mediated cytotoxicity; and (4) reduces the phosphorylation of p38, a protein involved in the production of pro-inflammatory cytokines and tau hyperphosphorylation. Conclusions: D4T reduces the activation of the NLRP3 inflammasome, and it might stimulate autophagy as well as the molecular mechanism that modulates Aβ cytotoxicity, and D4T might reduce inflammation in the cells of AD patients. It could be very interesting to check the possible beneficial effects of D4T in the clinical scenario.
Collapse
|
9
|
Liu M, Shan G, Jiang H, Zeng L, Zhao K, Li Y, Ashraf GM, Li Z, Liu R. Identification of miRNA and Their Regulatory Effects Induced by Total Flavonoids From Dracocephalum moldavica in the Treatment of Vascular Dementia. Front Pharmacol 2021; 12:796628. [PMID: 34938197 PMCID: PMC8685430 DOI: 10.3389/fphar.2021.796628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Vascular dementia (VaD) is a general term used to describe difficulties in memory, reasoning, judgment, and planning caused by a reduced blood flow to the brain and consequent brain damage, in which microRNAs (miRNAs) are involved. Dracocephalum moldavica L. (D. moldavica) is traditionally used in the treatment of cardiovascular diseases as well as VaD, but the biomolecular mechanisms underlying its therapeutic effect are obscure. In the present study, the molecular mechanisms involved in the treatment of VaD by the total flavonoids from Dracocephalum moldavica L. (TFDM) were explored by the identification of miRNA profiling using bioinformatics analysis and experimental verification. A total of 2,562 differentially expressed miRNAs (DEMs) and 3,522 differentially expressed genes (DEGs) were obtained from the GSE120584 and GSE122063 datasets, in which the gene functional enrichment and protein-protein interaction network of 93 core targets, originated from the intersection of the top DEM target genes and DEGs, were established for VaD gene profiling. One hundred and eighty-five targets interacting with 42 flavonoids in the TFDM were included in a compound-target network, subsequently found that they overlapped with potential targets for VaD. These 43 targets could be considered in the treatment of VaD by TFDM, and included CaMKII, MAPK, MAPT, PI3K, and KDR, closely associated with the vascular protective effect of TFDM, as well as anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The subsequent analysis of the compound-target gene-miRNA network indicated that eight miRNAs that mediated 43 targets had a close interaction with TFDM, suggesting that the neuroprotective effects were principally due to kaempferol, apigenin, luteolin, and quercetin, which were mostly associated with the miR-3184-3p/ESR1, miR-6762-3p/CDK1, miR-6777-3p/ESRRA, and other related axes. Furthermore, the in vitro oxygen-glucose deprivation (OGD) model demonstrated that the dysregulation of miR-3184-3p and miR-6875-5p found by qRT-PCR was consistent with the changes in the bioinformatics analysis. TFDM and its active compounds involving tilianin, luteolin, and apigenin showed significant effects on the upregulation of miR-3184-3p and downregulation of miR-6875-5p in OGD-injured cells, in line with the improved cell viability. In conclusion, our findings revealed the underlying miRNA-target gene network and potential targets of TFDM in the treatment of VaD.
Collapse
Affiliation(s)
- Mimin Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hailun Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaiyue Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Bulbocodin D ameliorate cognitive impairment in APP/PS1 transgenic mice by modulating amyloid-beta burden, oxidative status and neuroinflammation. Psychopharmacology (Berl) 2021; 238:2073-2082. [PMID: 33811504 DOI: 10.1007/s00213-021-05832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Amyloid β peptide (Aβ) triggers a series of pathological events including microglial activation, oxidative stress, and inflammation-causing neuronal death and typical pathological changes in Alzheimer's disease (AD). OBJECTIVES This study aimed to investigate the therapeutic effects and mechanism of bulbocodin D for AD in vivo. METHODS In this study, Morris water maze (MWM) analysis was used to detect the cognitive ability of APP/PS1 mice after gavage with bulbocodin D for 2 months. Levels of Aβ40, Aβ42, IL-1β, and TNF-α were evaluated by ELISA. Aβ plaques and biomarkers of neuroinflammation were also investigated through histological analysis. RESULTS We established that bulbocodin D significantly improved cognitive deficits in APP/PS1 transgenic mice and reduced the levels of amyloid plaque, Aβ40, and Aβ42. Bulbocodin D also reduced levels of microglial markers IbA1, GFAP, and antioxidant enzymes and reduced the products of lipid peroxidation and proinflammatory cytokines. CONCLUSION In summary, the present study provides preclinical evidence that oral bulbocodin D can reduce AD pathology.
