1
|
Mu Y, Luo LB, Huang R, Shen ZY, Huang D, Zhao SH, Yang J, Ma ZG. Cardiac-derived CTRP9 mediates the protection of empagliflozin against diabetes-induced male subfertility in mice. Clin Sci (Lond) 2024; 138:1421-1440. [PMID: 39392219 DOI: 10.1042/cs20241477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have shown beneficial effects of empagliflozin (Empa), a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2), on diabetes and cardiovascular outcomes in patients with diabetes. However, whether Empa could ameliorate diabetes mellitus (DM)-induced male spermatogenesis dysfunction remains unclear. Our study aimed to investigate the effect of Empa in the development of DM-induced male spermatogenesis dysfunction and to reveal the molecular mechanisms. DM mice were orally treated with Empa to investigate the effects of Empa on DM-induced male mice spermatogenesis dysfunction. We employed a cardiac-specific C1q/tumor necrosis factor-related protein 9 (CTRP9)-deficient mouse model and a cardiac-specific CTRP9 overexpression mouse model to investigate its role in the protection of Empa against diabetes-induced male subfertility. We found that Empa treatment could improve DM-induced male mice subfertility. Interestingly, we discovered that cardiac-derived CTRP9 was decreased in DM mice and this decrease was prevented by Empa treatment. A CTRP9 blocking antibody or cardiac-specific depletion of CTRP9 abolished the protection of Empa on DM-induced male subfertility. Cardiac-specific CTRP9 overexpression ameliorated DM-induced male subfertility. Mechanistically, we identified that cardiac-derived CTRP9 increased steroidogenesis in mice with diabetes in a PKA-dependent manner. We also provided direct evidence that activation of AMP activated protein kinase α (AMPKα)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signalling pathway by CTRP9 was responsible for the attenuation of ferroptosis in Leydig cells. In conclusions, we supposed that Empa was a potential therapeutic agent against DM-induced male mice spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Rong Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhuo-Yu Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Dan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shu-Hong Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Machado PAB, Lass A, Pilger BI, Fornazari R, de Moraes TP, Pinho RA. SGLT2 inhibitors and NLRP3 inflammasome: potential target in diabetic kidney disease. J Bras Nefrol 2024; 46:e20230187. [PMID: 39412512 PMCID: PMC11539899 DOI: 10.1590/2175-8239-jbn-2023-0187en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/28/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease (CKD) worldwide. The pathogenesis of DKD is influenced by functional, histopathological, and immune mechanisms, including NLRP3 inflammasome activity and oxidative stress. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown metabolic benefits and the ability to slow the progression of DKD in several clinical studies over the years. Recent studies suggest that the antidiabetic activity also extends to inhibition of the inflammatory response, including modulation of the NLRP3 inflammasome, reduction of pro-inflammatory markers and reduction of oxidative stress. Here we review the efficacy of SGLT2i in the treatment of CKD and discuss the role of the inflammatory response in the development of DKD, including its relationship to the NLRP3 inflammasome and oxidative stress.
Collapse
Affiliation(s)
- Paulo André Bispo Machado
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - André Lass
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - Bruna Isadora Pilger
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - Raphaella Fornazari
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Thyago Proença de Moraes
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| | - Ricardo Aurino Pinho
- Pontifícia Universidade Católica do Paraná, Laboratório de Bioquímica do Exercício em Saúde, Curitiba, PR, Brazil
- Pontificia Universidade Católica do Paraná, Pós-graduação em Ciências da Saúde, Curitiba, PR, Brazil
| |
Collapse
|
3
|
Forouzanmehr B, Hedayati AH, Gholami E, Hemmati MA, Maleki M, Butler AE, Jamialahmadi T, Kesharwani P, Yaribeygi H, Sahebkar A. Sodium-glucose cotransporter 2 inhibitors and renin-angiotensin-aldosterone system, possible cellular interactions and benefits. Cell Signal 2024; 122:111335. [PMID: 39117253 DOI: 10.1016/j.cellsig.2024.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2is) are a newly developed class of anti-diabetics which exert potent hypoglycemic effects in the diabetic milieu. However, the evidence suggests that they also have extra-glycemic effects. The renin-angiotensin-aldosterone system (RAAS) is a hormonal system widely distributed in the body that is important for water and electrolyte homeostasis as well as renal and cardiovascular function. Therefore, modulating RAAS activity is a main goal in patients, notably diabetic patients, which are at higher risk of complications involving these organ systems. Some studies have suggested that SGLT2is have modulatory effects on RAAS activity in addition to their hypoglycemic effects and, thus, these drugs can be considered as promising therapeutic agents for renal and cardiovascular disorders. However, the exact molecular interactions between SGLT2 inhibition and RAAS activity are not clearly understood. Therefore, in the current study we surveyed the literature for possible molecular mechanisms by which SGLT2is modulate RAAS activity.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Emad Gholami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Luo J, Tu L, Zhou C, Li G, Shi L, Hu S. SGLT2 inhibition, circulating proteins, and insomnia: A mendelian randomization study. Sleep Med 2024; 119:480-487. [PMID: 38795402 DOI: 10.1016/j.sleep.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT2i) initially emerged as oral antidiabetic medication but were subsequently discovered to exhibit pleiotropic actions. Insomnia is a prevalent and debilitating sleep disorder. To date, the causality between SGLT2 inhibitors and insomnia remains unclear. This study aims to evaluate the causality between SGLT2 inhibitors and insomnia and identify potential plasma protein mediators. METHODS Using a two-sample Mendelian Randomization (MR) analysis, we estimated the causality of SGLT2 inhibition on insomnia and sleep duration. Additionally, employing a two-step and proteome-wide MR analysis, we evaluated the causal link of SGLT2 inhibition on 4907 circulating proteins and the causality of SGLT2 inhibition-driven plasma proteins on insomnia. We applied a false discovery rate (FDR) correction for multiple comparisons. Furthermore, mediation analyses were used to identify plasma proteins that mediate the effects of SGLT2 inhibition on insomnia. RESULTS SGLT2 inhibition was negatively correlated with insomnia (odds ratio [OR] = 0.791, 95 % confidence interval [CI] [0.715, 0.876], P = 5.579*10^-6) and positively correlated with sleep duration (β = 0.186, 95 % CI [0.059, 0.314], P = 0.004). Among the 4907 circulating proteins, diadenosine tetraphosphatase (Ap4A) was identified as being linked to both SGLT2 inhibition and insomnia. Mediation analysis indicated that the effect of SGLT2 inhibition on insomnia partially operates through Ap4A (β = -0.018, 95 % CI [-0.036, -0.005], P = 0.023), with a mediation proportion of 7.7 %. CONCLUSION The study indicated a causality between SGLT2 inhibition and insomnia, with plasma Ap4A potentially serving as a mediator.
Collapse
Affiliation(s)
- Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gen Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
5
|
Latli B, Hrapchak MJ, Chevliakov M, Shu C. Carbon 14 and Carbon 13 Syntheses of Velagliflozin. J Labelled Comp Radiopharm 2024. [PMID: 38605481 DOI: 10.1002/jlcr.4091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Velagliflozin is the active ingredient of the first oral liquid medication approved by the Food and Drug Administration for the treatment of diabetes in cats. This compound belongs to the known class of sodium-glucose cotransporter 2 inhibitors approved to treat diabetes in human. Here, we report the detailed synthesis of velagliflozin labeled with carbon 14 and carbon 13.
Collapse
Affiliation(s)
- Bachir Latli
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Matt J Hrapchak
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Maxim Chevliakov
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Chutian Shu
- The Radiosynthesis Laboratory, Chemical Development, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| |
Collapse
|
6
|
Hasan I, Rashid T, Jaikaransingh V, Heilig C, Abdel-Rahman EM, Awad AS. SGLT2 inhibitors: Beyond glycemic control. J Clin Transl Endocrinol 2024; 35:100335. [PMID: 38525377 PMCID: PMC10957445 DOI: 10.1016/j.jcte.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple randomized controlled trials have extensively examined the therapeutic effectiveness of sodium-glucose cotransporter 2 (SGLT2) inhibitors, ushering in a transformative approach to treating individuals with type 2 diabetes mellitus (DM). Notably, emerging reports have drawn attention to the potential positive impacts of SGLT2 inhibitors in nondiabetic patients. In an effort to delve into this phenomenon, a comprehensive systematic literature review spanning PubMed (NLM), Medline (Ovid), and Cochrane Library, covering publications from 2000 to 2024 was undertaken. This systematic review encompassed twenty-six randomized control trials (RCTs) involving 35,317 participants. The findings unveiled a multifaceted role for SGLT2 inhibitors, showcasing their ability to enhance metabolic control and yield cardioprotective effects through a reduction in cardiovascular death (CVD) and hospitalization related to heart failure (HF). Additionally, a renalprotective effect was observed, evidenced by a slowdown in chronic kidney disease (CKD) progression and a decrease in albuminuria. Importantly, these benefits were coupled with an acceptable safety profile. The literature also points to various biological plausibility and underlying mechanistic pathways, offering insights into the association between SGLT2 inhibitors and these positive outcomes in nondiabetic individuals. Current research trends indicate a continual exploration of additional role for SGLT2 inhibitors in. Nevertheless, further research is imperative to fully elucidate the mechanisms and long-term outcomes associated with the nondiabetic use of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Irtiza Hasan
- University of Florida College of Medicine-Jacksonville, FL, USA
| | - Tasnuva Rashid
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Charles Heilig
- University of Florida College of Medicine-Jacksonville, FL, USA
| | | | - Alaa S. Awad
- University of Florida College of Medicine-Jacksonville, FL, USA
| |
Collapse
|
7
|
Kumar A, Mazumder R, Rani A, Pandey P, Khurana N. Novel Approaches for the Management of Type 2 Diabetes Mellitus: An Update. Curr Diabetes Rev 2024; 20:e051023221768. [PMID: 37888820 DOI: 10.2174/0115733998261903230921102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 10/28/2023]
Abstract
Diabetes mellitus is an irreversible, chronic metabolic disorder indicated by hyperglycemia. It is now considered a worldwide pandemic. T2DM, a spectrum of diseases initially caused by tissue insulin resistance and slowly developing to a state characterized by absolute loss of secretory action of the β cells of the pancreas, is thought to be caused by reduced insulin secretion, resistance to tissue activities of insulin, or a combination of both. Insulin secretagogues, biguanides, insulin sensitizers, alpha-glucosidase inhibitors, incretin mimetics, amylin antagonists, and sodium-glucose co-transporter-2 (SGLT2) inhibitors are the main medications used to treat T2DM. Several of these medication's traditional dosage forms have some disadvantages, including frequent dosing, a brief half-life, and limited absorption. Hence, attempts have been made to develop new drug delivery systems for oral antidiabetics to ameliorate the difficulties associated with conventional dosage forms. In comparison to traditional treatments, this review examines the utilization of various innovative therapies (such as microparticles, nanoparticles, liposomes, niosomes, phytosomes, and transdermal drug delivery systems) to improve the distribution of various oral hypoglycemic medications. In this review, we have also discussed some new promising candidates that have been approved recently by the US Food and Drug Administration for the treatment of T2DM, like semaglutide, tirzepatide, and ertugliflozin. They are used as a single therapy and also as combination therapy with drugs like metformin and sitagliptin.
