1
|
Bhere D, Choi SH, van de Donk P, Hope D, Gortzak K, Kunnummal A, Khalsa J, Lechtich ER, Reinshagen C, Leon V, Nissar N, Bi WL, Feng C, Li H, Zhang YS, Liang SH, Vasdev N, Essayed WI, Quevedo PV, Golby A, Banouni N, Palagina A, Abdi R, Fury B, Smirnakis S, Lowe A, Reeve B, Hiller A, Chiocca EA, Prestwich G, Wakimoto H, Bauer G, Shah K. Retraction Note: Target receptor identification and subsequent treatment of resected brain tumors with encapsulated and engineered allogeneic stem cells. Nat Commun 2025; 16:2803. [PMID: 40118851 PMCID: PMC11928485 DOI: 10.1038/s41467-025-57909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025] Open
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Sung Hugh Choi
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pim van de Donk
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Hope
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kiki Gortzak
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amina Kunnummal
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasneet Khalsa
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Esther Revai Lechtich
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clemens Reinshagen
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria Leon
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nabil Nissar
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cheng Feng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongbin Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Shrike Zhang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven H Liang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Neil Vasdev
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pablo Valdes Quevedo
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Palagina
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Fury
- UC Davis Institute for Regenerative Cures, Davis, CA, USA
| | - Stelios Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alarice Lowe
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Arthur Hiller
- Amasa Therapeutics Inc., 1 Harmony Lane, Andover, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Glenn Prestwich
- Department of Medicinal Chemistry, College of Pharmacy University of Utah, Salt Lake City, UT, USA
- Washington State University Health Sciences, Spokane, WA, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerhard Bauer
- UC Davis Institute for Regenerative Cures, Davis, CA, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Yu Liu X, Ying Mao H, Hong S, Jin CH, Jiang HL, Guan Piao M. Dual-targeting galactose-functionalized hyaluronic acid modified lipid nanoparticles delivering silybin for alleviating alcoholic liver injury. Int J Pharm 2024; 666:124662. [PMID: 39241932 DOI: 10.1016/j.ijpharm.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
Collapse
Affiliation(s)
- Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - He Ying Mao
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Shuai Hong
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Cheng-Hua Jin
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Hu-Lin Jiang
- School of Pharmacy, Yanbian University, Yanji 133002, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
3
|
You X, Liu H, Chen Y, Zhao G. Multifunctional Liposomes Co-Modified with Ginsenoside Compound K and Hyaluronic Acid for Tumor-Targeted Therapy. Polymers (Basel) 2024; 16:405. [PMID: 38337294 DOI: 10.3390/polym16030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Liposomes show promise for anti-cancer drug delivery and tumor-targeted therapy. However, complex tumor microenvironments and the performance limitations of traditional liposomes restrict clinical translation. Hyaluronic acid (HA)-modified nanoliposomes effectively target CD44-overexpressing tumor cells. Combination therapy enhances treatment efficacy and delays drug resistance. Here, we developed paclitaxel (PTX) liposomes co-modified with ginsenoside compound K (CK) and HA using film dispersion. Compared to cholesterol (Ch), CK substantially improved encapsulation efficiency and stability. In vitro release studies revealed pH-responsive behavior, with slower release at pH 7.4 versus faster release at pH 5. In vitro cytotoxicity assays demonstrated that replacing Ch with CK in modified liposomes considerably decreased HCT-116 cell viability. Furthermore, flow cytometry and fluorescence microscopy showed a higher cellular uptake of PTX-CK-Lip-HA in CD44-high cells, reflected in the lower half maximal inhibitory concentrations. Overall, CK/HA-modified liposomes represent an innovative, targeted delivery system for enhanced tumor therapy via pH-triggered drug release and CD44 binding.
