1
|
Dey P. Comparable hepatocellular metabolomic signatures under glucose and palmitic acid treatment relative to butyrate in relation to metabolic dysfunction-associated fatty liver disease. Arch Physiol Biochem 2025:1-11. [PMID: 40372011 DOI: 10.1080/13813455.2025.2500651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Among the dietary factors, glucose, and fatty acids are known to trigger fatty liver disease, while butyrate attenuates steatosis. OBJECTIVE To decipher the hepatocellular altered metabolome under nutrient perturbation relevant to fatty liver disease. METHODS HepG2 cells were cultured under the influence of sub-lethal doses of glucose, palmitic acid (PA), and butyrate. Following the treatment, intracellular metabolites were extracted and derivatized for GCMS analysis. Chemical class enrichment, metabolic pathway analysis, and metabolomic interactome analysis were undertaken. RESULTS Glucose, PA and butyrate caused loss of cell viability at 160 mM, 1600 µM, and 40 mM concentration, respectively. A total of 39, 47, 52, and 51 metabolites were identified in control, glucose, PA, and butyrate, respectively, among which 2-ethylhexanoic acid in control and 2-ethylhexan-1-ol in glucose, PA and butyrate were the most abundant metabolites. Pathways related to the mitochondrial electron transport chain were highly enriched in glucose and PA treatments, leading to increased free radicals. The metabolites identified under glucose and PA treatment were linked to the metabolomic markers of metabolic liver diseases. CONCLUSION Our data showed that the hepatocellular metabolome of HepG2 cells under glucose and PA treatment is closely related, while the metabolome and pathways associated with butyrate treatment are associated with energy metabolism and alleviation of fatty liver.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
2
|
Huang Q, Qadri SF, Bian H, Yi X, Lin C, Yang X, Zhu X, Lin H, Yan H, Chang X, Sun X, Ma S, Wu Q, Zeng H, Hu X, Zheng Y, Yki-Järvinen H, Gao X, Tang H, Xia M. A metabolome-derived score predicts metabolic dysfunction-associated steatohepatitis and mortality from liver disease. J Hepatol 2025; 82:781-793. [PMID: 39423864 DOI: 10.1016/j.jhep.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with a >10-fold increase in liver-related mortality. However, biomarkers predicting both MASH and mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are missing. We developed a metabolome-derived prediction score for MASH and examined whether it predicts mortality in Chinese and European cohorts. METHODS The MASH prediction score was developed using a multi-step machine learning strategy, based on 44 clinical parameters and 250 serum metabolites measured by proton nuclear magnetic resonance in 311 Chinese adults undergoing a liver biopsy. External validation was conducted in a Finnish liver biopsy cohort (n = 305). We investigated associations of the score with all-cause and cause-specific mortality in the population-based Shanghai Changfeng study (n = 5,893) and the UK biobank (n = 111,673). RESULTS A total of 24 clinical parameters and 194 serum metabolites were significantly associated with MASH in the Chinese liver biopsy cohort. The final MASH score included BMI, aspartate aminotransferase, tyrosine, and the phospholipid-to-total lipid ratio in VLDL. The score identified patients with MASH with AUROCs of 0.87 (95% CI 0.83-0.91) and 0.81 (95% CI 0.75-0.88) in the Chinese and Finnish cohorts, with high negative predictive values. Participants with a high or intermediate risk of MASH based on the score had a markedly higher risk of MASLD-related mortality than those with a low risk in Chinese (hazard ratio 23.19; 95% CI 4.80-111.97) and European (hazard ratio 20.15; 95% CI 10.95-37.11) individuals after 7.2 and 12.6 years of follow-up, respectively. The MASH prediction score was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related mortality. CONCLUSION The metabolome-derived MASH prediction score accurately predicts risk of MASH and MASLD-related mortality in both Chinese and European individuals. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with more than a 10-fold increase in liver-related death. However, biomarkers predicting not only MASH, but also death due to liver disease, are missing. We established a MASH prediction score based on 44 clinical parameters and 250 serum metabolites using a machine learning strategy. This metabolome-derived MASH prediction score could accurately identify patients with MASH among both Chinese and Finnish individuals, and it was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related death in the general population. Thus, the new MASH prediction score is a useful tool for identifying individuals with a markedly increased risk of serious liver-related outcomes among at-risk and general populations.
Collapse
Affiliation(s)
- Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Sami F Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoxuan Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinyu Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Gopalakrishnan V, Kumar C, Robertsen I, Morehouse C, Sparklin B, Khader S, Henry I, Johnson LK, Hertel JK, Christensen H, Sandbu R, Greasley PJ, Sellman BR, Åsberg A, Andersson S, Löfmark RJ, Hjelmesæth J, Karlsson C, Cohen TS. A multi-omics microbiome signature is associated with the benefits of gastric bypass surgery and is differentiated from diet induced weight loss through 2 years of follow-up. Mucosal Immunol 2025:S1933-0219(25)00040-6. [PMID: 40222615 DOI: 10.1016/j.mucimm.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Roux-en-Y gastric bypass (GBP) surgery is an effective treatment for reducing body weight and correcting metabolic dysfunction in individuals with severe obesity. Herein, we characterize the differences between very low energy diet (VLED) and GBP induced weight loss by multi-omic analyses of microbiome and host features in a non-randomized, controlled, single-center study. Eighty-eight participants with severe obesity were recruited into two arms - GBP versus VLED with matching weight loss for 6 weeks and 2-years of follow-up. A dramatic shift in the distribution of gut microbial taxa and their functional capacity was seen in the GBP group at Week 2 after surgery and was sustained through 2 years. Multi-omic analyses were performed after 6 weeks of matching weight loss between the GBP and VLED groups, which pointed to microbiome derived metabolites such as indoxyl sulphate as characterizing the GBP group. We also identified an inverse association between Streptococcus parasanguinis (an oral commensal) and plasma levels of tryptophan and tyrosine. These data have important implications, as they reveal a significant robust restructuring of the microbiome away from a baseline dysbiotic state in the GBP group. Furthermore, multi-omics modelling points to potentially novel mechanistic insights at the intersection of the microbiome and host.
Collapse
Affiliation(s)
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway
| | - Christopher Morehouse
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Ben Sparklin
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Shameer Khader
- Data Science and Artificial Intelligence, Biopharmaceuticals R&D, AstraZeneca, USA.
| | - Ian Henry
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Jens K Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bret R Sellman
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, P.O.Box 4950 Nydalen 0424 Oslo, Norway
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson Löfmark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, 0318 Oslo, Norway
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Taylor S Cohen
- Late Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA.
| |
Collapse
|
4
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
5
|
Ismail HM, Perera D, Mandal R, DiMeglio LA, Evans-Molina C, Hannon T, Petrosino J, Javornik Cregeen S, Schmidt NW. Gut Microbial Changes Associated With Obesity in Youth With Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:364-373. [PMID: 39078977 PMCID: PMC11747672 DOI: 10.1210/clinem/dgae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
CONTEXT Obesity is prevalent in type 1 diabetes (T1D) and is problematic with higher risk for diabetes complications. It is unknown to what extent gut microbiome changes are associated with obesity and T1D. OBJECTIVE This work aimed to describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized statistically significant gut microbial and metabolite differences in lean T1D youth (body mass index [BMI]: 5%-<85%) vs those with obesity (BMI: ≥95%). METHODS We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) differences in lean (n = 27) and obese (n = 21) T1D youth in a pilot study. The mean ± SD age was 15.3 ± 2.2 years, glycated hemoglobin A1c 7.8 ± 1.3%, diabetes duration 5.1 ± 4.4 years, 42.0% female, and 94.0% were White. RESULTS Bacterial community composition showed between sample diversity differences (β-diversity) by BMI group (P = .013). There was a higher ratio of Prevotella to Bacteroides in the obese group (P = .0058). There was a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri, among other taxa in the obese group. Functional profiling showed an upregulation of branched-chain amino acid (BCAA) biosynthesis in the obese group and upregulation of BCAA degradation, tyrosine metabolism, and secondary bile acid biosynthesis in the lean group. Stool SCFAs were higher in the obese vs the lean group (P < .05 for all). CONCLUSION Our findings identify a gut microbiome and microbial metabolite signature associated with obesity in T1D. These findings could help identify gut microbiome-targeted therapies to manage obesity in T1D.
Collapse
Affiliation(s)
- Heba M Ismail
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dimuthu Perera
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rabindra Mandal
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tamara Hannon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan W Schmidt
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Jo S, Kim JM, Li M, Kim HS, An YJ, Park S. TAT as a new marker and its use for noninvasive chemical biopsy in NASH diagnosis. Mol Med 2024; 30:232. [PMID: 39592957 PMCID: PMC11590374 DOI: 10.1186/s10020-024-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Early diagnosis of Nonalcoholic steatohepatitis (NASH) is crucial to prevent its progression to hepatocellular carcinoma, but its gold standard diagnosis still requires invasive biopsy. Here, a new marker-based noninvasive chemical biopsy approach is introduced that uses urine-secreted tyrosine metabolites. METHODS We first identified NASH-specific decrease in TAT expression, the first enzyme in the tyrosine degradation pathway (TDP), by employing exometabolome-transcriptome correlations, single-cell RNA -seq, and tissue staining on human NASH patient samples. A selective extrahepatic monitoring of the TAT activity was established by the chemical biopsy exploiting the enzyme's metabolic conversion of D2-tyrosine into D2-4HPP. The approach was applied to a NASH mouse model using the methionine-choline deficient diet, where urine D2-4HPP level was measured with a specific LC-MS detection, following oral administration of D2-tyrosine. RESULTS The noninvasive urine chemical biopsy approach could effectively differentiate NASH from normal mice (normal = 14, NASH = 15, p = 0.0054), correlated with the NASH pathology and TAT level decrease observed with immunostaining on the liver tissue. In addition, we showed that the diagnostic differentiation could be enhanced by measuring the downstream metabolites of TDP. The specificity of the TAT and the related TDP enzymes in NASH were also addressed in other settings employing high fat high fructose mouse NASH model and human obesity vs. NASH cohort. CONCLUSIONS Overall, we propose TAT and TDP as pathology-relevant markers for NASH and present the urine chemical biopsy as a noninvasive modality to evaluate the NASH-specific changes in urine that may help the NASH diagnosis.