Collapse
Affiliation(s)
- Abhishek Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Anjna Rani
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, UP 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP 201306, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
8
|
Alam A, Dhoundiyal S, Ahmad N, Rao GSNK. Unveiling Diabetes: Categories, Genetics, Diagnostics, Treatments, and Future Horizons. Curr Diabetes Rev 2024; 20:e180823219972. [PMID: 37594107 DOI: 10.2174/1573399820666230818092958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Diabetes mellitus is a global epidemic affecting millions of individuals worldwide. This comprehensive review aims to provide a thorough understanding of the categorization, disease identity, genetic architecture, diagnosis, and treatment of diabetes. The categorization of diabetes is discussed, with a focus on type 1 and type 2 diabetes, as well as the lesser-known types, type 3 and type 4 diabetes. The geographical variation, age, gender, and ethnic differences in the prevalence of type 1 and type 2 diabetes are explored. The impact of disease identity on disease management and the role of autoimmunity in diabetes are examined. The genetic architecture of diabetes, including the interplay between genotype and phenotype, is discussed to enhance our understanding of the underlying mechanisms. The importance of insulin injection sites and the insulin signalling pathway in diabetes management are highlighted. The diagnostic techniques for diabetes are reviewed, along with advancements for improved differentiation between types. Treatment and management approaches, including medications used in diabetes management are presented. Finally, future perspectives are discussed, emphasizing the need for further research and interventions to address the global burden of diabetes. This review serves as a valuable resource for healthcare professionals, researchers, and policymakers, providing insights to develop targeted strategies for the prevention, diagnosis, and management of this complex disease.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Niyaz Ahmad
- Department of Pharmaceutical Analysis, Green Research Lab, Green Industrial Company, Second Industrial Area, Riyadh 14334, Saudi Arabia
| | - G S N Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
9
|
Debnath A, Sharma S, Mazumder R, Mazumder A, Singh R, Kumar A, Dua A, Singhal P, Kumar A, Singh G. In Search of Novel SGLT2 Inhibitors by High-throughput Virtual Screening. Curr Drug Discov Technol 2024; 21:20-31. [PMID: 38047361 DOI: 10.2174/0115701638267615231123160650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus constitutes approximately 90% of all reported forms of diabetes mellitus. Insulin resistance characterizes this manifestation of diabetes. The prevalence of this condition is commonly observed in patients aged 45 and above; however, there is an emerging pattern of younger cohorts receiving diagnoses primarily attributed to lifestyle-related variables, including obesity, sedentary behavior, and poor dietary choices. The enzyme SGLT2 exerts a negative regulatory effect on insulin signaling pathways, resulting in the development of insulin resistance and subsequent elevation of blood glucose levels. The maintenance of glucose homeostasis relies on the proper functioning of insulin signaling pathways, while disruptions in insulin signaling can contribute to the development of type 2 diabetes. OBJECTIVE Our study aimed to identify novel SGLT2 inhibitors by high-throughput virtual Screening. METHODS We screened the May bridge Hit Discover database to identify potent hits followed by druglikeness, synthetic accessibility, PAINS alert, toxicity estimation, ADME assessment, and consensus molecular docking. RESULTS The screening process led to the identification of three molecules that demonstrated significant binding affinity, favorable drug-like properties, effective ADME, and minimal toxicity. CONCLUSION The identified molecules could manage T2DM effectively by inhibiting SGLT2, providing a promising avenue for future therapeutic strategies.
Collapse
Affiliation(s)
- Abhijit Debnath
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Shalini Sharma
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Rupa Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Rajesh Singh
- Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ankit Kumar
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Arpita Dua
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Priya Singhal
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Gurvinder Singh
- Department of Medicinal Chemistry, Lovely Professional University, Phagwara, 144001, Punjab, India
| |
Collapse
|
10
|
Jones RD, Abebe S, Distefano V, Mayer G, Poli I, Silvestri C, Slanzi D. Candidate composite biomarker to inform drug treatments for diabetic kidney disease. Front Med (Lausanne) 2023; 10:1271407. [PMID: 38020124 PMCID: PMC10646536 DOI: 10.3389/fmed.2023.1271407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Current guidelines recommend renin angiotensin system inhibitors (RASi) as key components of treatment of diabetic kidney disease (DKD). Additional options include sodium-glucose cotransporter-2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1a), and mineralocorticoid receptor antagonists (MCRa). The identification of the optimum drug combination for an individual is difficult because of the inter-, and longitudinal intra-individual heterogeneity of response to therapy. Results Using data from a large observational study (PROVALID), we identified a set of parameters that can be combined into a meaningful composite biomarker that appears to be able to identify which of the various treatment options is clinically beneficial for an individual. It uses machine-earning techniques to estimate under what conditions a treatment of RASi plus an additional treatment is different from the treatment with RASi alone. The measure of difference is the annual percent change (ΔeGFR) in the estimated glomerular filtration rate (ΔeGFR). The 1eGFR is estimated for both the RASi-alone treatment and the add-on treatment. Discussion Higher estimated increase of eGFR for add-on patients compared with RASi-alone patients indicates that prognosis may be improved with the add-on treatment. The personalized biomarker value thus identifies which patients may benefit from the additional treatment.
Collapse
Affiliation(s)
- Roger D. Jones
- European Centre for Living Technology, Ca' Foscari University of Venice, Venice, Italy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Systems Engineering and Research Center, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Seyum Abebe
- European Centre for Living Technology, Ca' Foscari University of Venice, Venice, Italy
| | - Veronica Distefano
- European Centre for Living Technology, Ca' Foscari University of Venice, Venice, Italy
- Department of Economic Sciences, Università del Salento, Salento, Italy
| | - Gert Mayer
- Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| | - Irene Poli
- European Centre for Living Technology, Ca' Foscari University of Venice, Venice, Italy
| | - Claudio Silvestri
- European Centre for Living Technology, Ca' Foscari University of Venice, Venice, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
| | - Debora Slanzi
- European Centre for Living Technology, Ca' Foscari University of Venice, Venice, Italy
- Department of Management, Ca' Foscari University of Venice, Venice, Italy
| |
Collapse
|
11
|
Kloock S, Ziegler CG, Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol Ther 2023; 251:108549. [PMID: 37879540 DOI: 10.1016/j.pharmthera.2023.108549] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Obesity and its comorbidities, including type 2 diabetes mellitus, cardiovascular disease, heart failure and non-alcoholic liver disease are a major health and economic burden with steadily increasing numbers worldwide. The need for effective pharmacological treatment options is strong, but, until recently, only few drugs have proven sufficient efficacy and safety. This article provides a comprehensive overview of obesity and its comorbidities, with a special focus on organ-specific pathomechanisms. Bariatric surgery as the so far most-effective therapeutic strategy, current pharmacological treatment options and future treatment strategies will be discussed. An increasing knowledge about the gut-brain axis and especially the identification and physiology of incretins unfolds a high number of potential drug candidates with impressive weight-reducing potential. Future multi-modal therapeutic concepts in obesity treatment may surpass the effectivity of bariatric surgery not only with regard to weight loss, but also to associated comorbidities.
Collapse
Affiliation(s)
- Simon Kloock
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christian G Ziegler
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Dischinger
- Department of Internal Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center, Würzburg, Germany.
| |
Collapse
|
12
|
Jin ES, Wen X, Malloy CR. Isotopomer analyses with the tricarboxylic acid cycle intermediates and exchanging metabolites from the rat kidney. NMR IN BIOMEDICINE 2023; 36:e4994. [PMID: 37392148 DOI: 10.1002/nbm.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
Renal metabolism is essential for kidney functions and energy homeostasis in the body. The TCA cycle is the hub of metabolism, but the metabolic activities of the cycle in the kidney have rarely been investigated. This study is to assess metabolic processes at the level of the TCA cycle in the kidney based on isotopomer distributions in multiple metabolites. Isolated rat kidneys were perfused with media containing common substrates including lactate and alanine for an hour. One group of kidneys received [U-13 C3 ]lactate instead of natural abundance lactate while the other group received [U-13 C3 ]alanine instead of natural abundance alanine. Perfused kidneys and effluent were prepared for analysis using NMR spectroscopy. 13 C-labeling patterns in glutamate, fumarate, aspartate and succinate from the kidney extracts showed that pyruvate carboxylase and oxidative metabolism through the TCA cycle were comparably very active, but pyruvate cycling and pyruvate dehydrogenase were relatively less active. Isotopomer analyses with fumarate and malate from effluent, however, indicated that pyruvate carboxylase was much more active than the TCA cycle and other metabolic processes. The reverse equilibrium of oxaloacetate with four-carbon intermediates of the cycle was nearly complete (92%), based on the ratio of [2,3,4-13 C3 ]/[1,2,3-13 C3 ] in aspartate or malate. 13 C enrichment in glucose with 13 C-lactate supply was higher than that with 13 C-alanine. Isotopomer analyses with multiple metabolites (i.e., glutamate, fumarate, aspartate, succinate and malate) allowed us to assess relative metabolic processes in the TCA cycle in the kidney supplied with [U-13 C3 ]lactate. Data from the analytes were generally consistent, indicating highly active pyruvate carboxylase and oxidative metabolism through the TCA cycle. Different 13 C-labeling patterns in analytes from the kidney extracts versus effluent suggested metabolic compartmentalization.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
13
|
Bodnar P, Mazurkiewicz M, Chwalba T, Romuk E, Ciszek-Chwalba A, Jacheć W, Wojciechowska C. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress-Role of New Drugs, Flozins. Biomedicines 2023; 11:2236. [PMID: 37626732 PMCID: PMC10452694 DOI: 10.3390/biomedicines11082236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Heart failure (HF) is a multifactorial clinical syndrome involving many complex processes. The causes may be related to abnormal heart structure and/or function. Changes in the renin-angiotensin-aldosterone system, the sympathetic nervous system, and the natriuretic peptide system are important in the pathophysiology of HF. Dysregulation or overexpression of these processes leads to changes in cardiac preload and afterload, changes in the vascular system, peripheral vascular dysfunction and remodeling, and endothelial dysfunction. One of the important factors responsible for the development of heart failure at the cellular level is oxidative stress. This condition leads to deleterious cellular effects as increased levels of free radicals gradually disrupt the state of equilibrium, and, as a consequence, the internal antioxidant defense system is damaged. This review focuses on pharmacotherapy for chronic heart failure with regard to oxidation-reduction metabolism, with special attention paid to the latest group of drugs, SGLT2 inhibitors-an integral part of HF treatment. These drugs have been shown to have beneficial effects by protecting the antioxidant system at the cellular level.
