1
|
Shrestha A, Joshi DR, Vaidya D, Shrestha SM, Singh A. Influence of Bacteriospermia, Host and Lifestyle Factors on Sperm DNA Integrity: A Cross-Sectional Study Based on a Fertility Center of Nepal. J Family Reprod Health 2025; 19:37-43. [PMID: 40352909 PMCID: PMC12060205 DOI: 10.18502/jfrh.v19i1.18438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Objective To determine the sperm DNA fragmentation in the semen of suspected sub-fertile men of Nepal and find its association with bacteriospermia demographic and lifestyle factors. Materials and methods A cross-sectional study was conducted with the subjects, males among sub-fertile couples visiting a fertility center in Kathmandu Valley, Nepal for consultation. Information on demography and exposure factors was obtained with a structured questionnaire, and bacteriospermia and sperm DNA fragmentation was determined from the semen samples collected from the study subjects. The data obtained were used to assess sperm DNA fragmentation and its association with various risk factors in sub-fertile men of Nepal. Results Out of 186 samples analyzed, 41.4% had low DNA fragmentation (<15%), 38.7% had moderate DNA fragmentation (≥15% and <30%), and 19.9% had high DNA fragmentation (≥30%). Among the risk factors analyzed, sperm DNA fragmentation was found to be significantly associated with the age of the patients (p<0.05). Other factors analyzed body mass index, smoking, alcohol consumption, physical activity, and bacteriospermia were not found to be associated with sperm DNA fragmentation in our study. Conclusion Sperm DNA integrity may be distorted with the increasing age of men, leading to decreasing fertility potential.
Collapse
Affiliation(s)
- Anima Shrestha
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
- Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
2
|
Mulya IC, Hasan MA, Iqhrammullah M. Impact of metabolic syndrome factors on sperm DNA fragmentation in males from infertile couples: A systematic review and meta-analysis. J Gynecol Obstet Hum Reprod 2024; 53:102807. [PMID: 38825166 DOI: 10.1016/j.jogoh.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE To investigate the impact of metabolic syndrome factors on sperm DNA fragmentation (sDF) in males from infertile couples. METHODS A systematic literature search was performed across ten databases for literature published from January 1, 2013 until September 13, 2023. The protocol has been registered on PROSPERO (CRD42023458359), and the literature search strategy is adhered to the PRISMA framework. Studies that evaluated sDF, as indicated by DNA fragmentation index (%DFI), in males from infertile couples in relation to metabolic syndrome factors were included. Meta-analysis, using random effects model and Bayesian framework network, was performed, and data were presented as Standardized Mean Differences (SMD) with corresponding 95 % Confidence Interval (CI). RESULTS Of the 2579 citations identified, eleven studies were included in this meta-analysis. The findings revealed that the %DFI was not associated with overall metabolic syndrome factors (p-tot = 0.235; SMD = 0.57 [95 %CI: -0.37, 1.52]), metabolic syndrome status (p-tot = 0.337; SMD = 0.08 [95 %CI: -0.08, 0.24), increased body mass index (p-tot = 0.237; SMD = 0.71 [95 %CI: -0.47, 1.89]), or glycaemic profile (p-tot = 0.93; SMD = 0.13 [95 %CI: -2.72, 2.98]). High levels of heterogeneity were observed (p < 0.01) in all subgroups, except for metabolic syndrome status. CONCLUSION The association between metabolic syndrome factors and sDF is conflicting. However, interpreting the association requires caution, as confounding factors, indicated by high heterogeneity, may conceal the outcome. Metabolic syndrome may influence other factors contributing to male infertility, highlighting the importance of promoting a healthy lifestyle.
Collapse
Affiliation(s)
- Intan Chaharunia Mulya
- Education Program in Reproduction & Development, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria 3168, Australia.