Collapse
Affiliation(s)
- Sihyang Jo
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jin-Mo Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minshu Li
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han Sun Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea
| | - Yong Jin An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Sunghyouk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak- Ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Lin KH, Vilar-Gomez E, Corey KE, Connelly MA, Gupta SK, Lake JE, Chalasani N, Gawrieh S. MASLD in persons with HIV is associated with high cardiometabolic risk as evidenced by altered advanced lipoprotein profiles and targeted metabolomics. Lipids Health Dis 2024; 23:339. [PMID: 39420356 PMCID: PMC11484191 DOI: 10.1186/s12944-024-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction associated steatotic liver disease (MASLD) is associated with increased cardiovascular disease (CVD) risk in persons with HIV (PWH). The lipidomic and metabolomic alterations contributing to this risk are poorly understood. We aimed to characterize the advanced lipoprotein and targeted metabolomic profiles in PWH and assess if the presence and severity of MASLD influence these profiles. METHODS This is a cross-sectional analysis of a prospectively enrolled multicenter cohort. PWH without alcohol abuse or known liver disease underwent vibration-controlled transient elastography for controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). Lipidomic and metabolomic profiling was undertaken with nuclear magnetic resonance (NMR) spectroscopy. Hepatic steatosis was defined as CAP ≥ 263 dB/m and clinically significant fibrosis (CSF) as LSM ≥ 8 kPa. Logistic regression models assessed associations between MASLD, CSF and lipidomic and metabolic parameters. RESULTS Of 190 participants (71% cisgender male, 96% on antiretroviral therapy), 58% had MASLD and 12% CSF. Mean (SD) age was 48.9 (12.1) years and body mass index (BMI) 29.9 (6.4) kg/m2. Compared to PWH without MASLD (controls), PWH with MASLD had lower HDL-C but higher total triglyceride, VLDL-C, branched-chain amino acids, GlycA, trimethylamine N-oxide levels, Lipoprotein-Insulin Resistance and Diabetes Risk Indices. There were no significant differences in these parameters between participants with MASLD with or without CSF. In a multivariable regression analysis, MASLD was independently associated with changes in most of these parameters after adjustment for age, gender, race/ethnicity, type 2 diabetes mellitus, BMI, and lipid lowering medications use. CONCLUSIONS MASLD in PWH is independently associated with altered advanced lipoprotein and targeted metabolic profiles, indicating a higher CVD risk in this population.
Collapse
Affiliation(s)
- Kung-Hung Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Samir K Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Medicine, UTHealth Science Center at Houston, Houston, TX, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Agrinier AL, Morissette A, Daoust L, Gignac T, Marois J, Varin TV, Pilon G, Larose É, Gagnon C, Desjardins Y, Anhê FF, Carreau AM, Vohl MC, Marette A. Camu-camu decreases hepatic steatosis and liver injury markers in overweight, hypertriglyceridemic individuals: A randomized crossover trial. Cell Rep Med 2024; 5:101682. [PMID: 39168095 PMCID: PMC11384942 DOI: 10.1016/j.xcrm.2024.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the adult population with no effective drug treatments available. Previous animal studies reported that a polyphenol-rich extract from the Amazonian berry camu-camu (CC) prevented hepatic steatosis in a mouse model of diet-induced obesity. This study aims to determine the impact of CC on hepatic steatosis (primary outcome) and evaluate changes in metabolic and gut microbiota profiles (exploratory outcomes). A randomized, double-blind, placebo-controlled crossover trial is conducted on 30 adults with overweight and hypertriglyceridemia, who consume 1.5 g of CC capsules or placebo daily for 12 weeks. CC treatment decreases liver fat by 7.43%, while it increases by 8.42% during the placebo intervention, showing a significant difference of 15.85%. CC decreases plasma aspartate and alanine aminotransferases levels and promotes changes in gut microbiota composition. These findings support that polyphenol-rich prebiotic may reduce liver fat in adults with overweight, reducing the risk of developing NAFLD.
Collapse
Affiliation(s)
- Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Arianne Morissette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Laurence Daoust
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Théo Gignac
- Department of Medicine, Faculty of Medicine, Centre de Recherche CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Julie Marois
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Thibault V Varin
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Éric Larose
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada
| | - Claudia Gagnon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Department of Medicine, Faculty of Medicine, Centre de Recherche CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Yves Desjardins
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada; Department of Plant Science, Faculty of Agriculture and Food sciences, Université Laval, Quebec City, QC, Canada
| | - Fernando F Anhê
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Faculty of Medicine, Centre de Recherche CHU de Québec-Université Laval, Université Laval, Quebec City, QC, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada; School of Nutrition, Université Laval, Quebec City, QC, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute (IUCPQ), Université Laval, Quebec City, QC, Canada; Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
9
|
Ramya K, Lakshmi KSJ, Amreen K, Goel S. Electrochemical Synthesis of Molecularly Imprinted Polymers for L-Tyrosine Detection. IEEE Trans Nanobioscience 2024; 23:410-417. [PMID: 38507383 DOI: 10.1109/tnb.2024.3379588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
L-Tyrosine (L-Tyr), a critical amino acid whose aberrant levels impact melanin and dopamine levels in human body while also increasing insulin resistance thereby increasing the risk of type 2 diabetes. The objective of this study was to detect the amount of L-Tyr in human fluids by tailored electrochemical synthesis of well adhered, homogenous and thin molecularly imprinted polymers (MIPs) by the electro-polymerization of pyrrole on glassy carbon electrode modified functionalized multi-walled carbon nanotubes. The key benefits of this procedure over previous imprinting techniques were the elimination of expensive materials like Au and tedious multi-step synthesis, for L-Tyr detection using a handheld potentiostat. The developed particles were characterized using Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Chronoamperometry, and Cyclic Voltammetry. With strong reproducibility and stability, this optimized approach provides a rapid and effective method of preparing and sensing MIPs for the target analyte with a broad linear range of [Formula: see text] to [Formula: see text]. The Limit of Detection and Limit of Quantification were [Formula: see text] and [Formula: see text], respectively. The engineered sensor was validated for quantifying the concentrations of L-Tyr in human blood and serum samples, yielding satisfactory recovery and can be expanded in future to detect analytes simultaneous.
Collapse
|
10
|
Tinkov AA, Korobeinikova TV, Morozova GD, Aschner M, Mak DV, Santamaria A, Rocha JBT, Sotnikova TI, Tazina SI, Skalny AV. Association between serum trace element, mineral, and amino acid levels with non-alcoholic fatty liver disease (NAFLD) in adult women. J Trace Elem Med Biol 2024; 83:127397. [PMID: 38290269 DOI: 10.1016/j.jtemb.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
The objective of the present study is assessment of serum trace element and amino acid levels in non-alcoholic fatty liver disease (NAFLD) patients with subsequent evaluation of its independent associations with markers of liver injury and metabolic risk. MATERIALS AND METHODS 140 women aged 20-90 years old with diagnosed NAFLD and 140 healthy women with a respective age range were enrolled in the current study. Analysis of serum and hair levels of trace elements and minerals was performed with inductively-coupled plasma mass-spectrometry (ICP-MS). Serum amino acid concentrations were evaluated by high-pressure liquid chromatography (HPLC) with UV-detection. In addition, routine biochemical parameters including liver damage markers, alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT), were assessed spectrophotometrically. RESULTS The findings demonstrated that patients with NAFLD were characterized by higher ALT, GGT, lactate dehydrogenase (LDH) and cholinesterase (CE) activity, as well as increased levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid. NAFLD patients were characterized by reduced serum and hair Co, Se, and Zn levels, as well as hair Cu content and serum Mn concentrations in comparison to controls. Circulating Ala, Cit, Glu, Gly, Ile, Leu, Phe, and Tyr levels in NAFLD patients exceeded those in the control group. Multiple linear regression demonstrated that serum and hair trace element levels were significantly associated with circulating amino acid levels after adjustment for age, BMI, and metabolic parameters including liver damage markers. CONCLUSION It is proposed that altered trace element handling may contribute to NAFLD pathogenesis through modulation of amino acid metabolism.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Galina D Morozova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 Bronx, NY, USA
| | - Daria V Mak
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Abel Santamaria
- Faculty of Sciencies, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
11
|
Fotakis C, Amanatidou AI, Kafyra M, Andreou V, Kalafati IP, Zervou M, Dedoussis GV. Circulatory Metabolite Ratios as Indicators of Lifestyle Risk Factors Based on a Greek NAFLD Case-Control Study. Nutrients 2024; 16:1235. [PMID: 38674925 PMCID: PMC11055137 DOI: 10.3390/nu16081235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An ensemble of confounding factors, such as an unhealthy diet, obesity, physical inactivity, and smoking, have been linked to a lifestyle that increases one's susceptibility to chronic diseases and early mortality. The circulatory metabolome may provide a rational means of pinpointing the advent of metabolite variations that reflect an adherence to a lifestyle and are associated with the occurrence of chronic diseases. Data related to four major modifiable lifestyle factors, including adherence to the Mediterranean diet (estimated on MedDietScore), body mass index (BMI), smoking, and physical activity level (PAL), were used to create the lifestyle risk score (LS). The LS was further categorized into four groups, where a higher score group indicates a less healthy lifestyle. Drawing on this, we analyzed 223 NMR serum spectra, 89 MASLD patients and 134 controls; these were coupled to chemometrics to identify "key" features and understand the biological processes involved in specific lifestyles. The unsupervised analysis verified that lifestyle was the factor influencing the samples' differentiation, while the supervised analysis highlighted metabolic signatures. Τhe metabolic ratios of alanine/formic acid and leucine/formic acid, with AUROC > 0.8, may constitute discriminant indexes of lifestyle. On these grounds, this research contributed to understanding the impact of lifestyle on the circulatory metabolome and highlighted "prudent lifestyle" biomarkers.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| |
Collapse
|
12
|
Ismail HM, Perera D, Mandal R, DiMeglio LA, Evans-Molina C, Hannon T, Petrosino J, Javornick CreGreen S, Schmidt NW. Gut microbial changes associated with obesity in youth with type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299251. [PMID: 38076970 PMCID: PMC10705628 DOI: 10.1101/2023.12.01.23299251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Obesity is increasingly prevalent in type 1 diabetes (T1D) and is associated with management problems and higher risk for diabetes complications. Gut microbiome changes have been described separately in each of T1D and obesity, however, it is unknown to what extent gut microbiome changes are seen when obesity and T1D concomitantly occur. OBJECTIVE To describe the gut microbiome and microbial metabolite changes associated with obesity in T1D. We hypothesized significant gut microbial and metabolite differences between T1D youth who are lean (BMI: 5-<85%) vs. those with obesity (BMI: ≥95%). METHODS We analyzed stool samples for gut microbial (using metagenomic shotgun sequencing) and short-chain fatty acid (SCFA) metabolite differences in lean (n=27) and obese (n=21) T1D youth. The mean±SD age was 15.3±2.2yrs, A1c 7.8±1.3%, diabetes duration 5.1±4.4yrs, 42.0% females, and 94.0% were White. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify taxa that best discriminated between the BMI groups. RESULTS Bacterial community composition showed differences in species type (β-diversity) by BMI group (p=0.013). At the genus level, there was a higher ratio of Prevotella to Bacteroides in the obese group (p=0.0058). LEfSe analysis showed a differential distribution of significantly abundant taxa in either the lean or obese groups, including increased relative abundance of Prevotella copri , among other taxa in the obese group. Functional profiling showed that pathways associated with decreased insulin sensitivity were upregulated in the obese group. Stool SCFAs (acetate, propionate and butyrate) were higher in the obese compared to the lean group (p<0.05 for all). CONCLUSIONS Our findings identify gut microbiome, microbial metabolite and functional pathways differences associated with obesity in T1D. These findings could be helpful in identifying gut microbiome targeted therapies to manage obesity in T1D.