Collapse
Affiliation(s)
- Xiaoyan You
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yue Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guoping Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Prasad KN. Discovery of Alpha-Tocopheryl Succinate as a Cancer Treatment Agent Led to the Development of Methods to Potentially Improve the Efficacy of Cancer Therapy. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:776-782. [PMID: 36735863 DOI: 10.1080/27697061.2023.2175389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
The discovery of alpha-tocopheryl succinate (alpha-TS) as a cancer therapeutic agent markedly stimulated research with or without tumor therapeutic agents on cancer cells and normal cells. Results showed that alpha-TS treatment induced apoptosis in cancer cells and enhanced the apoptotic effects of tumor therapeutic agents on tumor cells in a synergistic manner without affecting the growth of normal cells. Liposomal alpha-TS was more effective than alpha-TS. Some tumors are difficult to treat with chemotherapeutic agents while some become resistant of such treatment. Using a nanotechnology technique, it was demonstrated that alpha-TS conjugated with a chemotherapeutic agent enhanced the levels of apoptosis and restored the sensitivity of tumor cells to that chemotherapeutic agent. The mechanisms of action of alpha-TS alone or in combination with therapeutic agents include the following: (a) inhibition of the expression of oncogenes C-myc and H-ras; (b) alterations in the levels of expression of numerous genes; (c) activation of caspases; (d) inhibition of angiogenesis; (e) destabilization of mitochondria and lysosomes; (f) inhibition of production of production of prostaglandin E2 (PGE2) and PGE2-mediated pro-inflammatory responses; (g) reduction of survivin signaling pathway; and (h) reduction of CD47 expression on the tumor cell surface causing enhancement of phagocytic activity of macrophages leading to engulfment of tumor cells. Despite impressive results in cell culture and in animal models, no studies with alpha-TS alone or in combination with cancer therapeutic agents in human cancer resistant to these therapies have been performed.
Collapse
|
5
|
Kostryukova LV, Tereshkina YA, Tikhonova EG, Khudoklinova YY, Bobrova DV, Gisina AM, Morozevich GE, Pronina VV, Bulko TV, Shumyantseva VV. Effect of an NGR Peptide on the Efficacy of the Doxorubicin Phospholipid Delivery System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2229. [PMID: 37570547 PMCID: PMC10420982 DOI: 10.3390/nano13152229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This study is a continuation of an investigation into the effect of a targeted component, a peptide with an NGR, on the properties of the previously developed doxorubicin phospholipid delivery system. The NGR peptide has an affinity for aminopeptidase N (known as the CD13 marker on the membrane surface of tumor cells) and has been extensively used to target drug delivery systems. This article presents the results of a study investigating the physical properties of the phospholipid composition with and without the peptide chain: particle size, zeta potential, stability in fluids, and dependence of doxorubicin release from nanoparticles at different pH levels (5.0, 6.5, 7.4). The cytotoxic effect of the compositions has also been shown to depend on the dose of the drug used for incubation, the presence of the targeted component in the composition, and the time of incubation time of the substances. There was a significant difference in the cytotoxic effect on HT-1080 (CD13-positive) and MCF-7 (CD13-negative) cells. Cell death pathway analysis has shown that death occurred mainly by apoptosis. We also present data on the effect of doxorubicin embedded in phospholipid nanoparticles with the targeted peptide on DNA assessed by differential pulse voltammetry, the mechanism of action being electrostatic interactions. The interactions of native dsDNA with doxorubicin encapsulated in phospholipid nanoparticles with the targeted peptide were studied electrochemically by differential pulse voltammetry. Here, we have highlighted that the targeted peptide in the doxorubicin composition moved specific interaction of the drug with dsDNA from intercalative mode to electrostatic interactions.
Collapse
Affiliation(s)
| | | | | | - Yulia Yu. Khudoklinova
- Institute of Biomedical Chemistry, 10 Pogodinskaya St., 119121 Moscow, Russia; (L.V.K.); (Y.A.T.); (E.G.T.); (D.V.B.); (A.M.G.); (G.E.M.); (V.V.P.); (T.V.B.); (V.V.S.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhou Y, Luo X, Wang Z, McClements DJ, Huang W, Fu H, Zhu K. Dual role of polyglycerol vitamin E succinate in emulsions: An efficient antioxidant emulsifier. Food Chem 2023; 416:135776. [PMID: 36889015 DOI: 10.1016/j.foodchem.2023.135776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