Collapse
Affiliation(s)
- Patryk Bodnar
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | | | - Tomasz Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Street, 41-808 Zabrze, Poland
| | - Anna Ciszek-Chwalba
- Student Research Team at the Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (P.B.); (T.C.); (A.C.-C.)
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, M. C. Skłodowskiej 10 Street, 41-800 Zabrze, Poland; (W.J.); (C.W.)
| |
Collapse
|
14
|
Peh ZH, Dihoum A, Hutton D, Arthur JSC, Rena G, Khan F, Lang CC, Mordi IR. Inflammation as a therapeutic target in heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 10:1125687. [PMID: 37456816 PMCID: PMC10339321 DOI: 10.3389/fcvm.2023.1125687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around half of all cases of heart failure and may become the dominant type of heart failure in the near future. Unlike HF with reduced ejection fraction there are few evidence-based treatment strategies available. There is a significant unmet need for new strategies to improve clinical outcomes in HFpEF patients. Inflammation is widely thought to play a key role in HFpEF pathophysiology and may represent a viable treatment target. In this review focusing predominantly on clinical studies, we will summarise the role of inflammation in HFpEF and discuss potential therapeutic strategies targeting inflammation.
Collapse
Affiliation(s)
- Zhen Hui Peh
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Adel Dihoum
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Dana Hutton
- School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Graham Rena
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Faisel Khan
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Ify R. Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Moroney M, Verma R, Hibino M, Mazer CD, Connelly KA, Yan AT, Quan A, Teoh H, Verma S, Puar P. Impact of diabetes duration on left ventricular mass regression with empagliflozin. ESC Heart Fail 2023; 10:2134-2140. [PMID: 37038614 DOI: 10.1002/ehf2.14357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 04/12/2023] Open
Abstract
AIMS The duration of type 2 diabetes mellitus (T2DM) is an important determinant of diabetes severity. The EMPA-HEART CardioLink-6 trial reported significant left ventricular (LV) mass indexed to body surface area (LVMi) regression in patients treated with the sodium-glucose cotransporter 2 inhibitor (SGLT2i) empagliflozin for 6 months. This exploratory sub-analysis of the same trial investigated the association between T2DM duration and LVMi regression. METHODS AND RESULTS A total of 97 individuals with T2DM and coronary artery disease (CAD) were randomly assigned to receive empagliflozin 10 mg daily or placebo. LVMi was measured at the baseline and 6 month visit using cardiac magnetic resonance imaging. The study population was divided into those with a baseline T2DM duration <10 years (n = 40) or ≥10 years (n = 57). A linear model adjusting for baseline values in each of the subgroups (ANCOVA) was used to assess the treatment effect of 6 month change in LVMi, LV end systolic volume indexed to body surface area, LV end diastolic volume indexed to body surface area and LV ejection fraction. Patients in the T2DM duration <10 years group (38 males [95.0%], median age 63 [IQR: 55 years to 70 years]) had a median T2DM duration of 4 years (IQR: 2.0 years to 7.0 years). Those in the T2DM duration ≥10 years group (52 males [91.2%], median age 65 [IQR: 57 years to 71 years]) had a median duration of 15 years (IQR: 12 years to 20 years). There was no significant difference in baseline LVMi according to T2DM duration (median 62 g/m2 [IQR: 53.1 g/m2 to 70.0 g/m2 ] for T2DM duration <10 years; median 57.5 g/m2 [IQR: 52.1 g/m2 to 66.2 g/m2 ] for T2DM duration ≥10 years; P = 0.11). Empagliflozin was associated with reductions in LVMi irrespective of duration of T2DM above and below 10 years (T2DM duration <10 years group, mean adjusted difference -2.90 g/m2 [95% CI: -6.64 g/m2 to 0.84 g/m2 ]; T2DM duration ≥10 years group, mean adjusted difference -3.69 g/m2 [95% CI: -0.14 g/m2 to -7.24 g/m2 ]; Pinteraction = 0.07). CONCLUSIONS In the EMPA-HEART CardioLink-6 trial, empagliflozin treatment was associated with reductions in LVMi in people with T2DM and CAD irrespective of the duration of diabetes assessed categorically above and below 10 years.
Collapse
Affiliation(s)
- Michael Moroney
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Raj Verma
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Makoto Hibino
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - C David Mazer
- Department of Anesthesia, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Kim A Connelly
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Andrew T Yan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Pankaj Puar
- Division of Cardiac Surgery, St. Michael's Hospital of Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Wal P, Rathore S, Aziz N, Singh YK, Gupta A. Aortic stenosis: a review on acquired pathogenesis and ominous combination with diabetes mellitus. Egypt Heart J 2023; 75:26. [PMID: 37027109 PMCID: PMC10082141 DOI: 10.1186/s43044-023-00345-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is a progressive disease, with no pharmacological treatment. The prevalence of diabetes mellitus (DM) among AS patients is higher than in the general population. DM significantly increases the risk of AS development and progression from mild to severe. The interplay between AS and DM's mechanism is not entirely known yet. MAIN BODY The increased accumulation of advanced glycation end products (AGEs) was linked to increased valvular oxidative stress, inflammation, expression of coagulation factors, and signs of calcification, according to an analysis of aortic stenotic valves. It is interesting to note that in diabetic AS patients, valvular inflammation did not correlate with serum glucose levels but rather only with long-term glycemic management markers like glycated haemoglobin and fructosamine. Transcatheter aortic valve replacement, which has been shown to be safer than surgical aortic valve replacement, is advantageous for AS patients who also have concurrent diabetes. Additionally, novel anti-diabetic medications have been proposed to lower the risk of AS development in DM patients, including sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonist that target reduction of AGEs-mediated oxidative stress. CONCLUSIONS There are little data on the effects of hyperglycemia on valvular calcification, but understanding the interactions between them is essential to develop a successful treatment strategy to stop or at least slow the progression of AS in DM patients. There is a link among AS and DM and that DM negatively impacts the quality of life and longevity of AS patients. The sole successful treatment, despite ongoing efforts to find new therapeutic modalities, involves aortic valve replacement. More research is required to find methods that can slow the advancement of these conditions, enhancing the prognosis and course of people with AS and DM.
Collapse
Affiliation(s)
- Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India.
| | - Shruti Rathore
- LCIT School of Pharmacy, Bilaspur, Chhattisgarh, 495220, India
| | - Namra Aziz
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Yash Kumar Singh
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| | - Arpit Gupta
- Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP, 209305, India
| |
Collapse
|
17
|
Thiagaraj S, Shukla TS, Gutlapalli SD, Farhat H, Irfan H, Muthiah K, Pallipamu N, Taheri S, Khan S. The Efficacy of Sodium-Glucose Cotransporter-2 Inhibitors in Improving Morbidity and Mortality of Heart Failure: A Systematic Review. Cureus 2023; 15:e34942. [PMID: 36938250 PMCID: PMC10016728 DOI: 10.7759/cureus.34942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 02/15/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in patients with type 2 diabetes mellitus (DM) worldwide. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) were initially developed for treating patients with type 2 DM. The four major drugs developed are canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin. Apart from treating DM, these drugs have shown to have a beneficial effect on lowering cardiovascular death and lowering hospital admission, and have beneficial renal outcomes. Recently, several large-scale randomized controlled trials (RCTs) were done to assess the benefit of these drugs, mainly in patients with CVD, irrespective of their diabetic status. This systematic review examined seven large-scale randomized controlled trials that focused mainly on CVD in patients with type 2 DM and if it showed any improvement. We properly screened the RCTs if they demonstrated cardiovascular outcomes after taking the SGLT2i or a placebo drug. The seven studies combined had a total sample population of 55,433, and the mean follow-up time was about four years. The participants included in this study had various basal metabolic indices, ages, glomerular filtration rates, and diabetic status characteristics. Although these patients were quite different, after the administration of SGLT2i, the studies showed a beneficial effect in reducing CVD mortality and morbidity in patients with type 2 DM.
Collapse
Affiliation(s)
- Suvedha Thiagaraj
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Twisha S Shukla
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Dheeraj Gutlapalli
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadi Farhat
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, University of Balamand, Beirut, LBN
| | - Huma Irfan
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kanmani Muthiah
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Namratha Pallipamu
- Internal Medicine, Franciscan Health, Lafayette, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sogand Taheri
- Medical Science, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
18
|
Salama RM, Ahmed RH, Farid AA, AbdElSattar BA, AbdelBaset RM, Youssef ME, El Wakeel SA. Gastroprotective effect of dapagliflozin in ethanol-induced gastric lesions in rats: Crosstalk between HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF signaling pathways. Int Immunopharmacol 2023; 115:109686. [PMID: 36623411 DOI: 10.1016/j.intimp.2023.109686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Alcohol abuse may lead to the development of gastric mucosal lesions. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 inhibitor, is clinically used to treat type 2 diabetes mellitus. However, studies showed protective effect of DAPA under various experimental conditions by alleviating oxidative stress and inflammation. The effect of DAPA on experimental gastric ulcer has not been studied yet. Therefore, we attempted to investigate DAPA's protective effect against ethanol (EtOH)-induced gastric lesions. Fifty-six (8-week-old) male Wistar rats were divided into seven groups. DAPA (1, 5, and 10 mg/kg/day; p.o.) was given for seven days, plus a single dose of absolute EtOH (5 ml/kg) on day 8. According to hematoxylin and eosin, and Alcian blue staining of gastric tissue sections, titratable acidity, and macroscopic assessments, DAPA high dose (10 mg/kg) was the most protective, with lesser ulcerations, and higher mucin, relative to the lower two doses and the standard treatment omeprazole (OME). In rats pre-treated with DAPA high dose, colorimetric and ELISA analyses revealed significantly decreased oxidative stress, pro-inflammatory, and apoptosis indices and increased levels of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Western blot analysis revealed reduced pentraxin-3 (PTX3), high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88) expression. These results were comparable in DAPA (10 mg/kg) and OME pre-treated groups. Overall, DAPA exerted a dose-dependent protective effect against EtOH-induced gastric injury. Gastroprotective effects of DAPA (10 mg/kg) may be associated with influencing HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF pathways.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rodaina H Ahmed
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Alaa A Farid
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | | | | | - Merna E Youssef
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
19
|
Chatziravdeli V, Lambrou GI, Samartzi A, Kotsalas N, Vlachou E, Komninos J, Tsartsalis AN. A Systematic Review and Meta-Analysis of Continuous Subcutaneous Insulin Infusion vs. Multiple Daily Injections in Type-2 Diabetes. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:141. [PMID: 36676765 PMCID: PMC9861993 DOI: 10.3390/medicina59010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus (DM) has a growing prevalence worldwide, even in developing countries. Many antidiabetic agents are used to improve glycemic control; however, in cases of an insufficient outcome, insulin is administered. Yet, the timing of proper insulin administration is still a subject of intense research. To date, there have been no recommendations or guidelines for the use of continuous subcutaneous insulin infusion (CSII) in Type 2 Diabetes Mellitus (T2DM). In the present study, we have performed a meta-analysis to evaluate the use of CSII in patients with T2DM. An extensive literature search was conducted through the electronic databases Pubmed, Clinicaltrials.gov, and Cochrane Central Register of Controlled Trials (CENTRAL) from October 2019-May 2022, for interventional studies related to T2DMI and CSII versus multiple daily injections (MDI). We included articles published in the English language only, yielding a total of thirteen studies. We found better outcomes in patients receiving CSII, in regard to glycated hemoglobin (HbA1c) and total insulin dose. In contrast, fasting plasma glucose and body weight did not show statistically significant differences between the two groups. Our analyses showed that CSII could be beneficial in patients with T2DM in order to achieve their glucose targets.