Collapse
|
13
|
Fotakis C, Kalafati IP, Amanatidou AI, Andreou V, Matzapetakis M, Kafyra M, Varlamis I, Zervou M, Dedoussis GV. Serum metabolomic profiling unveils distinct sex-related metabolic patterns in NAFLD. Front Endocrinol (Lausanne) 2023; 14:1230457. [PMID: 37854184 PMCID: PMC10579908 DOI: 10.3389/fendo.2023.1230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/31/2023] [Indexed: 10/20/2023] Open
Abstract
Objective Obesity poses an increased risk for the onset of Nonalcoholic fatty liver disease (NAFLD). The influence of other factors, such as sex in the incidence and severity of this liver disease has not yet been fully elucidated. Thus, we aimed to identify the NAFLD serum metabolic signatures associated with sex in normal, overweight and obese patients and to associate the metabolite fluctuations across the increasing liver steatosis stages. Methods and results Using nuclear magnetic resonance (NMR) serum samples of 210 NAFLD cases and control individuals diagnosed with liver U/S, our untargeted metabolomics enquiry provided a sex distinct metabolic bouquet. Increased levels of alanine, histidine and tyrosine are associated with severity of NAFLD in both men and women. Moreover, higher serum concentrations of valine, aspartic acid and mannose were positively associated with the progression of NAFLD among the male subjects, while a negative association was observed with the levels of creatine, phosphorylcholine and acetic acid. On the other hand, glucose was positively associated with the progression of NAFLD among the female subjects, while levels of threonine were negatively related. Fluctuations in ketone bodies acetoacetate and acetone were also observed among the female subjects probing a significant reduction in the circulatory levels of the former in NAFLD cases. A complex glycine response to hepatic steatosis of the female subjects deserves further investigation. Conclusion Results of this study aspire to address the paucity of data on sex differences regarding NAFLD pathogenesis. Targeted circulatory metabolome measurements could be used as diagnostic markers for the distinct stages of NAFLD in each sex and eventually aid in the development of novel sex-related therapeutic options.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Ioanna-Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Manolis Matzapetakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Iraklis Varlamis
- Department of Informatics and Telematics, Harokopio University of Athens, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| |
Collapse
|
14
|
Amanatidou AI, Mikropoulou EV, Amerikanou C, Milanovic M, Stojanoski S, Bjelan M, Cesarini L, Campolo J, Thanopoulou A, Banerjee R, Kurth MJ, Milic N, Medic-Stojanoska M, Trivella MG, Visvikis-Siest S, Gastaldelli A, Halabalaki M, Kaliora AC, Dedoussis GV, on behalf of the Mast4Health consortium. Plasma Amino Acids in NAFLD Patients with Obesity Are Associated with Steatosis and Fibrosis: Results from the MAST4HEALTH Study. Metabolites 2023; 13:959. [PMID: 37623902 PMCID: PMC10456787 DOI: 10.3390/metabo13080959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have been linked to changes in amino acid (AA) levels. The objective of the current study was to examine the relationship between MRI parameters that reflect inflammation and fibrosis and plasma AA concentrations in NAFLD patients. Plasma AA levels of 97 NAFLD patients from the MAST4HEALTH study were quantified with liquid chromatography. Medical, anthropometric and lifestyle characteristics were collected and biochemical parameters, as well as inflammatory and oxidative stress biomarkers, were measured. In total, subjects with a higher MRI-proton density fat fraction (MRI-PDFF) exhibited higher plasma AA levels compared to subjects with lower PDFF. The concentrations of BCAAs (p-Value: 0.03), AAAs (p-Value: 0.039), L-valine (p-Value: 0.029), L-tyrosine (p-Value: 0.039) and L-isoleucine (p-Value: 0.032) were found to be significantly higher in the higher PDFF group compared to lower group. Plasma AA levels varied according to MRI-PDFF. Significant associations were also demonstrated between AAs and MRI-PDFF and MRI-cT1, showing the potential utility of circulating AAs as diagnostic markers of NAFLD.
Collapse
Affiliation(s)
- Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | - Eleni V. Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | - Maja Milanovic
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
| | - Stefan Stojanoski
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
- Center for Diagnostic Imaging, Oncology Institute of Vojvodine, 21204 Sremska Kamenica, Serbia
| | - Mladen Bjelan
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
| | - Lucia Cesarini
- Division of Hepatology and Gastroenterology, ASST Grande Ospedale Metropolitano, 20162 Milan, Italy;
| | - Jonica Campolo
- Institute of Clinical Physiology, CNR, 56124 Milan, Italy;
| | - Anastasia Thanopoulou
- Diabetes Center, 2nd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, 15772 Athens, Greece;
| | | | - Mary Jo Kurth
- Clinical Studies Group, Randox Laboratories Ltd., Crumlin BT29 4RN, UK;
| | - Natasa Milic
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
| | - Milica Medic-Stojanoska
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (M.M.); (S.S.); (M.B.); (N.M.); (M.M.-S.)
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia
| | - Maria Giovanna Trivella
- Institute of Clinical Physiology National Research Council, 56124 Pisa, Italy; (M.G.T.); (A.G.)
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Sophie Visvikis-Siest
- INSERM UMR U1122, IGE-PCV, Faculté de Pharmacie, Université de Lorraine, 30 Rue Lionnois, 54000 Nancy, France;
| | - Amalia Gastaldelli
- Institute of Clinical Physiology National Research Council, 56124 Pisa, Italy; (M.G.T.); (A.G.)
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.V.M.); (M.H.)
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece; (C.A.); (G.V.D.)
| | | |
Collapse
|
15
|
Zhang J, Yang Y, Wang Z, Zhang X, Zhang Y, Lin J, Du Y, Wang S, Si D, Bao J, Tian X. Integration of Metabolomics, Lipidomics, and Proteomics Reveals the Metabolic Characterization of Nonalcoholic Steatohepatitis. J Proteome Res 2023; 22:2577-2592. [PMID: 37403919 DOI: 10.1021/acs.jproteome.3c00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metabolic dysfunction is associated with nonalcoholic steatohepatitis (NASH) development. However, omics studies investigating metabolic changes in NASH patients are limited. In this study, metabolomics and lipidomics in plasma, as well as proteomics in the liver, were performed to characterize the metabolic profiles of NASH patients. Moreover, the accumulation of bile acids (BAs) in NASH patients prompted us to investigate the protective effect of cholestyramine on NASH. The liver expression of essential proteins involved in FA transport and lipid droplets was significantly elevated in patients with NASH. Furthermore, we observed a distinct lipidomic remodeling in patients with NASH. We also report a novel finding suggesting an increase in the expression of critical proteins responsible for glycolysis and the level of glycolytic output (pyruvic acid) in patients with NASH. Furthermore, the accumulation of branched chain amino acids, aromatic amino acids, purines, and BAs was observed in NASH patients. Similarly, a dramatic metabolic disorder was also observed in a NASH mouse model. Cholestyramine not only significantly alleviated liver steatosis and fibrosis but also reversed NASH-induced accumulation of BAs and steroid hormones. In conclusion, NASH patients were characterized by perturbations in FA uptake, lipid droplet formation, glycolysis, and accumulation of BAs and other metabolites.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Zipeng Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaofen Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingfan Zhang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiashuo Lin
- School of Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | | | - Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
16
|
Liu P, Wu J, Yu X, Guo L, Zhao L, Ban T, Huang Y. Metabolomics and Network Analyses Reveal Phenylalanine and Tyrosine as Signatures of Anthracycline-Induced Hepatotoxicity. Pharmaceuticals (Basel) 2023; 16:797. [PMID: 37375744 DOI: 10.3390/ph16060797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
The chemotherapy drug doxorubicin (DOX) is an anthracycline with over 30% incidence of liver injury in breast cancer patients, yet the mechanism of its hepatotoxicity remains unclear. To identify potential biomarkers for anthracycline-induced hepatotoxicity (AIH), we generated clinically-relevant mouse and rat models administered low-dose, long-term DOX. These models exhibited significant liver damage but no decline in cardiac function. Through untargeted metabolic profiling of the liver, we identified 27 differential metabolites in a mouse model and 28 in a rat model. We then constructed a metabolite-metabolite network for each animal model and computationally identified several potential metabolic markers, with particular emphasis on aromatic amino acids, including phenylalanine, tyrosine, and tryptophan. We further performed targeted metabolomics analysis on DOX-treated 4T1 breast cancer mice for external validation. We found significant (p < 0.001) reductions in hepatic levels of phenylalanine and tyrosine (but not tryptophan) following DOX treatment, which were strongly correlated with serum aminotransferases (ALT and AST) levels. In summary, the results of our study present compelling evidence supporting the use of phenylalanine and tyrosine as metabolic signatures of AIH.
Collapse
Affiliation(s)
- Peipei Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jing Wu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
| | - Linling Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tao Ban
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, Nanjing 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Finney AC, Das S, Kumar D, McKinney MP, Cai B, Yurdagul A, Rom O. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med 2023; 10:1116861. [PMID: 37200978 PMCID: PMC10185914 DOI: 10.3389/fcvm.2023.1116861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/20/2023] Open
Abstract
Therapeutic approaches that lower circulating low-density lipoprotein (LDL)-cholesterol significantly reduced the burden of cardiovascular disease over the last decades. However, the persistent rise in the obesity epidemic is beginning to reverse this decline. Alongside obesity, the incidence of nonalcoholic fatty liver disease (NAFLD) has substantially increased in the last three decades. Currently, approximately one third of world population is affected by NAFLD. Notably, the presence of NAFLD and particularly its more severe form, nonalcoholic steatohepatitis (NASH), serves as an independent risk factor for atherosclerotic cardiovascular disease (ASCVD), thus, raising interest in the relationship between these two diseases. Importantly, ASCVD is the major cause of death in patients with NASH independent of traditional risk factors. Nevertheless, the pathophysiology linking NAFLD/NASH with ASCVD remains poorly understood. While dyslipidemia is a common risk factor underlying both diseases, therapies that lower circulating LDL-cholesterol are largely ineffective against NASH. While there are no approved pharmacological therapies for NASH, some of the most advanced drug candidates exacerbate atherogenic dyslipidemia, raising concerns regarding their adverse cardiovascular consequences. In this review, we address current gaps in our understanding of the mechanisms linking NAFLD/NASH and ASCVD, explore strategies to simultaneously model these diseases, evaluate emerging biomarkers that may be useful to diagnose the presence of both diseases, and discuss investigational approaches and ongoing clinical trials that potentially target both diseases.