α-Tocopherol, as an oil-soluble vitamin with strong antioxidant activity. It is the most naturally abundant and biologically active form of vitamin E in humans. In this study, a novel emulsifier (PG20-VES) was synthesized by attaching hydrophilic twenty-polyglycerol (PG20) to hydrophobic vitamin E succinate (VES). This emulsifier was shown to have a relatively low critical micelle concentration (CMC = 3.2 μg/mL). The antioxidant activities and emulsification properties of PG20-VES were compared with those of a widely used commercial emulsifier: D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS). PG20-VES exhibited a lower interfacial tension, stronger emulsifying capacity and similar antioxidant property to TPGS. An in vitro digestion study showed that lipid droplets coated by PG20-VES were digested under simulated small intestine conditions. This study showed that PG20-VES is an efficient antioxidant emulsifier, which may have applications in the formulation of bioactive delivery systems in the food, supplement, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Zhixin Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wenna Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
7
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
8
|
Gao N, Fu Y, Gong H, Liu H, Li W. Hyaluronic acid and cholecalciferol conjugate based nanomicelles: Synthesis, characterization, and cytotoxicity against MCF-7 breast cancer cells. Carbohydr Res 2022; 522:108706. [DOI: 10.1016/j.carres.2022.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
|
9
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
10
|
Tanaka T, Sano K, Munemura M, Hagimori M, Moriyama R, Yamamoto A, Ozaki KI, Munekane M, Yamasaki T, Mukai T. A radiolabeled nanoparticle probe coated with hyaluronic acid via electrostatic interaction to diagnose CD44-positive tumors. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zuo C, Zou Y, Gao G, Sun L, Yu B, Guo Y, Wang X, Han M. Photothermal combined with intratumoral injection of annonaceous acetogenin nanoparticles for breast cancer therapy. Colloids Surf B Biointerfaces 2022; 213:112426. [PMID: 35219964 DOI: 10.1016/j.colsurfb.2022.112426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
ACGs (annonaceous acetogenins) possess excellent antitumor activity, but their serious accompanying toxicity has prevented their application in the clinic. To address this problem, we therefore constructed an intratumoral drug delivery system integrating chemotherapy and photothermal therapy. The PEGylation of polydopamine nanoparticles (PDA-PEG NPs) possessed an excellent biocompatibility with size of 70.96 ± 2.55 nm, thus can be used as good photothermal materials in the body. Moreover, PDA-PEG NPs can kill half of cancer cells under NIR (near-infrared) laser irradiation, and the survival rate of 4T1 cells is only 1% when ACG NPs and PDA-PEG NPs are combined. In vivo distribution studies showed that the 0.1 mg/kg ACGs NPs + PDA-PEG NPs + NIR group had the highest tumor inhibition rate, which was significantly superior to that of the 0.1 mg/kg ACGs NPs intratumoral injection group (82.65% vs. 59.08%). Altogether, the combination of PDA-PEG NPs + NIR with chemotherapy drugs may provide a feasible and effective strategy for the treatment of superficial tumors.
Collapse
Affiliation(s)
- Cuiling Zuo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yuan Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Guangyu Gao
- Research Center of Pharmaceutical Engineering Technology, Harbin University of Commerce, Harbin, Heilongjiang Province 150076, PR China
| | - Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Bo Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
12
|
Abstract
Glycosaminoglycans (GAGs) are an important component of the tumor microenvironment (TME). GAGs can interact with a variety of binding partners and thereby influence cancer progression on multiple levels. GAGs can modulate growth factor and chemokine signaling, invasion and metastasis formation. Moreover, GAGs are able to change the physical property of the extracellular matrix (ECM). Abnormalities in GAG abundance and structure (e.g., sulfation patterns and molecular weight) are found across various cancer types and show biomarker potential. Targeting GAGs, as well as the usage of GAGs and their mimetics, are promising approaches to interfere with cancer progression. In addition, GAGs can be used as drug and cytokine carriers to induce an anti-tumor response. In this review, we summarize the role of GAGs in cancer and the potential use of GAGs and GAG derivatives to target cancer.
Collapse
Affiliation(s)
- Ronja Wieboldt
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratories for Cancer Immunotherapy and Immunology, Department of Biomedicine, University Hospital and University of Basel, Switzerland; Division of Oncology, Department of Theragnostics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
14
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
15
|
Helal HM, Samy WM, Kamoun EA, El-Fakharany EM, Abdelmonsif DA, Aly RG, Mortada SM, Sallam MA. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int J Nanomedicine 2021; 16:4781-4803. [PMID: 34290503 PMCID: PMC8286967 DOI: 10.2147/ijn.s317409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. OBJECTIVE Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. METHODS The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. RESULTS In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. CONCLUSION Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.