Collapse
|
11
|
Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 2021; 414:113463. [PMID: 34280458 DOI: 10.1016/j.bbr.2021.113463] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) can activate the extracellular regulated protein kinase (ERK)/cAMP response element binding protein (CREB) cascade revealing an important role in antidepressant effects. Here, we studied the neuroprotective effect of baicalin (BA) in mice with chronic unpredictable mild stress (CUMS)-induced via a BDNF/ERK/CREB signaling pathway. Depression was induced via six weeks of CUMS in male ICR mice, and drug therapy was given simultaneously for the last three weeks. Cognitive dysfunctions were then evaluated via sucrose preference test (SPT), open field test (OFT), Morris water maze test (MWM), tail suspension test (TST), and novelty suppressed feeding test (NSF). Western blot and real-time PCR were then used to detect the relative expression of ERK, CREB, p-ERK, and p-CREB. Integrated optical density (IOD) tests of p-ERK and p-CREB were then evaluated via immunofluorescence. The behavior results showed that the cognitive dysfunctions increased in the CUMS group versus the control (CON) group (p < 0.01). There were decreases in fluoxetine (FLU) and BA groups (p < 0.05, p < 0.01). The protein ratios of p-ERK/ERK, p-CREB/CREB and ERK mRNA, and CREB mRNA expression decreased in the CUMS group (p < 0.01) and markedly increased in the FLU and BA groups (p < 0.05, p < 0.01). The IOD value of the p-ERK and p-CREB in the CUMS group was decreased versus the CON group (p < 0.01), and these changes were improved via BA and FLU treatment (p < 0.05, p < 0.01). This study indicated that BA can improve cognitive functions and has antidepressant effects in mice, which may be associated with activation of the BDNF/ERK/CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Jinhu Zhang
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Li Chu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shaodan Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yuan Chen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Pei
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
12
|
Shao JB, Luo XQ, Mo LH, Yang G, Liu ZQ, Liu JQ, Liu ZG, Liu DB, Yang PC. Twist1 sustains the apoptosis resistance in eosinophils in nasal mucosa of allergic rhinitis. Arch Biochem Biophys 2021; 702:108828. [PMID: 33741336 DOI: 10.1016/j.abb.2021.108828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
Eosinophils (Eos) are the canonical effector cells in allergic rhinitis (AR) and many inflammatory diseases. The mechanism of eosinophilia occurring in the lesion sites is not fully understood yet. Twist1 protein (Twist, in short) is an apoptosis inhibitor that also has immune regulatory functions. This study aims to investigate the role of Twist in the pathogenesis of eosinophilia in AR. In this study, surgically removed human nasal mucosal samples were obtained from patients with chronic sinusitis and nasal polyps with AR (the AR group) or without AR (the nAR group). Eos were isolated from the samples by flow cytometry. We found that abundant Eos were obtained from the surgically removed nasal mucosa tissues of both nAR and AR groups. Significantly higher Ras activation was detected in AR Eos than that in nAR Eos. Ras activation was associated with the apoptosis resistance in AR Eos. The Twist (an apoptosis inhibitor) expression was higher in AR Eos, which was positively correlated with the Ras activation status. The sensitization to IgG induced Twist expression in Eos, in which Ras activated the MAPK-HIF-1α pathway, the latter promoted the Twist gene transcription. Twist bound Rac GTPase activating protein-1 to sustain the Ras activation in Eos. Ras activation sustained the apoptosis resistance in Eos. In conclusion, high Ras activation was detected in the AR nasal mucosal tissue-isolated Eos. IgG-sensitization induced Ras activation and Twist expression in Eos, that conferred Eos the apoptosis resistance.
Collapse
Affiliation(s)
- Jian-Bo Shao
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li-Hua Mo
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Gui Yang
- Department of Otolaryngology, Longgang Central Hospital, Shenzhen, China
| | - Zhi-Qiang Liu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Jiang-Qi Liu
- Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Gang Liu
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| | - Ping-Chang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|