| | | | - Muhammad Iqhrammullah
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23245, Indonesia
| |
Collapse
|
3
|
Ouyang N, Wei C, Aili A, Ji X, Chen H, Zhao H. Effect of paternal overweight or obesity on semen parameters, clinical pregnancy and live birth outcomes in men treated with intrauterine insemination (IUI). Transl Androl Urol 2024; 13:1899-1904. [PMID: 39434749 PMCID: PMC11491221 DOI: 10.21037/tau-24-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Background Overweight and obese individuals are steadily increasing in recent years. Male overweight or obesity has adverse impact on reproductive functions. The study aimed to evaluate the potential impact of paternal overweight or obesity on sperm quality and clinical pregnancy outcome in patients undergoing intrauterine insemination (IUI) treatment. Methods This retrospective study included 1,036 couples from our reproductive center between July 2019 and August 2022. All males were categorized into normal weight, overweight, or obese groups according to their body mass index (BMI). Baseline characteristics and reproductive hormones were analyzed. Semen parameters, clinical pregnancy and live birth outcomes were compared among the different BMI groups. Results There were no significant differences in sperm concentration, total sperm motility, progressive sperm motility, normal sperm morphology and sperm DNA fragmentation index (DFI) among the three groups. However, the obese group exhibited a significantly decreased semen volume compared to the other two groups (P<0.01). No differences were found in clinical pregnancy rate (CPR), abortion rate (AR) and live birth rate (LBR) among the groups (P>0.05). Slight higher ARs were observed in overweight and obese groups compared to normal group (13.64%, 21.05% vs. 11.11%, P=0.49). Conclusions These data suggest that male obesity leads to a significant decrease in semen volume. It is thus recommended that male BMI should be regarded as one of the predictors for IUI treatment to avoid a decrease in semen volume.
Collapse
Affiliation(s)
- Nengyong Ouyang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Shanwei, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Churu Wei
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Shanwei, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Adilai Aili
- The First People’s Hospital of Kashgar, Kashgar, China
| | - Xiaohui Ji
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Shanwei, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Chen
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Shanwei, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Haijing Zhao
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Shanwei, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
4
|
Li M, Zhao Q, Wang S, Song Y, Zhai L, Zhao J. Differential Impairment Mechanism of Sperm Production via Induction of miR-34c-Activated Apoptosis and Spermatogenesis Pathway in Diet-Induced Obesity and Resistant Mice and GC-1 Spg Cells. Int J Mol Sci 2024; 25:7451. [PMID: 39000558 PMCID: PMC11242685 DOI: 10.3390/ijms25137451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Male reproductive dysfunction is a clinical disease, with a large number of cases being idiopathic. Reproductive disorders have been found in obese (diet-induced obesity and diet-induced obesity-resistant) mice, but the mechanism behind the male reproductive dysfunction between them may be different. The purpose of this study was to explore the possible role and mechanism of miR-34c on sperm production in high-fat-diet-induced obesity-resistant (DIO-R) mice and GC-1 spg cells, which may differ from those in high-fat-diet-induced obesity (DIO) mice. In vivo and in vitro experiments were performed. C57BL/6J mice were fed a high-fat diet for 10 weeks to establish the DIO and DIO-R mouse model. GC-1 spg cells were used to verify the mechanism of miR-34c on sperm production. During in vivo experiments, sperm production damage was found in both DIO and DIO-R male mice. Compared to the control mice, significantly decreased levels of testosterone, LH, activities of acrosome enzyme (ACE), HAse, and activating transcription factor 1 (ATF1) were found in both DIO and DIO-R male mice (p < 0.05). Compared with the control group, the ratio of B-cell lymphoma-2 (Bcl-2)/bcl-2-associated X protein (Bax) in the DIO group was significantly decreased, and the expression level of cleaved caspase-3 was significantly increased (p < 0.05). Compared with the control group, the Bcl-2 protein expression level in the testes of the DIO-R group significantly decreased (p < 0.05). However, the Bax expression level increased. Thus, the Bcl-2/Bax ratio significantly decreased (p < 0.01); however, the factor-related apoptosis (Fas), Fas ligand (FasLG), cleaved caspase-8, caspase-8, cleaved caspase-3, and caspase-3 protein expression levels significantly increased (p < 0.05). Compared with the DIO group, in DIO-R mice, the activities of ACE, ATF1, Bcl-2, and Bcl-2/Bax's spermatogenesis protein expression decreased, while the apoptosis-promoting protein expression significantly increased (p < 0.05). During the in vitro experiment, the late and early apoptotic ratio in the miR-34c over-expression group increased. MiR-34c over-expression enhanced the expression of apoptosis-related proteins Fas/FasLG and Bax/Bcl-2 while inhibiting the expression of ATF1 and the sperm-associated protein in GC-1 spg cells. DIO and DIO-R could harm sperm production. DIO-R could impair sperm production by inducing the miR-34c-activated apoptosis and spermatogenesis pathway, which may be different from that of DIO.