Collapse
Affiliation(s)
- Alexandra C. Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - M. Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, United States
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
- Correspondence: Arif Yurdagul Oren Rom
| |
Collapse
|
18
|
Luo Z, Yong K, Luo Q, Du Z, Ma L, Huang Y, Zhou T, Yao X, Shen L, Yu S, Deng J, Ren Z, Zhang Y, Yan Z, Zuo Z, Cao S. Altered Fecal Microbiome and Correlations of the Metabolome with Plasma Metabolites in Dairy Cows with Left Displaced Abomasum. Microbiol Spectr 2022; 10:e0197222. [PMID: 36222683 PMCID: PMC9769586 DOI: 10.1128/spectrum.01972-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/18/2022] [Indexed: 01/06/2023] Open
Abstract
Left displaced abomasum (LDA) in postpartum dairy cows contributes to significant economic losses. Dairy cows with LDA undergo excessive lipid mobilization and insulin resistance. Although gut dysbiosis is implicated, little is known about the role of the gut microbiota in the abnormal metabolic processes of LDA. To investigate the functional links among microbiota, metabolites, and disease phenotypes in LDA, we performed 16S rDNA gene amplicon sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of fecal samples from cows with LDA (n = 10) and healthy cows (n = 10). Plasma marker profiling was synchronously analyzed. In the LDA event, gut microbiota composition and fecal metabolome were shifted in circulation with an amino acid pool deficit in dairy cows. Compared with the healthy cows, salicylic acid derived from microbiota catabolism was decreased in the LDA cows, which negatively correlated with Akkermansia, Prevotella, non-esterified fatty acid (NEFA), and β-hydroxybutyric acid (BHBA) levels. Conversely, fecal taurolithocholic acid levels were increased in cows with LDA. Based on integrated analysis with the plasma metabolome, eight genera and eight metabolites were associated with LDA. Of note, the increases in Akkermansia and Oscillospira abundances were negatively correlated with the decreases in 4-pyridoxic acid and cytidine levels, and positively correlated with the increases in NEFA and BHBA levels in amino acid deficit, indicating pyridoxal metabolism-associated gut dysbiosis and lipolysis. Changes in branched-chain amino acids implicated novel host-microbial metabolic pathways involving lipolysis and insulin resistance in cows with LDA. Overall, these results suggest an interplay between host and gut microbes contributing to LDA pathogenesis. IMPORTANCE LDA is a major contributor to economic losses in the dairy industry worldwide; however, the mechanisms associated with the metabolic changes in LDA remain unclear. Most previous studies have focused on the rumen microbiota in terms of understanding the contributors to the productivity and health of dairy cows; this study further sheds light on the relevance of the lower gut microbiota and its associated metabolites in mediating the development of LDA. This study is the first to characterize the correlation between gut microbes and metabolic phenotypes in dairy cows with LDA by leveraging multi-omics data, highlighting that the gut microbe may be involved in the regulation of lipolysis and insulin resistance by modulating the amino acid composition. Moreover, this study provides new markers for further research to understand the pathogenesis of the disease as well as to develop effective treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhengzhong Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- Department of Animal Husbandry & Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qiao Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Lanzhou Institute of Animal Husbandry and Veterinary Pharmaceutical, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zuoting Yan
- Lanzhou Institute of Animal Husbandry and Veterinary Pharmaceutical, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhicai Zuo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Metabolomics and Lipidomics Signatures of Insulin Resistance and Abdominal Fat Depots in People Living with Obesity. Metabolites 2022; 12:metabo12121272. [PMID: 36557310 PMCID: PMC9781703 DOI: 10.3390/metabo12121272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The liver, skeletal muscle, and adipose tissue are major insulin target tissues and key players in glucose homeostasis. We and others have described diverse insulin resistance (IR) phenotypes in people at risk of developing type 2 diabetes. It is postulated that identifying the IR phenotype in a patient may guide the treatment or the prevention strategy for better health outcomes in populations at risk. Here, we performed plasma metabolomics and lipidomics in a cohort of men and women living with obesity not complicated by diabetes (mean [SD] BMI 36.0 [4.5] kg/m2, n = 62) to identify plasma signatures of metabolites and lipids that align with phenotypes of IR (muscle, liver, or adipose tissue) and abdominal fat depots. We used 2-step hyperinsulinemic-euglycemic clamp with deuterated glucose, oral glucose tolerance test, dual-energy X-ray absorptiometry and abdominal magnetic resonance imaging to assess muscle-, liver- and adipose tissue- IR, beta cell function, body composition, abdominal fat distribution and liver fat, respectively. Spearman’s rank correlation analyses that passed the Benjamini−Hochberg statistical correction revealed that cytidine, gamma-aminobutyric acid, anandamide, and citrate corresponded uniquely with muscle IR, tryptophan, cAMP and phosphocholine corresponded uniquely with liver IR and phenylpyruvate and hydroxy-isocaproic acid corresponded uniquely with adipose tissue IR (p < 7.2 × 10−4). Plasma cholesteryl sulfate (p = 0.00029) and guanidinoacetic acid (p = 0.0001) differentiated between visceral and subcutaneous adiposity, while homogentisate correlated uniquely with liver fat (p = 0.00035). Our findings may help identify diverse insulin resistance and adiposity phenotypes and enable targeted treatments in people living with obesity.
Collapse
|
20
|
Lin X, Liu X, Triba MN, Bouchemal N, Liu Z, Walker DI, Palama T, Le Moyec L, Ziol M, Helmy N, Vons C, Xu G, Prip-Buus C, Savarin P. Plasma Metabolomic and Lipidomic Profiling of Metabolic Dysfunction-Associated Fatty Liver Disease in Humans Using an Untargeted Multiplatform Approach. Metabolites 2022; 12:1081. [PMID: 36355164 PMCID: PMC9693407 DOI: 10.3390/metabo12111081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 08/29/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disorder that is implicated in dysregulations in multiple biological pathways, orchestrated by interactions between genetic predisposition, metabolic syndromes and environmental factors. The limited knowledge of its pathogenesis is one of the bottlenecks in the development of prognostic and therapeutic options for MAFLD. Moreover, the extent to which metabolic pathways are altered due to ongoing hepatic steatosis, inflammation and fibrosis and subsequent liver damage remains unclear. To uncover potential MAFLD pathogenesis in humans, we employed an untargeted nuclear magnetic resonance (NMR) spectroscopy- and high-resolution mass spectrometry (HRMS)-based multiplatform approach combined with a computational multiblock omics framework to characterize the plasma metabolomes and lipidomes of obese patients without (n = 19) or with liver biopsy confirmed MAFLD (n = 63). Metabolite features associated with MAFLD were identified using a metabolome-wide association study pipeline that tested for the relationships between feature responses and MAFLD. A metabolic pathway enrichment analysis revealed 16 pathways associated with MAFLD and highlighted pathway changes, including amino acid metabolism, bile acid metabolism, carnitine shuttle, fatty acid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and steroid metabolism. These results suggested that there were alterations in energy metabolism, specifically amino acid and lipid metabolism, and pointed to the pathways being implicated in alerted liver function, mitochondrial dysfunctions and immune system disorders, which have previously been linked to MAFLD in human and animal studies. Together, this study revealed specific metabolic alterations associated with MAFLD and supported the idea that MAFLD is fundamentally a metabolism-related disorder, thereby providing new perspectives for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiangping Lin
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mohamed N. Triba
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Nadia Bouchemal
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Zhicheng Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tony Palama
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| | - Laurence Le Moyec
- Université d’Evry Val d’Essonne—Université Paris-Saclay, 91000 Evry, France
- Muséum National d’Histoire Naturelle, Unité MCAM, UMR 7245, CNRS, 75005 Paris, France
| | - Marianne Ziol
- Department of Pathology, University Hospital Jean Verdier, Assistance Publique-Hôpitaux de Paris, 93140 Paris, France
| | - Nada Helmy
- Department of Digestive and Metabolic Surgery, Jean Verdier Hospital, Paris XIII University—University Hospitals of Paris Seine Saint-Denis, 93140 Paris, France
| | - Corinne Vons
- Department of Digestive and Metabolic Surgery, Jean Verdier Hospital, Paris XIII University—University Hospitals of Paris Seine Saint-Denis, 93140 Paris, France
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Carina Prip-Buus
- Université Paris Cité, CNRS, INSERM, Institut Cochin, 75014 Paris, France
| | - Philippe Savarin
- Sorbonne Paris Nord University, Chemistry Structures Properties of Biomaterials and Therapeutic Agents Laboratory (CSPBAT), Nanomédecine Biomarqueurs Détection Team (NBD), The National Center for Scientific Research (CNRS), UMR 7244, 74 Rue Marcel Cachin, CEDEX, 93017 Bobigny, France
| |
Collapse
|
21
|
Yan LS, Zhang SF, Luo G, Cheng BCY, Zhang C, Wang YW, Qiu XY, Zhou XH, Wang QG, Song XL, Pan SY, Zhang Y. Schisandrin B mitigates hepatic steatosis and promotes fatty acid oxidation by inducing autophagy through AMPK/mTOR signaling pathway. Metabolism 2022; 131:155200. [PMID: 35405150 DOI: 10.1016/j.metabol.2022.155200] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/05/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Schisandrin B (Sch B), which inhibits hepatic steatosis caused by non-alcoholic fatty liver disease (NAFLD), is one of the most active dibenzocyclooctadienes isolated from Schisandra chinensis (Turcz.) Baill with various pharmacological activities. In this study, the role of Sch B-induced autophagy in lipid-lowering activities of Sch B was examined and the underlying mechanisms were elucidated. METHODS Free fatty acid (FFA)-stimulated HepG2 cells and mouse primary hepatocytes (MPHs) and high-fat diet (HFD)-fed mice were used as NAFLD models. The role of Sch B-induced autophagy in lipid-lowering effects of Sch B was assessed using ATG5/TFEB-deficient cells and 3-methyladenine (3-MA)-treated hepatocytes and mice. RESULTS Sch B simultaneously active autophagy through AMPK/mTOR pathway and decreased the number of lipid droplets in FFA-treated HepG2 cells and MPHs. Additionally, siATG5/siTFEB transfection or 3-MA treatment mitigated Sch B-induced autophagy and activation of fatty acid oxidation (FAO) and ketogenesis in FFA-treated HepG2 cells and MPHs. Sch B markedly decreased hepatic lipid content and activated the autophagy through AMPK/mTOR pathway in HFD-fed mice. However, the activities of Sch B were suppressed upon 3-MA treatment. Sch B upregulated the expression of key enzymes involved in FAO and ketogenesis, which was mitigated upon 3-MA treatment. Moreover, changes in hepatic lipid components and amino acids may be related to the Sch B-induced autophagy pathway. CONCLUSION These results suggested that Sch B inhibited hepatic steatosis and promoted FAO by activation of autophagy through AMPK/mTOR pathway. Our study provides novel insights into the hepatic lipophagic activity of Sch B and its potential application in the management of NAFLD.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Hong Zhou
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing-Gao Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xue-Lan Song
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Si-Yuan Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
22
|
Association of Metabolomic Change and Treatment Response in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10061216. [PMID: 35740238 PMCID: PMC9220113 DOI: 10.3390/biomedicines10061216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease, yet cost-effective and non-invasive diagnostic tools to monitor the severity of the disease are lacking. We aimed to investigate the metabolomic changes in NAFLD associated with therapeutic responses. It was conducted in 63 patients with NAFLD who received either ezetimibe plus rosuvastatin or rosuvastatin monotherapy. The treatment response was determined by MRI performed at baseline and week 24. The metabolites were measured at baseline and week 12. In the combination group, a relative decrease in xanthine was associated with a good response to liver fat decrease, while a relative increase in choline was associated with a good response to liver stiffness. In the monotherapy group, the relative decreases in triglyceride (TG) 20:5_36:2, TG 18:1_38:6, acetylcarnitine (C2), fatty acid (FA) 18:2, FA 18:1, and docosahexaenoic acid were associated with a decrease in liver fat, while hexosylceramide (d18:2/16:0) and hippuric acid were associated with a decrease in liver stiffness. Models using the metabolite changes showed an AUC of >0.75 in receiver operating curve analysis for predicting an improvement in liver fat and stiffness. This approach revealed the physiological impact of drugs, suggesting the mechanism underlying the development of this disease.