Collapse
Affiliation(s)
- Vasiliki Chatziravdeli
- Department of Orthopedics, General Hospital “Ippokrateion”, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| | - Athanasia Samartzi
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece
| | - Nikolaos Kotsalas
- Department of Nephrology, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece
| | - Eugenia Vlachou
- Department of Nursing, School of Health Sciences, University of West Attica, Ag. Spydironos 28, 12243 Athens, Greece
| | - John Komninos
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece
| | - Athanasios N. Tsartsalis
- Department of Endocrinology Diabetes and Metabolism, Naval Hospital of Athens, Dinokratous 70, 11521 Athens, Greece
| |
Collapse
|
20
|
Yousuf S, Ahmedani MY. Efficacy and safety of empagliflozin in people with type 2 diabetes during Ramadan fasting. Diabetes Metab Syndr 2022; 16:102633. [PMID: 36279701 DOI: 10.1016/j.dsx.2022.102633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS To explore efficacy and safety of empagliflozin in people with type2 diabetes during Ramadan fasting METHODS: People with type2 diabetes (T2DM) who were taking empagliflozin and sulphonylurea with or without a metformin and dipeptidyl peptidase inhibitors (DPP4) recruited a month before Ramadan. Glycated hemoglobin (HbA1c) and estimated glomerular filtration rate (eGFR) were recorded pre- and post-Ramadan. A predesigned diary was given to the participants to keep track of their T2DM status during Ramadan. The proportion of the people who had hypoglycaemia, or any adverse event related to the study drug was assessed after-Ramadan. RESULTS A total of 116 participants completed the study. Symptomatic episodes of hypoglycaemia were more common among people who used sulphonylurea (i.e., 8.6%). Genitourinary infections and volume depletion events were recorded more in people on empagliflozin i.e., (6.9% and 5.17%, respectively). A significant reduction in body mass index (BMI), and HbA1c was noted among people on empagliflozin post Ramadan. A significant reduction in eGFR was noted only in people who were taking empagliflozin in combination with metformin. CONCLUSION Empagliflozin was found to be safe and effective in fasting people with T2DM. Further large-scale studies are needed to validate our findings.
Collapse
Affiliation(s)
- Sanobia Yousuf
- Research Department, Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan.
| | | |
Collapse
|
21
|
Maccari R, Ottanà R. Sodium-Glucose Cotransporter Inhibitors as Antidiabetic Drugs: Current Development and Future Perspectives. J Med Chem 2022; 65:10848-10881. [PMID: 35924548 PMCID: PMC9937539 DOI: 10.1021/acs.jmedchem.2c00867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT-2) inhibitors (gliflozins) represent the most recently approved class of oral antidiabetic drugs. SGLT-2 overexpression in diabetic patients contributes significantly to hyperglycemia and related complications. Therefore, SGLT-2 became a highly interesting therapeutic target, culminating in the approval for clinical use of dapagliflozin and analogues in the past decade. Gliflozins improve glycemic control through a novel insulin-independent mechanism of action and, moreover, exhibit significant cardiorenal protective effects in both diabetic and nondiabetic subjects. Therefore, gliflozins have received increasing attention, prompting extensive structure-activity relationship studies and optimization approaches. The discovery that intestinal SGLT-1 inhibition can provide a novel opportunity to control hyperglycemia, through a multifactorial mechanism, recently encouraged the design of low adsorbable inhibitors selectively directed to the intestinal SGLT-1 subtype as well as of dual SGLT-1/SGLT-2 inhibitors, representing a compelling strategy to identify new antidiabetic drug candidates.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
22
|
Shah N, Perkovic V, Kotwal S. Impact of SGLT2 inhibitors on the kidney in people with type 2 diabetes and severely increased albuminuria. Expert Rev Clin Pharmacol 2022; 15:827-842. [PMID: 35912871 DOI: 10.1080/17512433.2022.2108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Diabetes is the most common cause of end stage kidney disease. Therapies such as sodium-glucose co-transporter-2 inhibitors have been identified over the last decade as effective oral hypoglycemic agents that also confer additional cardio and kidney protection. Knowledge of their mechanism of action and impact on patients with diabetes and albuminuria is vital in galvanizing prescriber confidence and increasing clinical uptake. AREAS COVERED This manuscript discusses the pathophysiology of diabetic kidney disease, patho-physiological mechanisms for sodium-glucose co-transporter-2 inhibitors, and their impact on patients with Type 2 diabetes mellitus and albuminuric kidney disease. EXPERT OPINION Sodium-glucose co-transporter-2 inhibitors reduce albuminuria with consequent benefits on cardiovascular and kidney outcomes in patients with diabetes and severe albuminuria. Whilst they have been incorporated into guidelines, the uptake of these agents into clinical practice has been slow. Increasing the uptake of these agents into clinical practice is necessary to improve outcomes for the large number of patients with diabetic kidney disease globally.
Collapse
Affiliation(s)
- Nasir Shah
- Faculty of Medicine, UNSW, Kensington, Sydney Australia 2052
| | - Vlado Perkovic
- Faculty of Medicine, UNSW, Kensington, Sydney Australia 2052.,The George Institute for Global Health, UNSW, 1 King Street, Newtown, Sydney, Australia 2042
| | - Sradha Kotwal
- The George Institute for Global Health, UNSW, 1 King Street, Newtown, Sydney, Australia 2042.,Prince of Wales Hospital, High Street, Sydney, Australia, 2031
| |
Collapse
|
23
|
Lee MH, Neeland IJ, de Albuquerque Rocha N, Hughes C, Malloy CR, Jin ES. A randomized clinical trial evaluating the effect of empagliflozin on triglycerides in obese adults: Role of visceral fat. Metabol Open 2022; 13:100161. [PMID: 35024596 PMCID: PMC8728102 DOI: 10.1016/j.metop.2021.100161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background Empagliflozin, a sodium glucose cotransporter 2 inhibitor, is a medication to treat type 2 diabetes. The effect of empagliflozin in persons without diabetes has received less attention. Here we conducted a randomized, double-blind placebo-controlled clinical trial to examine the effect of empagliflozin on plasma triglycerides in obese non-diabetic adults. Methods Participants (n = 35; BMI ≥ 30 kg/m2) underwent body composition assessments using MRI, and were randomly assigned to either placebo or empagliflozin (10 mg/d) for three months. At the baseline and post-treatment visit, after an overnight fast, blood was drawn for biochemical analysis. Participants received [U–13C3]glycerol orally followed by multiple blood draws over 3 h to examine glycerol incorporation into triglycerides using NMR spectroscopy. Results The changes in blood triglyceride concentration with empagliflozin therapy related to the mass of baseline visceral adipose tissue (VAT; r = 0.53, p = 0.04). Empagliflozin slightly lowered triglycerides in obese subjects with low VAT, but increased triglycerides in the subjects with high VAT. Consistently, empagliflozin effectively suppressed triglyceride synthesis following [U–13C3]glycerol administration in the subjects with low VAT (p < 0.05), but not in the subjects with high VAT. The subjects with high VAT lost body weight after three months of empagliflozin treatment. In all subjects, about 20% of the triglyceride backbone originated from mitochondrial metabolism of glycerol. Conclusions The effect of empagliflozin on triglycerides in obese adults differed depending on VAT. Empagliflozin suppressed triglyceride synthesis in the subjects with low VAT, but tended to increase triglycerides in those with high VAT. Visceral fat modulates the effect of empagliflozin on triglycerides in obese adults. Empagliflozin suppresses triglyceride synthesis in obese adults with low visceral fat. Empagliflozin tends to increase triglycerides in obese adults with high visceral fat. Empagliflozin induces weight loss in obese adults with high visceral fat.