Collapse
Affiliation(s)
- Hala M Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El- Sherouk City, Cairo, 11837, Egypt
| | - Esmail M El-Fakharany
- Proteins Research Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
16
|
Gao M, Deng H, Zhang W. Hyaluronan-based Multifunctional Nano-carriers for Combination Cancer Therapy. Curr Top Med Chem 2021; 21:126-139. [PMID: 32962617 DOI: 10.2174/1568026620666200922113846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022]
Abstract
Hyaluronan (HA) is a natural linear polysaccharide that has excellent hydrophilicity, biocompatibility, biodegradability, and low immunogenicity, making it one of the most attractive biopolymers used for biomedical researches and applications. Due to the multiple functional sites on HA and its intrinsic affinity for CD44, a receptor highly expressed on various cancer cells, HA has been widely engineered to construct different drug-loading nanoparticles (NPs) for CD44-targeted anti-tumor therapy. When a cocktail of drugs is co-loaded in HA NP, a multifunctional nano-carriers could be obtained, which features as a highly effective and self-targeting strategy to combat cancers with CD44 overexpression. The HA-based multidrug nano-carriers can be a combination of different drugs, various therapeutic modalities, or the integration of therapy and diagnostics (theranostics). Up to now, there are many types of HA-based multidrug nano-carriers constructed by different formulation strategies, including drug co-conjugates, micelles, nano-gels and hybrid NP of HA and so on. This multidrug nano-carrier takes the full advantages of HA as an NP matrix, drug carriers and targeting ligand, representing a simplified and biocompatible platform to realize the targeted and synergistic combination therapy against the cancers. In this review, recent progress of HA-based multidrug nano-carriers for combination cancer therapy is summarized and the potential challenges for translational applications have been discussed.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Hong Deng
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Weiqi Zhang
- State Key Laboratory of Medical Molecular Biology & Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
17
|
Gamna F, Spriano S. Vitamin E: A Review of Its Application and Methods of Detection When Combined with Implant Biomaterials. MATERIALS 2021; 14:ma14133691. [PMID: 34279260 PMCID: PMC8269872 DOI: 10.3390/ma14133691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023]
Abstract
Vitamin E is a common compound used for tocopherols and tocotrienols (α, β, γ, δ); it is the component of many natural products of both plant and animal origin. Thanks to its powerful antioxidant capacity, vitamin E has been very successful in hip and knee arthroplasty, used to confer resistance to oxidation to irradiated UHMWPE. The positive results of these studies have made vitamin E an important object of research in the biomedical field, highlighting other important properties, such as anti-bacterial, -inflammatory, and -cancer activities. In fact, there is an extensive literature dealing with vitamin E in different kinds of material processing, drug delivery, and development of surface coatings. Vitamin E is widely discussed in the literature, and it is possible to find many reviews that discuss the biological role of vitamin E and its applications in food packaging and cosmetics. However, to date, there is not a review that discusses the biomedical applications of vitamin E and that points to the methods used to detect it within a solid. This review specifically aims to compile research about new biomedical applications of vitamin E carried out in the last 20 years, with the intention of providing an overview of the methodologies used to combine it with implantable biomaterials, as well as to detect and characterize it within these materials.
Collapse
|
18
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
19
|
Vitamin E succinate with multiple functions: A versatile agent in nanomedicine-based cancer therapy and its delivery strategies. Int J Pharm 2021; 600:120457. [PMID: 33676991 DOI: 10.1016/j.ijpharm.2021.120457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
Vitamin E succinate (VES), a succinic acid ester of vitamin E, is one of the most effective anticancer compounds of the vitamin E family. VES can inhibit tumor growth by multiple pathways mainly involve tumor proliferation inhibition, apoptosis induction, and metastasis prevention. More importantly, the mitochondrial targeting and damaging property of VES endows it with great potential in exhibiting synergetic effect with conventional chemotherapeutic drugs and overcoming multidrug resistance (MDR). Given the lipophilicity of VES that hinders its bioavailability and therapeutic activity, nanotechnology with multiple advantages has been widely explored to deliver VES and opened up new avenues for its in vivo application. This review aims to introduce the anticancer mechanisms of VES and summarize its delivery strategies using nano-drug delivery systems. Specifically, VES-based combination therapy for synergetic anticancer effect, MDR-reversal, and oral chemotherapy improvement are highlighted. Finally, the challenges and perspectives are discussed.