Collapse
Affiliation(s)
- Mujiao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Qing Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Siyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Yangyang Song
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Lingling Zhai
- Department of Maternal, Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China;
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| |
Collapse
|
5
|
Dong J, Tong X, Xu J, Pan M, Wang L, Xu F, Wang Y, Li L, Wang T. Metformin improves obesity-related oligoasthenospermia via regulating the expression of HSL in testis in mice. Eur J Pharmacol 2024; 968:176388. [PMID: 38367685 DOI: 10.1016/j.ejphar.2024.176388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Researches have proposed that obesity might contribute to development of oligoasthenospermia. This study was performed to confirm whether obesity contributes to oligoasthenospermia as well as the underlying mechanisms in mice fed with a high fat diet (HFD). Meanwhile, the actions of metformin, a drug of well-known weight-lowering effect, on sperm quality in obese mice were investigated. Our results showed that HFD feeding reduced sperm quality and steroid hormone levels in mice, associated with disruptions in testicular histomorphology and spermatogenesis. Moreover, obesity increased sperm apoptosis. These effects could be prevented by metformin treatment in HFD-fed mice. Mechanistically, an increasement in lipid contents associated with decreased hormone-sensitive lipase (HSL) protein expression in testes in HFD-fed mice was observed, which could be improved by metformin treatment. Then, the model of TM4 mouse Sertoli cells stimulated with palmitic acid (PA) was used to investigate the potential effect of lipid retention on testicular apoptosis and sperm quality reduction. In consistent, PA exposure elevated lipid contents as well as apoptosis in TM4 cells, which could also be improved by metformin treatment. Of note, the protein expression of HSL was reduced stimulated by PA in TM4 cells, also rescued by metformin. Then, anti-apoptosis effect of metformin would be lost with the deficiency of HSL. In summary, our study propose that obesity contributes to oligoasthenospermia by increasing sperm apoptosis induced by impaired lipid hydrolysis due to HSL down-regulation, which could be prevented with metformin treatment via regulating the expression of HSL in testis in mice.
Collapse
Affiliation(s)
- Jinhui Dong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohui Tong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Xu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Xu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yajuan Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
6
|
Peel A, Saini A, Deluao JC, McPherson NO. Sperm DNA damage: The possible link between obesity and male infertility, an update of the current literature. Andrology 2023; 11:1635-1652. [PMID: 36789664 DOI: 10.1111/andr.13409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Obesity prevalence worldwide is increasing significantly. Whilst maternal obesity has clear detrimental impacts on fertility, pregnancy and foetal outcomes, more recently there has been an increasing focus on the role of paternal obesity in human fertility. Recent meta-analyses have indicated that obesity in men negatively affects basic sperm parameters such as sperm count, concentration and motility, increases the incidence of infertility and reduces the chances of conception. Sperm DNA damage, typically characterised by DNA strand breaks and oxidation of DNA nucleotides, is a specialised marker of sperm quality that has been independently associated with recurrent miscarriage, reduced assisted reproduction success and increased mutational loads in subsequent offspring. Whilst, there are still conflicting data in humans as to the association of obesity in men with sperm DNA damage, evidence from rodent models is clear, indicating that male obesity increases sperm DNA damage. Human data are often conflicting because of the large heterogeneity amongst studies, the use of body mass index as the indicator of obesity and the methods used for detection of sperm DNA damage. Furthermore, comorbidities of obesity (i.e., heat stress, adipokines, insulin resistance, changes in lipids, hypogonadism and obstructive sleep apnoea) are also independently associated with increased sperm DNA damage that is not always modified in men with obesity, and as such may provide a causative link to the discrepancies amongst human studies. In this review, we provide an update on the literature regarding the associations between obesity in men and fertility, basic sperm parameters and sperm DNA damage. We further discuss potential reasons for the discrepancies in the literature and outline possible direct and indirect mechanisms of increased sperm DNA damage resulting from obesity. Finally, we summarise intergenerational obesity through the paternal linage and how sperm DNA damage may contribute to the transmission.