Collapse
Affiliation(s)
- Min Hee Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ian J. Neeland
- Department of Medicine, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Connor Hughes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA
- Department of Radiology, University of Texas Southwestern Medical Center, USA
- VA North Texas Health Care System, Dallas, TX, 75216, USA
| | - Eunsook S. Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA
- Corresponding author. Advanced Imaging Research Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8568, USA.
| |
Collapse
|
24
|
Masajtis-Zagajewska A, Hołub T, Pęczek K, Makówka A, Nowicki M. Different Effects of Empagliflozin on Markers of Mineral-Bone Metabolism in Diabetic and Non-Diabetic Patients with Stage 3 Chronic Kidney Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1352. [PMID: 34946298 PMCID: PMC8705759 DOI: 10.3390/medicina57121352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Background and objectives: Treatment with sodium-glucose co-transporter 2 (SGLT2) inhibitors decrease tubular reabsorption of phosphate, which may explain the reduction of bone mineral density and an excess of bone fractures observed in some studies with this class of drugs. Since an increased risk of bone fractures may also be a result of diabetes itself, our study aimed to compare the effect of empagliflozin on the markers of mineral-bone metabolism between diabetic (DKD) and non-diabetic (ND-CKD) patients with stage 3 chronic kidney disease (CKD). Materials and Methods: Forty-two patients with stage 3 CKD and A2 albuminuria, including 18 with DKD and 24 ND-CKD, were investigated. All subjects received 10 mg empagliflozin for 7 days. Serum calcium, phosphate, parathormone (PTH), calcitriol, bone alkaline phosphatase (BAP), FGF-23 and urine calcium, phosphate, albumin and the renal tubular maximum reabsorption rate of phosphate to the glomerular filtration rate (TmP-GFR) were measured before and after empagliflozin administration. Differences in biomarkers response to empagliflozin between DKD and ND-CKD were the main measures of outcome. Results: There was a significant increase of PTH, FGF-23 and phosphate in DKD but not in ND-CKD whereas BAP and TmP/GFR did not change in either group. The reduction of albuminuria was only significant in ND-CKD. Conclusions: The effect of SGLT2 inhibitor on serum mineral and bone markers and on albuminuria in patients with CKD may be differently modified by the presence of diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | - Michał Nowicki
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Central University Hospital, 92-213 Lodz, Poland; (A.M.-Z.); (T.H.); (K.P.); (A.M.)
| |
Collapse
|
25
|
Liu P, Zhang Z, Wang J, Zhang X, Yu X, Li Y. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: in vitro and in vivo studies. Bioengineered 2021; 12:9356-9366. [PMID: 34823419 PMCID: PMC8810000 DOI: 10.1080/21655979.2021.2001240] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus is an important public health problem worldwide. Insulin deficiency caused by pancreatic β cell dysfunction is an important pathogenic factor of diabetes mellitus. This study evaluated whether empagliflozin (EMPA) protects the pancreas from diabetes mellitus-induced injury by downregulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/Gasdermin D (GSDMD) pyroptosis-related inflammasome pathway in vitro and in vivo. In vivo, animals were separated into blank control (control, C57/bl6j wild-type mice), diabetes model (db/db mice, BKS-Leprem2Cd479/Gpt mice), and db/db mice+EMPA (db/db+EMPA) groups. In vitro, pancreatic β cells were separated into low glucose (control), high glucose (HG), and HG+EMPA groups. The db/db+EMPA group were administered empagliflozin at 10 mg/(kg·day) by gavage for six months. Histological changes in the pancreatic tissues were observed by hematoxylin-eosin staining, and levels of the pyroptosis-related inflammatory factors NLPR3, caspase-1, and GSDMD were measured by immunohistochemistry and immunofluorescence staining methods. The Cell Counting Kit-8 assay was used to detect the effect of different concentrations of glucose and empagliflozin on the proliferation of mouse insulinoma islet β (β TC-6) cells. NLRP3/caspase-1/GSDMD expression was assessed by western blotting and immunofluorescent labeling in the β TC-6 cells. The results showed that empagliflozin reduced the pathological changes and inflammatory cell infiltration in the pancreatic tissues of db/db mice. Furthermore, empagliflozin not only reduced the expression levels of NLRP3/caspase-1/GSDMD in vitro, but also reduced their expression levels in vivo. In summary, our data suggested that empagliflozin protects the pancreatic tissues from diabetes mellitus-induced injury by downregulating the NLRP3/caspase-1/GSDMD pyroptosis-related inflammasome pathway.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
26
|
Afzal M, Al-Abbasi FA, Nadeem MS, Alshehri S, Ghoneim MM, Imam SS, Almalki WH, Kazmi I. Sodium-Glucose Cotransporter-2 Inhibitors Improve Cardiovascular Dysfunction in Type 2 Diabetic East Asians. Metabolites 2021; 11:794. [PMID: 34822452 PMCID: PMC8622829 DOI: 10.3390/metabo11110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
In East Asians, the incidence of type 2 DM (T2DM) has increased as a result of major alterations in life. Cardiovascular problems are more likely in those with T2DM. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are novel insulin-independent antihyperglycemic drugs that limit renal glucose reabsorption and thereby improve glycemic control. They are used alone or in combination with insulin and other antihyperglycemic medications to treat diabetes, and they are also helpful in protecting against the progression of complications. This review has evaluated the available evidence not only on the efficacy of SGLT2 inhibitors in T2DM, but also on their favourable cardiovascular events in East Asians. DM is an independent risk factor for cardiovascular diseases. As a result, in addition to glycemic control in diabetes management, the therapeutic goal in East Asian diabetic patients should be to improve adverse cardiovascular outcomes. Besides establishing antidiabetic effects, several studies have reported cardioprotective benefits of SGLT2 inhibitors via numerous pathways. SGLT2 inhibitors show promising antidiabetic drugs with potential cardiovascular advantages, given that a high number of diabetic patients in East Asia have co-existing cardiovascular disorders. Despite significant positive results in favour of SGLT2, more research is needed to determine how SGLT2 inhibitors exert these impressive cardiovascular effects.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.-A.); (M.S.N.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Imran Kazmi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| |
Collapse
|
27
|
Chaurasia PP, Dholariya S, Kotadiya F, Bhavsar M. A New Hope in Type 2 Diabetes Mellitus Management: Sodium-Glucose Cotransporter 2 Inhibitors. Cureus 2021; 13:e18300. [PMID: 34722075 PMCID: PMC8548046 DOI: 10.7759/cureus.18300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a chronic disease that affects multiple organs and exhibits significant complications. The major outcomes of prolonged hyperglycemia are nephropathy, retinopathy, neuropathy, and cardiovascular events due to the glycation of lipids and proteins. To ensure a healthy lifestyle for diabetic patients, a treatment that delays the complications and simultaneously protects multiple organs is required. Sodium-glucose cotransporter inhibitors (SGLTi) inhibit the reabsorption of glucose from the kidney and shows promising benefits in renal and heart diseases. The major SGLT receptors are SGLT1 and SGLT2. Various trials are conducted to conclude their efficacy and show nephroprotective and cardioprotective roles independent of diabetic status. The FDA-approved SGLT2 inhibitors are empagliflozin (Jardiance®), canagliflozin (Invokana®), and dapagliflozin (Farxiga®), which are primarily used in type 2 diabetes mellitus (T2DM). They show a reduced rate of hospitalization for heart failure, cardiovascular disease mortality, all-cause mortality, and progression of diabetic kidney disease. It also shows improvement in the glycemic index; therefore, it is protective against the complications of diabetes irrespective of insulin release, thus avoids hypoglycemia. This review summarizes the data from the clinical trials that support the efficacy of SGLT2 inhibitors in reducing the risks of cardiovascular and renal outcomes in patients with T2DM.
Collapse
Affiliation(s)
| | - Sagar Dholariya
- Biochemistry, All India Institute of Medical Sciences, Rajkot, Rajkot, IND
| | | | - Milav Bhavsar
- Biochemistry, C.U. Shah Medical College, Surendranagar, IND
| |
Collapse
|
28
|
Wang YJ, Paneni F, Stein S, Matter CM. Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Disease-From Bench to Bedside. Front Physiol 2021; 12:755060. [PMID: 34712151 PMCID: PMC8546231 DOI: 10.3389/fphys.2021.755060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sirtuins (SIRT1–7) comprise a family of highly conserved deacetylases with distribution in different subcellular compartments. Sirtuins deacetylate target proteins depending on one common substrate, nicotinamide adenine diphosphate (NAD+), thus linking their activities to the status of cellular energy metabolism. Sirtuins had been linked to extending life span and confer beneficial effects in a wide array of immune-metabolic and cardiovascular diseases. SIRT1, SIRT3, and SIRT6 have been shown to provide protective effects in various cardiovascular disease models, by decreasing inflammation, improving metabolic profiles or scavenging oxidative stress. Sirtuins may be activated collectively by increasing their co-substrate NAD+. By supplementing NAD+ precursors, NAD+ boosters confer pan-sirtuin activation with protective cardiometabolic effects in the experimental setting: they improve endothelial dysfunction, protect from experimental heart failure, hypertension and decrease progression of liver steatosis. Different precursor molecules were applied ranging from nicotinamide (NAM), nicotinamide mononucleotide (NMN) to nicotinamide riboside (NR). Notably, not all experimental results showed protective effects. Moreover, the results are not as striking in clinical studies as in the controlled experimental setting. Species differences, (lack of) genetic heterogeneity, different metabolic pathways, dosing, administration routes and disease contexts may account for these challenges in clinical translation. At the clinical scale, caloric restriction can reduce the risks of cardiovascular disease and raise NAD+ concentration and sirtuin expression. In addition, antidiabetic drugs such as metformin or SGLT2 inhibitors may confer cardiovascular protection, indirectly via sirtuin activation. Overall, additional mechanistic insight and clinical studies are needed to better understand the beneficial effects of sirtuin activation and NAD+ boosters from bench to bedside.
Collapse
Affiliation(s)
- Yu-Jen Wang
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital of Zurich, Zurich, Switzerland
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Telescoped lithiation, C-arylation and methoxylation in flow-batch hybrid toward the synthesis of canagliflozin. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Siamashvili M, Davis SN. Sodium-glucose cotransporter 2 inhibitors for the management of type 2 diabetes. Expert Opin Pharmacother 2021; 22:2181-2198. [PMID: 34388350 DOI: 10.1080/14656566.2021.1967320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Sodium-glucose cotransporter (SGLT) 2 inhibitors reduce glucose reabsorption in the kidney, increase glucosuria, and improve glycemia. Besides glycemic efficacy, the class also lowers risk of cardiovascular and renal disease. AREAS COVERED The authors describe late phase trials of empagliflozin, canagliflozin, dapagliflozin, and ertugliflozin. Safety and efficacy endpoints in monotherapy, combination therapy, cardiovascular, and renal outcomes trials have been identified and presented. EXPERT OPINION SGLT2 inhibitors appear to be safe and effective agents that improve glycemia when used alone or in combination with any other approved antihyperglycemic medications. Other beneficial effects include reductions in body weight and blood pressure, improvements in renal outcomes, all-cause mortality, cardiovascular mortality, and worsening heart failure.