Collapse
|
23
|
Wesolowska-Andersen A, Brorsson CA, Bizzotto R, Mari A, Tura A, Koivula R, Mahajan A, Vinuela A, Tajes JF, Sharma S, Haid M, Prehn C, Artati A, Hong MG, Musholt PB, Kurbasic A, De Masi F, Tsirigos K, Pedersen HK, Gudmundsdottir V, Thomas CE, Banasik K, Jennison C, Jones A, Kennedy G, Bell J, Thomas L, Frost G, Thomsen H, Allin K, Hansen TH, Vestergaard H, Hansen T, Rutters F, Elders P, t'Hart L, Bonnefond A, Canouil M, Brage S, Kokkola T, Heggie A, McEvoy D, Hattersley A, McDonald T, Teare H, Ridderstrale M, Walker M, Forgie I, Giordano GN, Froguel P, Pavo I, Ruetten H, Pedersen O, Dermitzakis E, Franks PW, Schwenk JM, Adamski J, Pearson E, McCarthy MI, Brunak S. Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly diagnosed individuals: An IMI DIRECT study. Cell Rep Med 2022; 3:100477. [PMID: 35106505 PMCID: PMC8784706 DOI: 10.1016/j.xcrm.2021.100477] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/21/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired β cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.
Collapse
Affiliation(s)
| | - Caroline A Brorsson
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrea Mari
- C.N.R. Institute of Neuroscience, Padova, Italy
| | - Andrea Tura
- C.N.R. Institute of Neuroscience, Padova, Italy
| | - Robert Koivula
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ana Vinuela
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | - Sapna Sharma
- Research Unit Molecular Endocrinology And Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Mark Haid
- Research Unit Molecular Endocrinology And Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology And Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology And Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Mun-Gwan Hong
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Petra B Musholt
- R&D Global Development, Translational Medicine & Clinical Pharmacology (TMCP), Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Azra Kurbasic
- University of Lund, Clinical Sciences, Malmö, Sweden
| | - Federico De Masi
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kostas Tsirigos
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Helle Krogh Pedersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valborg Gudmundsdottir
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cecilia Engel Thomas
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Angus Jones
- University of Exeter Medical School, Exeter, UK
| | - Gwen Kennedy
- The Immunoassay Biomarker Core Laboratory, Shool of Medicine, University of Dundee, Dundee, UK
| | - Jimmy Bell
- Research Centre for Optimal Health, Deparment of Life Sciences, University of Westminster, London, UK
| | - Louise Thomas
- Research Centre for Optimal Health, Deparment of Life Sciences, University of Westminster, London, UK
| | - Gary Frost
- Section for Nutrition Research, Faculty of Medicine, Hammersmith Campus, Imperial College London, London, UK
| | - Henrik Thomsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Allin
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Haldor Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Femke Rutters
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
| | - Petra Elders
- Department of General Practice, Amsterdam UMC-location VUmc, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Leen t'Hart
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-location VUmc, Amsterdam, the Netherlands
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Amelie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille, France
| | - Mickaël Canouil
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille, France
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Tarja Kokkola
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Alison Heggie
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Donna McEvoy
- Diabetes Research Network, Royal Victoria Infirmary, Newcastle, UK
| | | | | | - Harriet Teare
- Centre for Health, Law and Emerging Technologies (HeLEX), Faculty of Law, University of Oxford, Oxford, UK
| | | | - Mark Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Giuseppe N Giordano
- R&D Global Development, Translational Medicine & Clinical Pharmacology (TMCP), Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille University Hospital, Lille, France
| | - Imre Pavo
- Eli Lilly Regional Operations GmbH, Vienna, Austria
| | - Hartmut Ruetten
- R&D Global Development, Translational Medicine & Clinical Pharmacology (TMCP), Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Paul W Franks
- University of Lund, Clinical Sciences, Malmö, Sweden
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology And Metabolism, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Søren Brunak
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Ikeda H. The Effect of Mild Renal Dysfunction on the Assessment of Plasma Amino Acid Concentration and Insulin Resistance in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:2048300. [PMID: 35734236 PMCID: PMC9208954 DOI: 10.1155/2022/2048300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND An increase in the levels of branched-chain amino acids (BCAAs) and certain aromatic amino acids, such as alanine, in plasma is correlated with insulin resistance (IR) in type 2 diabetes mellitus (T2DM). T2DM is a leading risk factor for chronic kidney disease. Meanwhile, renal dysfunction causes changes in plasma amino acid levels. To date, no study has examined how mild renal dysfunction and IR interact with plasma amino acid levels. This study examines the effects of IR and renal dysfunction on plasma amino acid concentrations in T2DM. METHODS Data were collected from healthy male participants (controls) and male patients with T2DM between May 2018 and February 2022. Blood samples were collected after overnight fasting. IR and renal function were evaluated using the homeostasis model assessment of IR (HOMA-IR) and serum cystatin C (CysC), respectively. RESULTS A total of 49 and 93 participants were included in the control and T2DM groups, respectively. In the T2DM group, eight amino acids (alanine, glutamic acid, glutamine, glycine, isoleucine, leucine, tyrosine, and valine) and total BCAA showed a significant correlation with HOMA-IR (p < 0.01), whereas six amino acids (γ-aminobutyric acid, citrulline, cysteine, glycine, methionine, and valine) and total BCAA showed a significant correlation with 1/CysC (p < 0.02). However, only alanine, glutamic acid, and each BCAA showed significant differences between the control group and the IR T2DM subgroup. Increases in the BCAA levels with T2DM were canceled by renal dysfunction (CysC ≥ 0.93) in patients with intermediate IR. CONCLUSION To use plasma BCAA concentration as a marker of IR, renal function must be considered, even in mild renal dysfunction. Increased alanine and glutamic acid levels indicate IR, regardless of mild renal dysfunction.
Collapse
Affiliation(s)
- Hideki Ikeda
- Department of Internal Medicine, Sanyudo Hospital, Chuo 6 Chome-1-219, Yonezawa, Yamagata 992-0045, Japan
| |
Collapse
|
25
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
26
|
Kamada Y, Takahashi H, Shimizu M, Kawaguchi T, Sumida Y, Fujii H, Seko Y, Fukunishi S, Tokushige K, Nakajima A, Okanoue T. Clinical practice advice on lifestyle modification in the management of nonalcoholic fatty liver disease in Japan: an expert review. J Gastroenterol 2021; 56:1045-1061. [PMID: 34718870 DOI: 10.1007/s00535-021-01833-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/01/2021] [Indexed: 02/04/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases worldwide, including in Japan. The Japanese Society of Gastroenterology (JSGE) and the Japanese Society of Hepatology (JSH) have established the Japanese NAFLD/NASH guidelines in 2014 and revised these guidelines in 2020. As described in these guidelines, weight reduction by diet and/or exercise therapy is important for the treatment of NAFLD patients. The I148M single nucleotide polymorphism (rs738409 C > G) of PNPLA3 (patatin-like phospholipase domain-containing 3 protein) is widely known to be associated with the occurrence and progression of NAFLD. In the Japanese, the ratio of PNPLA3 gene polymorphisms found is approximately 20%, which is higher than that found in Westerners. In addition, the ratio of lean NAFLD patients is also higher in Japan than in Western countries. Therefore, the method for lifestyle guidance for the NAFLD patients in Japan would be different from that for the people in Western countries. The problems in the treatment of NAFLD patients include alcohol consumption and sarcopenia. Therefore, guidelines that can help clinicians treat Japanese patients with NAFLD are needed. In this expert review, we summarize evidence-based interventions for lifestyle modification (diet, exercise, alcohol, and sarcopenia) for the treatment of patients with NAFLD, especially from Japan and Asian countries.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Hirokazu Takahashi
- Department of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, 840-8502, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Hideki Fujii
- Department of Premier Preventive Medicine, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shinya Fukunishi
- Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Katsutoshi Tokushige
- Department of Internal Medicine, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, 1-2 Kawazonocho, Suita, Osaka, 564-0013, Japan
| |
Collapse
|
27
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
28
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
29
|
de Mello VD, Sehgal R, Männistö V, Klåvus A, Nilsson E, Perfilyev A, Kaminska D, Miao Z, Pajukanta P, Ling C, Hanhineva K, Pihlajamäki J. Serum aromatic and branched-chain amino acids associated with NASH demonstrate divergent associations with serum lipids. Liver Int 2021; 41:754-763. [PMID: 33219609 PMCID: PMC8048463 DOI: 10.1111/liv.14743] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/04/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) has been associated with multiple metabolic abnormalities. By applying a non-targeted metabolomics approach, we aimed at investigating whether serum metabolite profile that associates with NAFLD would differ in its association with NAFLD-related metabolic risk factors. METHODS & RESULTS A total of 233 subjects (mean ± SD: 48.3 ± 9.3 years old; BMI: 43.1 ± 5.4 kg/m2 ; 64 male) undergoing bariatric surgery were studied. Of these participants, 164 with liver histology could be classified as normal liver (n = 79), simple steatosis (SS, n = 40) or non-alcoholic steatohepatitis (NASH, n = 45). Among the identified fasting serum metabolites with higher levels in those with NASH when compared to those with normal phenotype were the aromatic amino acids (AAAs: tryptophan, tyrosine and phenylalanine), the branched-chain amino acids (BCAAs: leucine and isoleucine), a phosphatidylcholine (PC(16:0/16:1)) and uridine (all FDRp < 0.05). Only tryptophan was significantly higher in those with NASH compared to those with SS (FDRp < 0.05). Only the AAAs tryptophan and tyrosine correlated positively with serum total and LDL cholesterol (FDRp < 0.1), and accordingly, with liver LDLR at mRNA expression level. In addition, tryptophan was the single AA associated with liver DNA methylation of CpG sites known to be differentially methylated in those with NASH. CONCLUSIONS We found that serum levels of the NASH-related AAAs and BCAAs demonstrate divergent associations with serum lipids. The specific correlation of tryptophan with LDL-c may result from the molecular events affecting LDLR mRNA expression and NASH-associated methylation of genes in the liver.