Collapse
Affiliation(s)
- Andrew Peel
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anmol Saini
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joshua C Deluao
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole O McPherson
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
- Repromed IVF Adelaide, Dulwich, South Australia, Australia
| |
Collapse
|
7
|
Harrison TD, Chaney EM, Brandt KJ, Ault-Seay TB, Payton RR, Schneider LG, Strickland LG, Schrick FN, McLean KJ. The effects of nutritional level and body condition score on cytokines in seminal plasma of beef bulls. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1078960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IntroductionHigh quality semen is essential for reproductive efficiency. Nutrition and environmental factors impact the ejaculate components, like cytokines, that are essential for pregnancy establishment. We hypothesized that differing nutritional periods and body condition scores would affect seminal plasma cytokine concentrations of bulls.MethodsMature Angus bulls (n=11) were individually housed and randomly assigned to either over-fed (n=5) or restricted (n=6) treatment pathways. Bulls were fed different volumes of a single ration creating 8 individual treatment periods. Body weight and body condition scores were taken every 14 d to manage intake volumes. Ejaculates were collected every 84 d to determine seminal plasma cytokine profiles. A complete randomized design was used to evaluate seminal plasma cytokines after each nutritional treatment. Initial cytokine concentrations and volume of the ejaculate were included as covariates.ResultsAll cytokines returned to initial concentrations following maintenance treatments at an ideal body condition score of 6. Nutritional treatments affected (P ≤ 0.05) IFN-γ, IL-8, MIP-1α, MIP-1β, TNF-α, IL-1β, and VEGF-A. However, TNF-α, IFN-γ, and MIP-1α had the greatest impact on cytokine profile.DiscussionNutritional levels and adiposity altered seminal plasma cytokine concentrations which could potentially impact the inflammatory balance of the uterus and the immune responses necessary for pregnancy establishment.
Collapse
|
8
|
Roca J, Rodriguez-Martinez H, Padilla L, Lucas X, Barranco I. Extracellular vesicles in seminal fluid and effects on male reproduction. An overview in farm animals and pets. Anim Reprod Sci 2022; 246:106853. [PMID: 34556398 DOI: 10.1016/j.anireprosci.2021.106853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released by most functional cells to body fluids, containing bioactive molecules, mainly proteins, lipids, and nucleic acids having actions at target cells. The EVs have essential functions in cell-to-cell communication by regulating different biological processes in target cells. Fluids from the male reproductive tract, including seminal plasma, contain many extracellular vesicles (sEVs), which have been evaluated to a lesser extent than those of other body fluids, particularly in farm animals and pets. Results from the few studies that have been conducted indicated epithelial cells of the testis, epididymis, ampulla of ductus deferens and many accessory sex glands release sEVs mainly via apocrine mechanisms. The sEVs are morphologically heterogeneous and bind to functional cells of the male reproductive tract, spermatozoa, and cells of the functional tissues of the female reproductive tract after mating or insemination. The sEVs encapsulate proteins and miRNAs that modulate sperm functions and male fertility. The sEVs, therefore, could be important as reproductive biomarkers in breeding sires. Many of the current findings regarding sEV functions, however, need experimental confirmation. Further studies are particularly needed to characterize both membranes and contents of sEVs, as well as the interaction between sEVs and target cells (spermatozoa and functional cells of the internal female reproductive tract). A priority for conducting these studies is development of methods that can be standardized and that are scalable, cost-effective and time-saving for isolation of different subtypes of EVs present in the entire population of sEVs.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, IT-40064 Bologna, Italy
| |
Collapse
|
9
|
Tsampoukas G, Tharakan T, Narayan Y, Khan F, Cayetano A, Papatsoris A, Buchholz N, Minhas S. Investigating the therapeutic options for diabetes-associated male infertility as illustrated in animal experimental models. Andrologia 2022; 54:e14521. [PMID: 35934995 DOI: 10.1111/and.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is a rising global health concern and an increasingly common cause of male infertility. Although the definitive pathophysiological mechanisms underpinning the association between diabetes and infertility is unclear, there are several animal studies showing diabetes to be a detrimental factor on reproductive health through apoptosis, oxidative stress and impairment of steroidogenesis. Furthermore, as reflected in animal models, antidiabetic strategies and relevant treatments are beneficial in the management of infertile men with diabetes as the recovery of euglycemic status affects positively the spermatogenesis. However, the available data are still evolving and specific conclusion in human populations are not possible yet. In this review, we are discussing the current literature concerning the association of diabetes and male infertility, focusing on the therapeutic approach as illustrated in animals' models.