Collapse
Affiliation(s)
- Maka Siamashvili
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Stephen N Davis
- School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Shoar S, Shah AA, Ikram W, Farooq N, Udoh A, Tabibzadeh E, Khavandi S, Khavandi S. Cardiovascular benefits of SGLT2 inhibitors in patients with heart failure: a meta-analysis of small and large randomized controlled trials. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2021; 11:262-272. [PMID: 34322297 PMCID: PMC8303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors have shown promise in improving cardiovascular outcome in patients with heart failure (HF) and diabetes mellitus (DM). Although these benefits have been confirmed by several meta-analyses, small studies have not been included into these pooled analyses. AIM Publication of recent RCTs prompted us to perform this updated meta-analysis to examine the consistency of favorable cardiovascular outcomes of SGLT2 inhibitors in HF patients by inclusion of clinical trials with small sample size. METHODS We conducted a systematic review of the literature in PubMed/Medline and ClinicalTrials.gov to identify all RCTs investigating the benefits of SGLT2 inhibitors in patients with HF. The primary endpoint of this meta-analysis was to compare the cardiovascular death (CVD) and hospitalization for HF (HHF) between patients who received an SGLT2 inhibitor and those who received a placebo or a non-SGLT2 inhibitor. We used a risk difference (RD) and log hazard ratio (HR) to pool the reported difference across the included RCTs. RESULTS A total of 12 RCTs encompassing 59,825 patients at different stages of HF and DM were included, 32,448 patients in the SGLT2 inhibitor group and 27,377 patients in the control group. A pooled analysis of RCTs, regardless of HF severity or DM status, showed a significantly reduced RD for CVD (RD =-0.01, 95% CI [-0.01, 0.00], P=0.01) and HHF (RD =-0.02, 95% CI [-0.03, -0.01], P=0.0005) in patients who received a SGLT2 inhibitor compared to those who did not. A sub-group analysis showed a significantly reduced RD for CVD (RD =-0.01, 95% CI [-0.02, 0.00], P=0.03) and HHF (RD =-0.02, 95% CI [-0.03, 0.00], P=0.01) in patients with DM who received SGLT2 inhibitors regardless of the severity of HF. Also, regardless of DM status, RD for HHF favored the use of SGLT2 inhibitor than the control medication (RD =-0.05, 95% CI [-0.06, -0.03], P<0.00001). CONCLUSION SGLT2 inhibitors have shown a promise in reducing CVD and HHF in patients with HF, regardless of ejection fraction or diabetes status.
Collapse
Affiliation(s)
- Saeed Shoar
- Department of Clinical Research, ScientificWriting CorpHouston, TX, USA
| | - Ahmed Ali Shah
- School of Medicine, Quaid-e-Azam Medical CollegeBahawalpur, Pakistan
| | - Waleed Ikram
- School of Medicine, Lahore Medical and Dental CollegeLahore, Pakistan
| | - Najam Farooq
- School of Medicine, Quaid-e-Azam Medical CollegeBahawalpur, Pakistan
| | - Agnes Udoh
- School of Medicine, Madonna UniversityOkija, Nigeria
| | - Elsa Tabibzadeh
- Department of Anesthesiology and Critical Care, Tabriz University of Medical SciencesTabriz, Iran
| | - Soheila Khavandi
- Department of Cardiology, Tabriz University of Medical SciencesTabriz, Iran
| | - Siamak Khavandi
- Department of Ophthalmology, Tabriz University of Medical SciencesTabriz, Iran
| |
Collapse
|
32
|
Mourino-Alvarez L, Corbacho-Alonso N, Sastre-Oliva T, Corros-Vicente C, Solis J, Tejerina T, Padial LR, Barderas MG. Diabetes Mellitus and Its Implications in Aortic Stenosis Patients. Int J Mol Sci 2021; 22:ijms22126212. [PMID: 34207517 PMCID: PMC8227301 DOI: 10.3390/ijms22126212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Aortic stenosis (AS) and diabetes mellitus (DM) are both progressive diseases that if left untreated, result in significant morbidity and mortality. Several studies revealed that the prevalence of DM is substantially higher in patients with AS and, thus, the progression from mild to severe AS is greater in those patients with DM. DM and common comorbidities associated with both diseases, DM and AS, increase patient management complexity and make aortic valve replacement the only effective treatment. For that reason, a better understanding of the pathogenesis underlying both these diseases and the relationships between them is necessary to design more appropriate preventive and therapeutic approaches. In this review, we provided an overview of the main aspects of the relationship between AS and DM, including common comorbidities and risk factors. We also discuss the established treatments/therapies in patients with AS and DM.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Cecilia Corros-Vicente
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Jorge Solis
- Department of Cardiology, Hospital Universitario 12 de Octubre and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Atria Clinic, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.S.); or (M.G.B.); Fax: +34-925247745 (M.G.B.)
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain;
| | - Luis R. Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, 45004 Toledo, Spain;
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
- Correspondence: (J.S.); or (M.G.B.); Fax: +34-925247745 (M.G.B.)
| |
Collapse
|
33
|
Development of osmotic vacuolization of proximal tubular epithelial cells following treatment with sodium-glucose transport protein 2 inhibitors in type II diabetes mellitus patients-3 case reports. CEN Case Rep 2021; 10:563-569. [PMID: 34021486 PMCID: PMC8494847 DOI: 10.1007/s13730-021-00609-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
We encountered 3 cases of acute kidney injury that occurred after treatment with a SGLT2 inhibitor. In case 1, serum creatinine increased from 1.65 to 3.0 mg/dL, in case 2, serum creatinine increased from 1.03 to 1.21 mg/dL, and in case 3, serum creatinine increased from 0.8 to 1.1 mg/dL. Renal biopsy showed isometric vacuolization on tubules, that was completely negative for Periodic acid-Schiff (PAS) stain in case 1, and was partially negative for PAS stain in case 2 and 3, consistent with osmotic vacuolization. Immunohistochemical analysis showed positive staining for CD138 and CD10 indicating the proximal tubules in the vacuolar lesions. 3 patients were obese with body mass index of more than 30, and showed an increase in serum renin. In conclusion, in type II diabetes mellitus (T2DM), individuals that remain within their standard weight range, SGLT2 inhibitor treatment does not result in osmotic vacuolization of proximal tubular epithelial cells and AKI. However, treatment with a SGLT2 inhibitor may cause damage of the proximal tubules resulting in AKI in T2DM individuals who do not remain within their standard weight range, due to an overdose lavage of sugar in the urine and dehydration.
Collapse
|
34
|
Carullo G, Mazzotta S, Vega-Holm M, Iglesias-Guerra F, Vega-Pérez JM, Aiello F, Brizzi A. GPR120/FFAR4 Pharmacology: Focus on Agonists in Type 2 Diabetes Mellitus Drug Discovery. J Med Chem 2021; 64:4312-4332. [PMID: 33843223 PMCID: PMC8154576 DOI: 10.1021/acs.jmedchem.0c01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The G-protein coupled receptors (GPCRs)
activated by free fatty
acids (FFAs) have emerged as new and exciting drug targets, due to
their plausible translation from pharmacology to medicines. This perspective
aims to report recent research about GPR120/FFAR4 and its involvement
in several diseases, including cancer, inflammatory conditions, and
central nervous system disorders. The focus is to highlight the importance
of GPR120 in Type 2 diabetes mellitus (T2DM). GPR120 agonists, useful
in T2DM drug discovery, have been widely explored from a structure–activity
relationship point of view. Since the identification of the first
reported synthetic agonist TUG-891, the research has paved the way
for the development of TUG-based molecules as well as new and different
chemical entities. These molecules might represent the starting point
for the future discovery of GPR120 agonists as antidiabetic drugs.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sarah Mazzotta
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milano, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, DoE 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende, Cosenza, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
35
|
Chaudhary AG, Alreefi FM, Aziz MA. Emerging Pharmacologic Therapies for Heart Failure With Reduced Ejection Fraction. CJC Open 2021; 3:646-657. [PMID: 34027369 PMCID: PMC8134937 DOI: 10.1016/j.cjco.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/17/2021] [Indexed: 10/27/2022] Open
Abstract
The global burden of heart failure has reached epidemic proportions with tremendous health and economic consequences. Sodium glucose cotransporter 2 inhibitors, vericiguat, and omecamtiv mecarbil are novel agents that promise to blunt the high residual risk of heart failure with reduced ejection fraction. We review the vast knowledge base that has rapidly materialized for these agents and is poised to shape the current and future trends and recommendations in heart failure pharmacotherapy.
Collapse
Affiliation(s)
- Ammar G Chaudhary
- Cardiovascular Diseases Department, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | - Fadi M Alreefi
- Cardiovascular Diseases Department, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | - Mohammad A Aziz
- Cardiovascular Diseases Department, King Faisal Specialist Hospital and Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Zeidan BS, Boadu C, Hernandez A, Frunzi J, Adetula I. Adverse Side Effects: Empagliflozin-Related Acute Pancreatitis Case Report. Cureus 2020; 12:e12325. [PMID: 33520523 PMCID: PMC7837635 DOI: 10.7759/cureus.12325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Acute pancreatitis is an acute inflammatory process of the pancreas that is associated with multiple etiologies. The two most common causes are gallstones and acute alcohol intoxication. However, medications are often overlooked when determining the cause. Empagliflozin is a type of sodium-glucose transport protein 2 (SGLT-2) inhibitor used for the treatment of type 2 diabetes mellitus. Given that this medication is new, the adverse effects have not been fully reported in the literature. Currently, the most commonly reported side effects are genitourinary infections such as cystitis or yeast infection although acute pancreatitis as a result of empagliflozin is very rare. Here, we discuss a case of a 64-year-old female who presented with severe pancreatitis after recently initiating the use of empagliflozin. Based on the timing of her presentation and her hospital workup to rule out many of the common etiologies, it was concluded that empagliflozin was the likely cause of her acute pancreatitis. With SGLT-2 inhibitors such as empagliflozin, becoming popular as first-line in the management of diabetes, this case may hope to raise awareness of the possible adverse effects related to it. Additionally, this case also emphasizes the importance of identifying iatrogenic related pancreatitis.
Collapse
Affiliation(s)
- Bassem S Zeidan
- Internal Medicine, HCA Medical Center of Trinity, Trinity, USA
| | - Charles Boadu
- Internal Medicine, Medical Center of Trinity, Trinity, USA
| | | | | | - Itioye Adetula
- Internal Medicine, Medical Center of Trinity, Trinity, USA
| |
Collapse
|
37
|
Chang S, Chen JY, Chuang YJ, Chen BS. Systems Approach to Pathogenic Mechanism of Type 2 Diabetes and Drug Discovery Design Based on Deep Learning and Drug Design Specifications. Int J Mol Sci 2020; 22:ijms22010166. [PMID: 33375269 PMCID: PMC7795239 DOI: 10.3390/ijms22010166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we proposed a systems biology approach to investigate the pathogenic mechanism for identifying significant biomarkers as drug targets and a systematic drug discovery strategy to design a potential multiple-molecule targeting drug for type 2 diabetes (T2D) treatment. We first integrated databases to construct the genome-wide genetic and epigenetic networks (GWGENs), which consist of protein–protein interaction networks (PPINs) and gene regulatory networks (GRNs) for T2D and non-T2D (health), respectively. Second, the relevant “real GWGENs” are identified by system identification and system order detection methods performed on the T2D and non-T2D RNA-seq data. To simplify network analysis, principal network projection (PNP) was thereby exploited to extract core GWGENs from real GWGENs. Then, with the help of KEGG pathway annotation, core signaling pathways were constructed to identify significant biomarkers. Furthermore, in order to discover potential drugs for the selected pathogenic biomarkers (i.e., drug targets) from the core signaling pathways, not only did we train a deep neural network (DNN)-based drug–target interaction (DTI) model to predict candidate drug’s binding with the identified biomarkers but also considered a set of design specifications, including drug regulation ability, toxicity, sensitivity, and side effects to sieve out promising drugs suitable for T2D.