Collapse
Affiliation(s)
- Vanessa D. de Mello
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Ratika Sehgal
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Ville Männistö
- Department of MedicineUniversity of Eastern Finland and Kuopio University HospitalKuopioFinland
| | - Anton Klåvus
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Emma Nilsson
- Epigenetics and Diabetes UnitDepartment of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes UnitDepartment of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Dorota Kaminska
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Zong Miao
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los Angeles (UCLA)Los AngelesCAUSA
| | - Päivi Pajukanta
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los Angeles (UCLA)Los AngelesCAUSA,Institute for Precision HealthSchool of MedicineUCLALos AngelesCAUSA
| | - Charlotte Ling
- Epigenetics and Diabetes UnitDepartment of Clinical SciencesLund University Diabetes CentreMalmöSweden
| | - Kati Hanhineva
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland,Department of BiochemistryFood Chemistry and Food Development UnitUniversity of TurkuTurkuFinland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionDepartment of Clinical NutritionUniversity of Eastern FinlandKuopioFinland,Department of Medicine, Endocrinology and Clinical NutritionKuopio University HospitalKuopioFinland
| |
Collapse
|
30
|
Ahmad MI, Ijaz MU, Hussain M, Haq IU, Zhao D, Li C. High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11710-11725. [PMID: 33034193 DOI: 10.1021/acs.jafc.0c02570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The responses of gut microbiota to dietary proteins have been studied previously. However, the effects of dietary proteins supplemented with a high-fat diet (HFD) on the metabolite biomarkers associated with non-alcoholic fatty liver disease (NAFLD) are not well understood. To understand the underlying mechanisms, C57BL/6J mice were fed with either a low-fat diet with casein (LFC) or an HFD with casein (HFC), fish (HFF), or mutton proteins (HFM), and their cecal microbiota and liver metabolites were analyzed. At the phylum level, the HFD group had a relatively higher abundance of Firmicutes compared to the LFC-diet group. At the genus level, the HFF-diet group had the highest abundance of Lactobacillus and Akkermansia compared to the HFC- and HFM-diet groups. Furthermore, mice fed with the HFF diet had significantly reduced levels of hepatic metabolites involved in oxidative stress and bile acid metabolism. Thus, meat proteins in HFD interact in the host to create distinct responses in the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Muzhair Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ijaz Ul Haq
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
31
|
Ahmad MI, Umair Ijaz M, Hussain M, Ali Khan I, Mehmood N, Siddiqi SM, Liu C, Zhao D, Xu X, Zhou G, Li C. High fat diet incorporated with meat proteins changes biomarkers of lipid metabolism, antioxidant activities, and the serum metabolomic profile in Glrx1 -/- mice. Food Funct 2020; 11:236-252. [PMID: 31956867 DOI: 10.1039/c9fo02207d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Red and processed meat consumption has been associated with oxidative stress, diabetes and non-alcoholic fatty liver disease (NAFLD). This study was aimed at exploring the effects of high-fat meat protein diets on potential metabolite biomarkers in Glrx1-/- mice, a well-documented mouse model to study NAFLD. Male Glrx1-/- mice were fed a control diet with 12% energy (kcal) from fat, a high-fat diet supplemented with casein (HFC) with 60% energy (kcal) from fat, and a high-fat diet supplemented with fish (HFF) or mutton proteins (HFM) for 12 weeks. The results of biochemical and histological analyses indicated that the intake of HFM increased hepatic total cholesterol, triglycerides, serum alanine transaminase and aspartate transaminase, and macro- and micro-vesicular lipid droplet accumulation, which were accompanied by altered gene expression associated with the lipid and cholesterol metabolism. HFF diet fed Glrx1-/- mice significantly ameliorated diet-induced NAFLD biomarkers compared to HFC and HFM diets. In addition, serum metabolome profiling identified metabolites specifically associated with lipid metabolism bile acid metabolism, sphingolipid and amino acid metabolism pathways. A HFM diet increased the abundance of LysoPC(15:0), LysoPC(16:0), LysoPC(20:1), LysoPE(18:2), LysoPE(22:0), LysoPE(20:6), O-arachidonoylglycidol, 12-ketodeoxycholic acid and sphinganine that are associated with NAFLD. The KEGG metabolic pathway of identified metabolites of high fat diets showed that the differential metabolites were associated with lipid metabolism, linoleic acid metabolism, amino acid metabolism, bile acid metabolism, sphingolipid metabolism, and glutathione metabolism pathways whereas HFF diet ameliorated NAFLD by modifying these pathways. These results provide potential metabolite biomarkers for NAFLD induced by HFM diet.
Collapse
Affiliation(s)
- Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, International Collaborative Laboratory of Animal Health and Food Safety, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li R, Huang X, Liang X, Su M, Lai KP, Chen J. Integrated omics analysis reveals the alteration of gut microbe-metabolites in obese adults. Brief Bioinform 2020; 22:5882185. [PMID: 32770198 DOI: 10.1093/bib/bbaa165] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, a risk to health, is a global problem in modern society. The prevalence of obesity was approximately 13% among world's adult population. Recently, several reports suggested that the interference of gut microbiota composition and function is associated with metabolic disorders, including obesity. Gut microbiota produce a board range of metabolites involved in energy and glucose homeostasis, leading to the alteration in host metabolism. However, systematic evaluation of the relationship between gut microbiota, gut metabolite and host metabolite profiles in obese adults is still lacking. In this study, we used comparative metagenomics and metabolomics analysis to determine the gut microbiota and gut-host metabolite profiles in six normal and obese adults of Chinese origin, respectively. Following the functional and pathway analysis, we aimed to understand the possible impact of gut microbiota on the host metabolites via the change in gut metabolites. The result showed that the change in gut microbiota may result in the modulation of gut metabolites contributing to glycolysis, tricarboxylic acid cycle and homolactic fermentation. Furthermore, integrated metabolomic analysis demonstrated a possible positive correlation of dysregulated metabolites in the gut and host, including l-phenylalanine, l-tyrosine, uric acid, kynurenic acid, cholesterol sulfate and glucosamine, which were reported to contribute to metabolic disorders such as obesity and diabetes. The findings of this study provide the possible association between gut microbiota-metabolites and host metabolism in obese adults. The identified metabolite changes could serve as biomarkers for the evaluation of obesity and metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Min Su
- Guilin Medical University
| | | | | |
Collapse
|
33
|
Diamanti K, Visvanathar R, Pereira MJ, Cavalli M, Pan G, Kumar C, Skrtic S, Risérus U, Eriksson JW, Kullberg J, Komorowski J, Wadelius C, Ahlström H. Integration of whole-body [ 18F]FDG PET/MRI with non-targeted metabolomics can provide new insights on tissue-specific insulin resistance in type 2 diabetes. Sci Rep 2020; 10:8343. [PMID: 32433479 PMCID: PMC7239946 DOI: 10.1038/s41598-020-64524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Alteration of various metabolites has been linked to type 2 diabetes (T2D) and insulin resistance. However, identifying significant associations between metabolites and tissue-specific phenotypes requires a multi-omics approach. In a cohort of 42 subjects with different levels of glucose tolerance (normal, prediabetes and T2D) matched for age and body mass index, we calculated associations between parameters of whole-body positron emission tomography (PET)/magnetic resonance imaging (MRI) during hyperinsulinemic euglycemic clamp and non-targeted metabolomics profiling for subcutaneous adipose tissue (SAT) and plasma. Plasma metabolomics profiling revealed that hepatic fat content was positively associated with tyrosine, and negatively associated with lysoPC(P-16:0). Visceral adipose tissue (VAT) and SAT insulin sensitivity (Ki), were positively associated with several lysophospholipids, while the opposite applied to branched-chain amino acids. The adipose tissue metabolomics revealed a positive association between non-esterified fatty acids and, VAT and liver Ki. Bile acids and carnitines in adipose tissue were inversely associated with VAT Ki. Furthermore, we detected several metabolites that were significantly higher in T2D than normal/prediabetes. In this study we present novel associations between several metabolites from SAT and plasma with the fat fraction, volume and insulin sensitivity of various tissues throughout the body, demonstrating the benefit of an integrative multi-omics approach.
Collapse
Affiliation(s)
- Klev Diamanti
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robin Visvanathar
- Department of Surgical Sciences, section of Radiology, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Karolinska Institute/AstraZeneca Integrated CardioMetabolic Centre (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Stanko Skrtic
- Pharmaceutical Technology & Development, AstraZeneca AB, Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, section of Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Institute of Computer Science, PAN, Warsaw, Poland
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, section of Radiology, Uppsala University, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
34
|
Ito T, Ishigami M, Ishizu Y, Kuzuya T, Honda T, Ishikawa T, Toyoda H, Kumada T, Fujishiro M. Serum Nutritional Markers as Prognostic Factors for Hepatic and Extrahepatic Carcinogenesis in Japanese Patients with Nonalcoholic Fatty Liver Disease. Nutr Cancer 2019; 72:884-891. [PMID: 31433263 DOI: 10.1080/01635581.2019.1653474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Serum zinc (Zn) levels and the branched chain amino acid/tyrosine molar ratio (BTR) were reported to decrease with the progression of various chronic liver diseases. We investigated the impact of BTR and Zn on the incidence of malignancies in patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD). A total of 179 Japanese NAFLD patients who underwent liver biopsy were enrolled. Hepatocellular carcinoma (HCC) and extrahepatic malignancies developed in 7 (3.9%) and 10 (5.6%) patients, respectively, during the follow-up period (median 7.9 years). Patients with low BTR levels (<5.0) and Zn deficiency (<70 μg/dL) had significantly higher incidences of HCC and extrahepatic malignancies (P < 0.001 and 0.026), respectively. Multiple logistic regression analyses revealed the following risk factors: liver fibrosis (F3-4) (hazard ratio [HR] 24.292, 95% confidence interval [CI] 2.802-210.621, P = 0.004) and BTR < 5.0 (HR 5.462, 95% CI 1.095-27.253, P = 0.038) for HCC, and serum Zn level <70 μg/dL (HR 3.504, 95% CI 1.010-12.157, P = 0.048) and liver inflammation (A2-3) (HR 3.445, 95% CI 0.886-13.395, P = 0.074) for extra-hepatic malignancies. In conclusion, serum BTR and Zn levels were useful for predicting HCC and extrahepatic malignancies in NAFLD, respectively.