Collapse
Affiliation(s)
- Georgios Tsampoukas
- U-merge Ltd. (Urology for emerging countries), London, UK.,Department of Urology, Great Western Hospital NHS Trust, Swindon, UK
| | - Tharu Tharakan
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK.,Section of Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Yash Narayan
- Department of Surgery, Cairns Hospital, Cairns North, Queensland, Australia
| | - Faisal Khan
- Department of Urology, North Devon Hospital, Barnstaple, UK
| | - Axel Cayetano
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Athanasios Papatsoris
- U-merge Ltd. (Urology for emerging countries), London, UK.,Department of Urology, Sismanoglio University Hospital of Athens, Athens, Greece
| | - Noor Buchholz
- U-merge Ltd. (Urology for emerging countries), London, UK
| | - Suks Minhas
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK
| |
Collapse
|
10
|
Hammami I, Ben Ali R, Nahdi A, Boussada M, Mahjoub R, Bibi A, El May MV. Kefir milk consumption decreases sperm alterations due to the high-fat diet in adult male rats. Andrologia 2022; 54:1631-1642. [PMID: 35396733 DOI: 10.1111/and.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Over the past decades, an increase of male infertility through the decrease of sperm count has been noted. It has been suggested that environmental factors and lifestyle could a negative impact over sperm quality. Among these factors, the consumption of foods high in fat, which leads to overweight and obesity, can negatively influence fertility. The present study was designed to highlight the protective effect of Kefir, natural probiotic, against the decline in sperm quality related to fat high diet. Thirty adult rats were divided into four groups: Control (1 ml/100 g of body weight (bw) of semi-shimmed cow milk), KM (1 ml/100 g bw of Kefir milk), HFD (1 ml/100 g bw of semi-shimmed cow milk + high-fat diet) and KM/HFD (1 ml/100 g bw Kefir milk + high-fat diet). After 60 days of treatment, sperm quality, biochemical assays of lipids profil, blood cell count and histological examination in testis were assessed. The results described an improved of sperm density (64.28 106 ml vs 54.14 106 ml), viability (70.50% vs 55.33%), mobility (65.40% vs 63.60%) and morphological abnormalities (52% vs 25%) in the KM/HFD group compared to HFD group. In the same group, the lipid profil (Triglycerides (128.39 mg/dl vs 102.85 mg/dl), C-LDL (13.65 mg/dl vs 15.32 mg/dl) and C-HDL (23.21 mg/dl vs 19.15 mg/dl)) was corrected compared to HFD group. The histological observation of testis revealed a normal spermatogenesis compared to seminiferous tubules of HFD group, which showed a serious disruption and damage of testicular epithelium exerted by the high-fat diet. These findings corroborated the previous beneficial effect of Kefir and brought new insights into its beneficial effect against deteriorated spermatogenesis in obese adult rats.
Collapse
Affiliation(s)
- Imen Hammami
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Ridha Ben Ali
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Afef Nahdi
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Marwa Boussada
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Rahma Mahjoub
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Amina Bibi
- Laboratory of Clinic Biology, National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Michèle Véronique El May
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| |
Collapse
|
11
|
Bazrgar M, Khodabakhsh P, Prudencio M, Mohagheghi F, Ahmadiani A. The role of microRNA-34 family in Alzheimer's disease: A potential molecular link between neurodegeneration and metabolic disorders. Pharmacol Res 2021; 172:105805. [PMID: 34371173 DOI: 10.1016/j.phrs.2021.105805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 02/09/2023]
Abstract
Growing evidence indicates that overexpression of the microRNA-34 (miR-34) family in the brain may play a crucial role in Alzheimer's disease (AD) pathogenesis by targeting and downregulating genes associated with neuronal survival, synapse formation and plasticity, Aβ clearance, mitochondrial function, antioxidant defense system, and energy metabolism. Additionally, elevated levels of the miR-34 family in the liver and pancreas promote the development of metabolic syndromes (MetS), such as diabetes and obesity. Importantly, MetS represent a well-documented risk factor for sporadic AD. This review focuses on the recent findings regarding the role of the miR-34 family in the pathogenesis of AD and MetS, and proposes miR-34 as a potential molecular link between both disorders. A comprehensive understanding of the functional roles of miR-34 family in the molecular and cellular pathogenesis of AD brains may lead to the discovery of a breakthrough treatment strategy for this disease.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|