Collapse
Affiliation(s)
- Shen Chang
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (S.C.); (J.-Y.C.)
| | - Jian-You Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (S.C.); (J.-Y.C.)
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; (S.C.); (J.-Y.C.)
- Correspondence:
| |
Collapse
|
38
|
Papp Z, Tóth A. New treatment options to reduce heart failure hospitalization. ESC Heart Fail 2020; 7:3271-3273. [PMID: 33271634 PMCID: PMC7754716 DOI: 10.1002/ehf2.13171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of MedicineUniversity of DebrecenMóricz Zsigmond krt. 22.H‐4032DebrecenHungary
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of MedicineUniversity of DebrecenMóricz Zsigmond krt. 22.H‐4032DebrecenHungary
- HAS‐UD Vascular Biology and Myocardial Pathophysiology Research GroupHungarian Academy of SciencesDebrecenHungary
| |
Collapse
|
39
|
Lee MA, McMahon G, Karhunen V, Wade KH, Corbin LJ, Hughes DA, Smith GD, Lawlor DA, Jarvelin MR, Timpson NJ. Common variation at 16p11.2 is associated with glycosuria in pregnancy: findings from a genome-wide association study in European women. Hum Mol Genet 2020; 29:2098-2106. [PMID: 32227112 PMCID: PMC7390941 DOI: 10.1093/hmg/ddaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Glycosuria is a condition where glucose is detected in urine at higher concentrations than normal (i.e. not detectable). Glycosuria at some point during pregnancy has an estimated prevalence of 50% and is associated with adverse outcomes in both mothers and offspring. Little is currently known about the genetic contribution to this trait or the extent to which it overlaps with other seemingly related traits, e.g. diabetes. We performed a genome-wide association study (GWAS) for self-reported glycosuria in pregnant mothers from the Avon Longitudinal Study of Parents and Children (cases/controls = 1249/5140). We identified two loci, one of which (lead SNP = rs13337037; chromosome 16; odds ratio of glycosuria per effect allele: 1.42; 95% CI: 1.30, 1.56; P = 1.97 × 10-13) was then validated using an obstetric measure of glycosuria measured in the same cohort (227/6639). We performed a secondary GWAS in the 1986 Northern Finland Birth Cohort (NFBC1986; 747/2991) using midwife-reported glycosuria and offspring genotype as a proxy for maternal genotype. The combined results revealed evidence for a consistent effect on glycosuria at the chromosome 16 locus. In follow-up analyses, we saw little evidence of shared genetic underpinnings with the exception of urinary albumin-to-creatinine ratio (Rg = 0.64; SE = 0.22; P = 0.0042), a biomarker of kidney disease. In conclusion, we identified a genetic association with self-reported glycosuria during pregnancy, with the lead SNP located 15kB upstream of SLC5A2, a target of antidiabetic drugs. The lack of strong genetic correlation with seemingly related traits such as type 2 diabetes suggests different genetic risk factors exist for glycosuria during pregnancy.
Collapse
Affiliation(s)
- Matthew A Lee
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Ville Karhunen
- Faculty of Medicine, School of Public Health, Imperial College London, 156 Norfolk Place, St Mary’s Campus, London W2 1PG, UK
- Faculty of Medicine, Northern Finland Birth Cohort Studies and Center for Life Course Health Research, University of Oulu, Aapistie 5 B, Oulu Fin-902200, Finland
| | - Kaitlin H Wade
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Marjo-Riitta Jarvelin
- Faculty of Medicine, School of Public Health, Imperial College London, 156 Norfolk Place, St Mary’s Campus, London W2 1PG, UK
- Faculty of Medicine, Northern Finland Birth Cohort Studies and Center for Life Course Health Research, University of Oulu, Aapistie 5 B, Oulu Fin-902200, Finland
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| |
Collapse
|
40
|
Ganorkar SB, Sharma SS, Patil MR, Bobade PS, Dhote AM, Shirkhedkar AA. Pharmaceutical Analytical Profile for Novel SGL-2 Inhibitor: Dapagliflozin. Crit Rev Anal Chem 2020; 51:835-847. [PMID: 32544345 DOI: 10.1080/10408347.2020.1777524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Dapagliflozin (DPG) is a novel drug from class of sodium glucose co-transporter 2 (SGL-2) inhibitors which has been evolved as profound treatment option for the type-2diabetes mellitus (T2DM). Considering the severity of the disease the drug is of crucial significance for the therapy and associated research. As a pharmaceutical dosage form DPG has immense importance as an individual drug and with other antidiabetic drugs as combinations. The drugs existing in combination with DPG are Metformin (MET) and Saxagliptin (SXG). The existence of the Dapagliflozin in combinations further created more interest in reviewing its pharmaceutical, analytical and bio-analytical profile. Such estimations are always in need of precise pharmacological and physicochemical information; hence authors have presented it beforehand. Authors hereby wish to present an essential update pertaining to emergence of gliflozins and DPG. The article further presents a simultaneous and comparative assessment of the analytical investigations published in literature for pharmaceutical estimation to assist future analysis. The thorough literature searches revealed fifty three research papers in total till date. A comprehensive presentation of typical; hyphenated and unique methods used for analysis are outlined effectively. The percentile utilization of analytical approaches since appearance of first publication in 2010 is investigated to report trend in determination. The present review explores the pharmaceutical estimation of DPG to scientifically potentiate analytical research and therapeutic future of DPG as a novel SGL-2 Inhibitor antidiabetic.
Collapse
Affiliation(s)
- Saurabh B Ganorkar
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shweta S Sharma
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Mangesh R Patil
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Preeti S Bobade
- Department of Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Ashish M Dhote
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Atul A Shirkhedkar
- Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
41
|
Ruangritchankul S, Peel NM, Shafiee Hanjani L, Gray LC. The Changes in Medication Prescribing Among the Older People with Cognitive Impairment in the Acute Care Setting. Clin Interv Aging 2020; 15:865-876. [PMID: 32606626 PMCID: PMC7292256 DOI: 10.2147/cia.s252432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Most older people with cognitive impairment usually have multiple comorbidities. In the last decade, the guidelines for the management of chronic diseases have been changed, leading to changes in the patterns of medication prescribing and in the prevalence of drug-related problems (DRPs). The main objectives were to explore the changes in medication use and in the prevalence of polypharmacy (PP), the use of potentially inappropriate medications (PIMs) and drug-drug interactions (DDIs) among older hospitalized adults with cognitive impairment in a 5-year period. PATIENTS AND METHODS Older hospitalized patients with cognitive impairment diagnosed by cognitive performance scale (CPS) score of 2 or more at tertiary hospital in Brisbane, Australia in 2009 and 2015 to 2016 were enrolled. Prescribed medication use, and exposures to PP, PIM and/or DDI were evaluated at two time points. The associated factors with patients exposed to >1 criteria of PP, PIM or DDI were analyzed by using logistic regression analyses. RESULTS The median number of prescribed medications was not significantly different between the two periods. The number of medications use as dermatological agents and analgesics substantially increased over 5 years. In contrast, there was a decrease in prescription of drugs for acid-related disorders, drugs used in diabetes, and mineral supplements. Most of the participants were exposed to at least one of PP, PIM or DDI. In multivariate regression analysis, the presence of diabetes diagnosis was a risk factor associated with increased exposure to >1 criteria of PP, PIM or DDI. CONCLUSION The patterns of many prescribed medications use have altered in a 5-year period. The present study confirms that the majority of older adults with cognitive impairment admitted in an acute care setting are prone to PP, PIM and DDI. Comprehensive medication reviews should be undertaken in clinical care of older patients with cognitive impairment.
Collapse
Affiliation(s)
- Sirasa Ruangritchankul
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nancye M Peel
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Leila Shafiee Hanjani
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Leonard C Gray
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Dowarah J, Singh VP. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 2020; 28:115263. [PMID: 32008883 DOI: 10.1016/j.bmc.2019.115263] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the major diseases worldwide and is the third leading cause of death in the United States. Anti-diabetic drugs are used in the treatment of diabetes mellitus to control glucose levels in the blood. Most of the drugs are administered orally, except for a few of them, such as insulin, exenatide, and pramlintide. In this review, we are going to discuss seven major types of anti-diabetic drugs: Peroxisome proliferator-activated receptor (PPAR) agonist, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase inhibitors, α-glucosidase inhibitors, dipeptidyl peptidase IV (DPP-4) inhibitors, G protein-coupled receptor (GPCR) agonists and sodium-glucose co-transporter (SGLT) inhibitors. Here, we are also discussing some of the recently reported anti-diabetic agents with its multi-target pharmacological actions. This review summarises recent approaches and advancement in anti-diabetes treatment concerning characteristics, structure-activity relationships, functional mechanisms, expression regulation, and applications in medicine.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ved Prakash Singh
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
43
|
Kshirsagar RP, Kulkarni AA, Chouthe RS, Pathan SK, Une HD, Reddy GB, Diwan PV, Ansari SA, Sangshetti JN. SGLT inhibitors as antidiabetic agents: a comprehensive review. RSC Adv 2020; 10:1733-1756. [PMID: 35494673 PMCID: PMC9048284 DOI: 10.1039/c9ra08706k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes is one of the most common disorders that substantially contributes to an increase in global health burden. As a metabolic disorder, diabetes is associated with various medical conditions and diseases such as obesity, hypertension, cardiovascular diseases, and atherosclerosis. In this review, we cover the scientific studies on sodium/glucose cotransporter (SGLT) inhibitors published during the last decade. Our focus on providing an exhaustive overview of SGLT inhibitors enabled us to present their chemical classification for the first time.