Collapse
Affiliation(s)
- Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Kawaguchi T, Torimura T. Branched chain amino acids: A factor for zone 3 steatosis in non-alcoholic fatty liver disease. Hepatol Res 2019; 49:841-843. [PMID: 31260576 DOI: 10.1111/hepr.13402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
36
|
Iida A, Kuranuki S, Yamamoto R, Uchida M, Ohta M, Ichimura M, Tsuneyama K, Masaki T, Seike M, Nakamura T. Analysis of amino acid profiles of blood over time and biomarkers associated with non-alcoholic steatohepatitis in STAM mice. Exp Anim 2019; 68:417-428. [PMID: 31155606 PMCID: PMC6842803 DOI: 10.1538/expanim.18-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The changes in free amino acid (AA) levels in blood during the progression from
non-alcoholic steatohepatitis (NASH) to hepatocellular carcinoma (HCC) are unclear. We
investigated serum AA levels, along with biochemical and histological events, in a mouse
model of NASH. We induced NASH in male C57BL/6J mice with a streptozotocin injection and
high-fat diet after 4 weeks of age (STAM group). We chronologically (6, 8, 10, 12, and 16
weeks, n=4–12 mice/group) evaluated the progression from steatohepatitis to HCC by
biochemical and histological analyses. The serum AA levels were determined using an AA
analyzer. Serum aspartate aminotransferase and alanine aminotransferase levels were higher
in the STAM group than in the normal group (non-NASH-induced mice). Histological analysis
revealed that STAM mice had fatty liver, NASH, and fibrosis at 6, 8, and 10 weeks,
respectively. Moreover, the mice exhibited fibrosis and HCC at 16 weeks. The serum
branched-chain AA levels were higher in the STAM group than in the normal group,
especially at 8 and 10 weeks. The Fischer ratio decreased at 16 weeks in the STAM group,
with increasing aromatic AA levels. These results suggested that this model sequentially
depicts the development of fatty liver, NASH, cirrhosis, HCC, and AA metabolism disorders
within a short experimental period. Additionally, serum amyloid A was suggested to be a
useful inflammation biomarker associated with NASH. We believe that the STAM model will be
useful for studying AA metabolism and/or pharmacological effects in NASH.
Collapse
Affiliation(s)
- Ayaka Iida
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa 238-8522, Japan.,Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Sachi Kuranuki
- School of Nutrition and Dietetics, Faculty of Health and Social Services, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa 238-8522, Japan
| | - Ryoko Yamamoto
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi hagio-machi, Omuta, Fukuoka 836-8585, Japan
| | - Masanori Ohta
- Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Mayuko Ichimura
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takayuki Masaki
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Masataka Seike
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | - Tsuyoshi Nakamura
- Graduate School of Health and Environmental Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
37
|
NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus. J Clin Med 2019; 8:jcm8050720. [PMID: 31117294 PMCID: PMC6571571 DOI: 10.3390/jcm8050720] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by chronic hyperglycemia associated with alterations in carbohydrate, lipid, and protein metabolism. The prognosis of T2DM patients is highly dependent on the development of complications, and therefore the identification of biomarkers of T2DM progression, with minimally invasive techniques, is a huge need. In the present study, we applied a 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomic approach coupled with multivariate data analysis to identify serum metabolite profiles associated with T2DM development and progression. To perform this, we compared the serum metabolome of non-diabetic subjects, treatment-naïve non-complicated T2DM patients, and T2DM patients with complications in insulin monotherapy. Our analysis revealed a significant reduction of alanine, glutamine, glutamate, leucine, lysine, methionine, tyrosine, and phenylalanine in T2DM patients with respect to non-diabetic subjects. Moreover, isoleucine, leucine, lysine, tyrosine, and valine levels distinguished complicated patients from patients without complications. Overall, the metabolic pathway analysis suggested that branched-chain amino acid (BCAA) metabolism is significantly compromised in T2DM patients with complications, while perturbation in the metabolism of gluconeogenic amino acids other than BCAAs characterizes both early and advanced T2DM stages. In conclusion, we identified a metabolic serum signature associated with T2DM stages. These data could be integrated with clinical characteristics to build a composite T2DM/complications risk score to be validated in a prospective cohort.
Collapse
|
38
|
Sarr O, Mathers KE, Zhao L, Dunlop K, Chiu J, Guglielmo CG, Bureau Y, Cheung A, Raha S, Lee TY, Regnault TRH. Western diet consumption through early life induces microvesicular hepatic steatosis in association with an altered metabolome in low birth weight Guinea pigs. J Nutr Biochem 2019; 67:219-233. [PMID: 30981986 DOI: 10.1016/j.jnutbio.2019.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Uteroplacental insufficiency-induced low birth weight (LBW) and postnatal high saturated fat/high sucrose-fructose diet (Western Diet, WD) consumption have been independently associated with the development of hepatic steatosis, while their additive effect on fatty acid, acylcarnitine and amino acid profiles in early adulthood have not been widely reported. We employed LBW, generated via uterine artery ablation, and normal birth weight (NBW) male guinea pigs fed either a WD or control diet (CD) from weaning to postnatal day 150 (early adulthood). Hepatic steatosis was absent in CD-fed offspring, while NBW/WD offspring displayed macrovesicular steatosis and LBW/WD offspring exhibited microvesicular steatosis, both occurring in a lean phenotype. Life-long consumption of the WD, irrespective of birth weight, was associated with an increase in hepatic medium- and long-chain saturated fatty acids, monounsaturated fatty acids, acylcarnitines, reduced oxidative phosphorylation complex III activity and polyunsaturated fatty acids, and molecular evidence of disrupted hepatic insulin signaling. In NBW/WD, hepatic C15:1 and C16:1n-6 fatty acids in phospholipids, C16, C18 and C18:1 acylcarnitines, concentrations of aspartate, phenylalanine, tyrosine and tryptophan and expression of carnitine palmitoyltransferase 1 alpha (CPT1α) and uncoupling protein 2 (UCP2) genes were elevated compared to LBW/WD livers. Our results suggest that LBW and life-long WD combined are influential in promoting hepatic microvesicular steatosis in conjunction with a specific mitochondrial gene expression and metabolomic profile in early adulthood.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | | | - Lin Zhao
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada
| | - Kristyn Dunlop
- Department of Physiology and Pharmacology, Western University
| | - Jacky Chiu
- Department of Physiology and Pharmacology, Western University
| | | | - Yves Bureau
- Department of Medical Biophysics, Western University
| | - Anson Cheung
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Ting-Yim Lee
- Lawson Health Research Institute, London, Ontario, Canada; Departments of Medical Imaging, Medical Biophysics, and Oncology, Western University; Robarts Research Institute, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University.
| |
Collapse
|
39
|
Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Deciphering the Anti-obesity Benefits of Resveratrol: The "Gut Microbiota-Adipose Tissue" Axis. Front Endocrinol (Lausanne) 2019; 10:413. [PMID: 31316465 PMCID: PMC6610334 DOI: 10.3389/fendo.2019.00413] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive white adipose tissue (WAT) accumulation due to an imbalance between caloric intake and energy expenditure (EE) characterizes obesity. However, brown adipose tissue (BAT) is highly specialized for the dissipation of energy. Recent evidence indicated that the activation of BAT and the induction of WAT browning might be promising approaches to combat obesity by increasing EE and regulating glucose and lipid metabolism. Resveratrol, which is a polyphenolic compound, has been widely acknowledged to have protective effects against obesity and related metabolic disorders. The induction of WAT browning has been considered as one of the crucial factors in the metabolic benefits of resveratrol. Nevertheless, the specific mechanism that is involved is largely unclear. As a prebiotic-like polyphenol, resveratrol is able to modulate the composition of gut microbiota. In addition, in recent years, the impact of gut microbiota on the browning of WAT has received increasing attention and has been initially confirmed to play a role. By considering all these factors, this review explores the potential link between dietary resveratrol and the browning of WAT, which may be modulated by gut microbiota and their metabolites and proposes the "gut microbiota- adipose tissue" axis plays a vital role in the anti-obesity effects of resveratrol. This observation might provide novel insights and targets that could be used for fighting against obesity and associated metabolic disorders.
Collapse
|
40
|
Kim TT, Parajuli N, Sung MM, Bairwa SC, Levasseur J, Soltys CLM, Wishart DS, Madsen K, Schertzer JD, Dyck JRB. Fecal transplant from resveratrol-fed donors improves glycaemia and cardiovascular features of the metabolic syndrome in mice. Am J Physiol Endocrinol Metab 2018; 315:E511-E519. [PMID: 29870676 DOI: 10.1152/ajpendo.00471.2017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oral administration of resveratrol attenuates several symptoms associated with the metabolic syndrome, such as impaired glucose homeostasis and hypertension. Recent work has shown that resveratrol can improve glucose homeostasis in obesity via changes in the gut microbiota. Studies involving fecal microbiome transplants (FMTs) suggest that either live gut microbiota or bacterial-derived metabolites from resveratrol ingestion are responsible for producing the observed benefits in recipients. Herein, we show that obese mice receiving FMTs from healthy resveratrol-fed mice have improved glucose homeostasis within 11 days of the first transplant, and that resveratrol-FMTs is more efficacious than oral supplementation of resveratrol for the same duration. The effects of FMTs from resveratrol-fed mice are also associated with decreased inflammation in the colon of obese recipient mice. Furthermore, we show that sterile fecal filtrates from resveratrol-fed mice are sufficient to improve glucose homeostasis in obese mice, demonstrating that nonliving bacterial, metabolites, or other components within the feces of resveratrol-fed mice are sufficient to reduce intestinal inflammation. These postbiotics may be an integral mechanism by which resveratrol improves hyperglycemia in obesity. Resveratrol-FMTs also reduced the systolic blood pressure of hypertensive mice within 2 wk of the first transplant, indicating that the beneficial effects of resveratrol-FMTs may also assist with improving cardiovascular conditions associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Ty T Kim
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Nirmal Parajuli
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Miranda M Sung
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Suresh C Bairwa
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Carrie-Lynn M Soltys
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, University of Alberta , Edmonton, AB , Canada
| | - Karen Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, McMaster University , Hamilton, ON , Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
41
|
Sano A, Kakazu E, Morosawa T, Inoue J, Kogure T, Ninomiya M, Iwata T, Umetsu T, Nakamura T, Takai S, Shimosegawa T. The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: a single-center retrospective study. J Gastroenterol 2018; 53:978-988. [PMID: 29380062 DOI: 10.1007/s00535-018-1435-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND It is poorly understood how an imbalance of plasma-free amino acids (PFAAs) occurs and how the imbalance shows an association with the serum albumin (sAlb) level during the progression of chronic liver disease (CLDs). The aim of this study is to elucidate the profiles of PFAAs and the relationship between sAlb and PFAAs in recent patients with CLDs during the progression. METHODS We retrospectively evaluated the 1569 data of PFAAs data obtained from 908 patients with various CLDs (CHC, CHB. alcoholic, NAFLD/NASH, PBC, AIH, PSC, and cryptogenic). In total, 1140 data of PFAAs could be analyzed in patients with CLDs dependent of their Child-Pugh (CP) score. RESULTS Various imbalances in PFAAs were observed in each CLDs during the progression. Univariate and multivariate analysis revealed that among 24 PFAAs, the level of plasma-branched chain amino acids (pBCAAs) was significantly associated with the CP score, especially the sAlb score, in patients with chronic hepatitis C virus (CHC), NAFLD/NASH and PBC. The correlation coefficient values between sAlb and pBCAAs-to-Tyrosine ratio (BTR) in these patients were 0.53, 0.53 and 0.79, respectively. Interestingly, although the pBCAAs in NAFLD/NASH patients varied even when the sAlb was within the normal range, the pBCAAs tended to be low when the sAlb was below the normal range. CONCLUSIONS Although a decrease in the level of pBCAAs was observed during the progression regardless of the CLD etiology, the level of total pBCAAs was independently associated with the sAlb level in the PFAAs of CHC, PBC and NAFLD/NASH. The correlation between sAlb and BTR showed the highest value in PBC patients among the patients with CLDs. A decrease in pBCAAs often occurred in NASH even when the sAlb level was kept in the normal range.
Collapse
Affiliation(s)
- Akitoshi Sano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Eiji Kakazu
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan.
| | - Tatsuki Morosawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Jun Inoue
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Takayuki Kogure
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Masashi Ninomiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Tomoaki Iwata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Teruyuki Umetsu
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Takuya Nakamura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Satoshi Takai
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aobaku, Sendai, 980-8574, Japan
| |
Collapse
|
42
|
Assi N, Thomas DC, Leitzmann M, Stepien M, Chajès V, Philip T, Vineis P, Bamia C, Boutron-Ruault MC, Sandanger TM, Molinuevo A, Boshuizen HC, Sundkvist A, Kühn T, Travis RC, Overvad K, Riboli E, Gunter MJ, Scalbert A, Jenab M, Ferrari P, Viallon V. Are Metabolic Signatures Mediating the Relationship between Lifestyle Factors and Hepatocellular Carcinoma Risk? Results from a Nested Case-Control Study in EPIC. Cancer Epidemiol Biomarkers Prev 2018; 27:531-540. [PMID: 29563134 PMCID: PMC7444360 DOI: 10.1158/1055-9965.epi-17-0649] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
Background: The "meeting-in-the-middle" (MITM) is a principle to identify exposure biomarkers that are also predictors of disease. The MITM statistical framework was applied in a nested case-control study of hepatocellular carcinoma (HCC) within European Prospective Investigation into Cancer and Nutrition (EPIC), where healthy lifestyle index (HLI) variables were related to targeted serum metabolites.Methods: Lifestyle and targeted metabolomic data were available from 147 incident HCC cases and 147 matched controls. Partial least squares analysis related 7 lifestyle variables from a modified HLI to a set of 132 serum-measured metabolites and a liver function score. Mediation analysis evaluated whether metabolic profiles mediated the relationship between each lifestyle exposure and HCC risk.Results: Exposure-related metabolic signatures were identified. Particularly, the body mass index (BMI)-associated metabolic component was positively related to glutamic acid, tyrosine, PC aaC38:3, and liver function score and negatively to lysoPC aC17:0 and aC18:2. The lifetime alcohol-specific signature had negative loadings on sphingomyelins (SM C16:1, C18:1, SM(OH) C14:1, C16:1 and C22:2). Both exposures were associated with increased HCC with total effects (TE) = 1.23 (95% confidence interval = 0.93-1.62) and 1.40 (1.14-1.72), respectively, for BMI and alcohol consumption. Both metabolic signatures mediated the association between BMI and lifetime alcohol consumption and HCC with natural indirect effects, respectively, equal to 1.56 (1.24-1.96) and 1.09 (1.03-1.15), accounting for a proportion mediated of 100% and 24%.Conclusions: In a refined MITM framework, relevant metabolic signatures were identified as mediators in the relationship between lifestyle exposures and HCC risk.Impact: The understanding of the biological basis for the relationship between modifiable exposures and cancer would pave avenues for clinical and public health interventions on metabolic mediators. Cancer Epidemiol Biomarkers Prev; 27(5); 531-40. ©2018 AACR.
Collapse
Affiliation(s)
- Nada Assi
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Michael Leitzmann
- Department of Epidemiology and Preventive Medicine, Regensburg University, Regensburg, Germany
| | - Magdalena Stepien
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Véronique Chajès
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Thierry Philip
- Unité Cancer et Environnement, Centre Léon Bérard, Lyon, France
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Christina Bamia
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | | | - Torkjel M Sandanger
- Department of Community Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Amaia Molinuevo
- Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Donostia-San Sebastián, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Hendriek C Boshuizen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anneli Sundkvist
- Department of Radiation Sciences Oncology, Umeå University, Umeå, Sweden
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Kim Overvad
- The Department of Epidemiology, School of Public Health, Aarhus University, Aarhus, Denmark
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France.
| | - Vivian Viallon
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
- Université de Lyon, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, Lyon, France
| |
Collapse
|
43
|
Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, Bugianesi E, Gastaldelli A. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 2018; 67:145-158. [PMID: 28802074 DOI: 10.1002/hep.29465] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED Plasma concentrations of amino acids (AAs), in particular, branched chain AAs (BCAAs), are often found increased in nonalcoholic fatty liver disease (NAFLD); however, if this is due to increased muscular protein catabolism, obesity, and/or increased insulin resistance (IR) or impaired tissue metabolism is unknown. Thus, we evaluated a) if subjects with NAFLD without obesity (NAFLD-NO) compared to those with obesity (NAFLD-Ob) display altered plasma AAs compared to controls (CTs); and b) if AA concentrations are associated with IR and liver histology. Glutamic acid, serine, and glycine concentrations are known to be altered in NAFLD. Because these AAs are involved in glutathione synthesis, we hypothesized they might be related to the severity of NAFLD. We therefore measured the AA profile of 44 subjects with NAFLD without diabetes and who had a liver biopsy (29 NAFLD-NO and 15 NAFLD-Ob) and 20 CTs without obesity, by gas chromatography-mass spectrometry, homeostasis model assessment of insulin resistance, hepatic IR (Hep-IR; Hep-IR = endogenous glucose production × insulin), and the new glutamate-serine-glycine (GSG) index (glutamate/[serine + glycine]) and tested for an association with liver histology. Most AAs were increased only in NAFLD-Ob subjects. Only alanine, glutamate, isoleucine, and valine, but not leucine, were increased in NAFLD-NO subjects compared to CTs. Glutamate, tyrosine, and the GSG-index were correlated with Hep-IR. The GSG-index correlated with liver enzymes, in particular, gamma-glutamyltransferase (R = 0.70), independent of body mass index. Ballooning and/or inflammation at liver biopsy were associated with increased plasma BCAAs and aromatic AAs and were mildly associated with the GSG-index, while only the new GSG-index was able to discriminate fibrosis F3-4 from F0-2 in this cohort. CONCLUSION Increased plasma AA concentrations were observed mainly in subjects with obesity and NAFLD, likely as a consequence of increased IR and protein catabolism. The GSG-index is a possible marker of severity of liver disease independent of body mass index. (Hepatology 2018;67:145-158).
Collapse
Affiliation(s)
- Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emma Buzzigoli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Milena Marietti
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Veronica Della Latta
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Demetrio Ciociaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Maria Lorena Abate
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| |
Collapse
|
44
|
Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol 2017; 33:633-644. [PMID: 28549573 DOI: 10.1016/j.pt.2017.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
45
|
Sterkel M, Perdomo HD, Guizzo MG, Barletta ABF, Nunes RD, Dias FA, Sorgine MHF, Oliveira PL. Tyrosine Detoxification Is an Essential Trait in the Life History of Blood-Feeding Arthropods. Curr Biol 2016; 26:2188-93. [PMID: 27476595 DOI: 10.1016/j.cub.2016.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/17/2016] [Accepted: 06/14/2016] [Indexed: 11/27/2022]
Abstract
Blood-feeding arthropods are vectors of infectious diseases such as dengue, Zika, Chagas disease, and malaria [1], and vector control is essential to limiting disease spread. Because these arthropods ingest very large amounts of blood, a protein-rich meal, huge amounts of amino acids are produced during digestion. Previous work on Rhodnius prolixus, a vector of Chagas disease, showed that, among all amino acids, only tyrosine degradation enzymes were overexpressed in the midgut compared to other tissues [2]. Here we demonstrate that tyrosine detoxification is an essential trait in the life history of blood-sucking arthropods. We found that silencing Rhodnius tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), the first two enzymes of the phenylalanine/tyrosine degradation pathway, caused the death of insects after a blood meal. This was confirmed by using the HPPD inhibitor mesotrione, which selectively killed hematophagous arthropods but did not affect non-hematophagous insects. In addition, mosquitoes and kissing bugs died after feeding on mice that had previously received a therapeutic effective oral dose (1 mg/kg) of nitisinone, another HPPD inhibitor used in humans for the treatment of tyrosinemia type I [3]. These findings indicate that HPPD (and TAT) can be a target for the selective control of blood-sucking disease vector populations. Because HPPD inhibitors are extensively used as herbicides and in medicine, these compounds may provide an alternative less toxic to humans and more environmentally friendly than the conventional neurotoxic insecticides that are currently used, with the ability to affect only hematophagous arthropods.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| | - Hugo D Perdomo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Melina G Guizzo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ana Beatriz F Barletta
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rodrigo D Nunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Felipe A Dias
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcos H F Sorgine
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular.
| |
Collapse
|