Collapse
Affiliation(s)
| | | | - Rashmi S Chouthe
- Srinath Institute of Pharmaceutical Education and Research Bajaj Nagar Waluj Aurangabad 431136 India
| | | | - Hemant D Une
- Y. B. Chavan College of Pharmacy Aurangabad Maharashtra India - 431001
| | - G Bhanuprakash Reddy
- Department of Biochemistry, National Institute of Nutrition (ICMR) Hyderabad Telangana India - 500007
| | - Prakash V Diwan
- Maratha Mandal Research Centre Belagavi Karnataka India - 590019
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | | |
Collapse
|
44
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
45
|
Sato K, Mano T, Iwata A, Toda T. Subtype-Dependent Reporting of Stroke With SGLT2 Inhibitors: Implications From a Japanese Pharmacovigilance Study. J Clin Pharmacol 2019; 60:629-635. [PMID: 31792991 DOI: 10.1002/jcph.1561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Volume depletion as an adverse events (AE) caused by sodium-glucose cotransporter-2 inhibitors (SGLT2i) because of their diuretic effect may raise the concern about the risk of lacunar stroke; however, an earlier meta-analysis reported no significant increase in the incidence of stroke without clearly distinguishing stroke subtypes. Here, aiming to investigate subtype-wise reporting of stroke potentially related to SGLT2i treatment, we conducted a disproportionality analysis using the Japanese Adverse Drug Event Report database, which contains approximately 500 000 cases recorded between April 2004 and March 2019 to detect stroke as AE signals associated with SGLT2i treatment by calculating the reporting odds ratio (ROR). As a result, we identified 532 stroke event reports with the use of SGLT2i. The SGLT2i showed varying degrees of significantly higher reporting (lower 95% ROR > 1) for all ischemic stroke (ROR, 12.7), thrombosis (ROR, 21.7), lacunar infarction (ROR, 48.9), and embolism (ROR, 2.51), but no significantly higher reporting for hemorrhagic stroke. Current pharmacovigilance results showed that the RORs for stroke following SGLT2i use differ greatly depending on the stroke subtypes. It suggests the need for an observational cohort study to be conducted to investigate the incidence of each stroke subtype as the effect of SGLT2i.
Collapse
Affiliation(s)
- Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Chawla G, Chaudhary KK. A complete review of empagliflozin: Most specific and potent SGLT2 inhibitor used for the treatment of type 2 diabetes mellitus. Diabetes Metab Syndr 2019; 13:2001-2008. [PMID: 31235127 DOI: 10.1016/j.dsx.2019.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/22/2019] [Indexed: 01/14/2023]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are the latest class of drugs to be introduced for the treatment of type 2 diabetes mellitus (T2DM). They reduce hyperglycemia by increasing urinary glucose excretion and exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin is a potent SGLT2 inhibitor used to improve glycemic control in adults with T2DM. It has the highest SGLT2 specificity among all the clinically used or currently tested SGLT2 inhibitors. Low risk of hypoglycemia, absence of weight gain and demonstrated cardiovascular risk reduction support its consideration as a first line medication in addition to metformin for patients with T2DM and cardiovascular disease. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. This review covers the complete information on empagliflozin including the history of its development, synthesis, pharmacology and different methods which have been reported for its analysis.
Collapse
Affiliation(s)
- Gita Chawla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), Hamdard Nagar, New Delhi, 110 062, India.
| | - Krishna Kr Chaudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed to be University), Hamdard Nagar, New Delhi, 110 062, India
| |
Collapse
|
47
|
Nuffer W, Williams B, Trujillo JM. A review of sotagliflozin for use in type 1 diabetes. Ther Adv Endocrinol Metab 2019; 10:2042018819890527. [PMID: 31807264 PMCID: PMC6880037 DOI: 10.1177/2042018819890527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes is a challenging disease that is largely managed with the use of insulin. The risk of hypoglycemia, side effects of weight gain, and high glucose variability associated with insulin use have prompted researchers to explore additional therapies to treat this condition. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of medications that lower glucose in type 2 diabetes patients independent of insulin action, and have been studied for use in the type 1 diabetes population. Sotagliflozin is an SGLT2 inhibitor that demonstrates a unique binding affinity for the SGLT1 receptor. A total of three phase III clinical trials (inTandem1, inTandem2, and inTandem3) were conducted to evaluate the safety and efficacy of sotagliflozin in type 1 diabetes. A modest hemoglobin A1C reduction of 0.3-0.4% was observed, with secondary benefits of reduced glucose variability, reduced insulin dosage, and positive weight loss effects. Overall there was a reduction in the risk of severe hypoglycemia with sotagliflozin, but a higher rate of ketone formation and risk of diabetic ketoacidosis was observed, along with increased mycotic infections and volume depletion effects.
Collapse
Affiliation(s)
| | | | - Jennifer M. Trujillo
- University of Colorado Skaggs School of Pharmacy
& Pharmaceutical Sciences, Aurora, CO, USA
| |
Collapse
|
48
|
Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, Brito-Sanfiel M, Umpierrez G. Practical Approach to Initiating SGLT2 Inhibitors in Type 2 Diabetes. Diabetes Ther 2017; 8:953-962. [PMID: 28721687 PMCID: PMC5630545 DOI: 10.1007/s13300-017-0277-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 12/22/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors are an attractive novel therapeutic option for the treatment of type 2 diabetes. They block the reabsorption of filtered glucose in kidneys, mainly in proximal renal tubules, resulting in increased urinary glucose excretion and correction of the diabetes-related hyperglycemia. Beyond improving glucose control, SGLT2 inhibitors offer potential benefits by reducing body weight and blood pressure. On the basis of the efficacy demonstrated in clinical trials, SGLT2 inhibitors are recommended as second- or third-line agents for the management of patients with type 2 diabetes. Beneficial effects on kidney disease progression, cardiovascular and all-cause mortality, and hospitalization for heart failure have also been demonstrated with one SGLT2 inhibitor (empagliflozin). Potential adverse events resulting from their mechanism of action or related to concomitant therapies are reviewed. A treatment algorithm for the adjustment of concomitant therapies after initiating SGLT2 inhibitors is also proposed.
Collapse
Affiliation(s)
| | - Cristina Abreu
- Endocrinology and Nutrition Unit, Segovia General Hospital, Segovia, Spain
| | - Albert Lecube
- Endocrinology and Nutrition Unit, Hospital Universitari Arnau de Vilanova de Lleida, Institut de Recerca Biomèdica de Lleida, CIBERDEM (CIBER de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII), University of Lleida, Lleida, Spain
| | - Diego Bellido
- Endocrinology and Nutrition Section, Hospital Marcide, Ferrol, Spain
| | - Alfonso Soto
- Endocrinology and Nutrition Department, Hospital de La Coruña, A Coruña, Spain
| | - Cristóbal Morales
- Endocrinology and Nutrition Department, Virgen Macarena Hospital, Seville, Spain
| | - Miguel Brito-Sanfiel
- Endocrinology and Nutrition Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Guillermo Umpierrez
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
49
|
Vallianou NG, Geladari E, Kazazis CE. SGLT-2 inhibitors: Their pleiotropic properties. Diabetes Metab Syndr 2017; 11:311-315. [PMID: 28011230 DOI: 10.1016/j.dsx.2016.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus has become a global pandemic. Nowadays, it is estimated that approximately 415 million people all over the world have diabetes. The sodium glucose co-transporters 2 inhibitors are a new class of glucose-lowering agents, which act through a novel mechanism by producing a decline in glucose re-absorption in the kidney, thereby increasing glycosuria and decreasing serum glucose levels. Data suggest that apart from lowering HbA1c, they produce a small but significant weight loss and a small decrease in blood pressure. Also, they possess nephro-protective potential. These drugs are demonstrated to restore intra-glomerular pressure by increasing angiotensin (1-7), which exerts vasodilatory and anti-inflammatory effects. Their profile on cardiovascular events is still under investigation. In this review, the pleiotropic potential of this novel class of glucose-lowering levels will be discussed. Further research is warranted to determine their safety in the long term.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, Athens, Greece.
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, Athens, Greece
| | | |
Collapse
|
50
|
Brown AJ, Lang C, McCrimmon R, Struthers A. Does dapagliflozin regress left ventricular hypertrophy in patients with type 2 diabetes? A prospective, double-blind, randomised, placebo-controlled study. BMC Cardiovasc Disord 2017; 17:229. [PMID: 28835229 PMCID: PMC5569551 DOI: 10.1186/s12872-017-0663-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with diabetes have a two to fourfold increased risk for development of and death from cardiovascular disease [CVD]. The current oral hypoglycaemic agents result in limited reduction in this cardiovascular risk. Sodium glucose linked co-transporter type 2 [SGLT2] inhibitors are a relatively new class of antidiabetic agent that have been shown to have potential cardiovascular benefits. In support of this, the EMPA-REG trial showed a striking 38% and 35% reduction in cardiovascular mortality and heart failure [HF] hospitalisation respectively. The exact mechanism (s) responsible for these effects remain (s) unclear. One potential mechanism is regression of Left ventricular hypertrophy (LVH). METHODS The DAPA-LVH trial is a prospective, double-blind, randomised, placebo-controlled 'proof of concept' single-centre study that has been ongoing since January 2017. It is designed specifically to assess whether the SGLT2 inhibitor dapagliflozin regresses left ventricular [LV] mass in patients with diabetes and left ventricular hypertrophy [LVH]. We are utilising cardiac and abdominal magnetic resonance imaging [MRI] and ambulatory blood pressure monitoring to quantify the cardiovascular and systemic effects of dapagliflozin 10 mg once daily against standard care over a 1 year observation period. The primary endpoint is to detect the changes in LV mass. The secondary outcomes are to assess the changes in, LV volumes, blood pressure, weight, visceral and subcutaneous fat. DISCUSSION This trial will be able to determine if SGLT2 inhibitor therapy reduces LV mass in patient with diabetes and LVH thereby strengthening their position as oral hypoglycaemic agents with cardioprotective benefits. TRIAL REGISTRATION Clinical Trials.gov: NCT02956811 . Registered November 2016.
Collapse
MESH Headings
- Administration, Oral
- Benzhydryl Compounds/administration & dosage
- Benzhydryl Compounds/adverse effects
- Blood Pressure Monitoring, Ambulatory
- Clinical Protocols
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Cardiomyopathies/diagnostic imaging
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Disease Progression
- Double-Blind Method
- Glucosides/administration & dosage
- Glucosides/adverse effects
- Humans
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Magnetic Resonance Imaging
- Proof of Concept Study
- Prospective Studies
- Research Design
- Risk Factors
- Scotland
- Time Factors
- Treatment Outcome
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Alexander J.M. Brown
- Cardiovascular Medicine, Division of Molecular and Clinical Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Mailbox 2, Dundee, DD1 9SY UK
| | - Chim Lang
- Cardiology, Division of Molecular and Clinical Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Mailbox 2, Dundee, DD1 9SY UK
| | - Rory McCrimmon
- Experimental Diabetes and Metabolism, Division of Molecular and Clinical Medicine, School of Medicine, Level 5, Ninewells Hospital and Medical School, Mailbox 12, Dundee, DD1 9SY UK
| | - Allan Struthers
- Cardiovascular Medicine and Therapeutics, Division of Molecular and Clinical Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Mailbox 2, Dundee, DD1 9SY UK
| |
Collapse
|