Collapse
|
20
|
Integrin α vβ 3-targeted liposomal drug delivery system for enhanced lung cancer therapy. Colloids Surf B Biointerfaces 2021; 201:111623. [PMID: 33636597 DOI: 10.1016/j.colsurfb.2021.111623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapy for tumor treatment remains flawed because it fails to limit cytotoxicity to a small set of selectable tissues. Active targeting techniques for the delivery of drugs to specific sites are increasingly used to enhance drug accumulation at tumor sites with the aim of reducing side effects in vivo. Liposomes, modified with different targeting ligands, are considered to be one of the most promising targeted drug carriers. Herein, novel linear and cyclic arginine-glycine-aspartate (RGD) peptide-based lipids were synthesized to develop modified liposomal drug delivery systems with active targeting and pH-sensitivity. The RGD-modified liposomes showed excellent active targeting ability for integrin αvβ3 receptors, resulting in improved cellular uptake. The modified liposomes also enhanced intracellular doxorubicin (DOX) release because of their degradation in an acidic environment. Consequently, the RGD-modified, DOX-loaded liposomes exhibited significant antitumor efficacy and low toxicity in vitro and in vivo. In particular, 5% cRGD-lipid modified DOX-loaded liposome showed the greatest inhibition of tumor growth in mice among the tested formulations, and much less toxicity than free DOX. In conclusion, the DOX-loaded pH-sensitive liposome modified with 5% cRGD-lipid developed in the current study provides a potential approach for improved tumor therapy.
Collapse
|
21
|
Tumor-targeted and self-assembled mixed micelles as carriers for enhanced anticancer efficacy of gemcitabine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Investigation on vitamin e succinate based intelligent hyaluronic acid micelles for overcoming drug resistance and enhancing anticancer efficacy. Eur J Pharm Sci 2019; 140:105071. [DOI: 10.1016/j.ejps.2019.105071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022]
|
23
|
Song M, Liang Y, Li K, Zhang J, Zhang N, Tian B, Han J. Hyaluronic acid modified liposomes for targeted delivery of doxorubicin and paclitaxel to CD44 overexpressing tumor cells with improved dual-drugs synergistic effect. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Qiu W, Zhang H, Chen X, Song L, Cui W, Ren S, Wang Y, Guo K, Li D, Chen R, Wang Z. A GPC1-targeted and gemcitabine-loaded biocompatible nanoplatform for pancreatic cancer multimodal imaging and therapy. Nanomedicine (Lond) 2019; 14:2339-2353. [PMID: 31414945 DOI: 10.2217/nnm-2019-0063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Aim: Biomarker-targeted nanocarrier holds promise for early diagnosis and effective therapy of cancer. Materials & methods: This work successfully designs and evaluates GPC1-targeted, gemcitabine (GEM)-loaded multifunctional gold nanocarrier for near-infrared fluorescence (NIRF)/MRI and targeted chemotherapy against pancreatic cancer in vitro and in vivo. Results: Blood biochemical and histological analyses show that the in vivo toxicity of GPC1-GEM-nanoparticles (NPs) was negligible. Both in vitro and in vivo studies demonstrate that GPC1-GEM-NPs can be used as NIRF/MR contrast agent for pancreatic cancer detection. Treatment of xenografted mice with GPC1-GEM-NPs shows a higher tumor inhibitory effect compared with controls. Conclusion: This novel theranostic nanoplatform provides early diagnostic and effective therapeutic potential for pancreatic cancer.
Collapse
Affiliation(s)
- Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Huifeng Zhang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Yajie Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rong Chen
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, MD 21201, USA
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| |
Collapse
|
25
|
Cadete A, Olivera A, Besev M, Dhal PK, Gonçalves L, Almeida AJ, Bastiat G, Benoit JP, de la Fuente M, Garcia-Fuentes M, Alonso MJ, Torres D. Self-assembled hyaluronan nanocapsules for the intracellular delivery of anticancer drugs. Sci Rep 2019; 9:11565. [PMID: 31399627 PMCID: PMC6689112 DOI: 10.1038/s41598-019-47995-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Preparation of sophisticated delivery systems for nanomedicine applications generally involve multi-step procedures using organic solvents. In this study, we have developed a simple self-assembling process to prepare docetaxel-loaded hyaluronic acid (HA) nanocapsules by using a self-emulsification process without the need of organic solvents, heat or high shear forces. These nanocapsules, which comprise an oily core and a shell consisting of an assembly of surfactants and hydrophobically modified HA, have a mean size of 130 nm, a zeta potential of -20 mV, and exhibit high docetaxel encapsulation efficiency. The nanocapsules exhibited an adequate stability in plasma. Furthermore, in vitro studies performed using A549 lung cancer cells, showed effective intracellular delivery of docetaxel. On the other hand, blank nanocapsules showed very low cytotoxicity. Overall, these results highlight the potential of self-emulsifying HA nanocapsules for intracellular drug delivery.
Collapse
Affiliation(s)
- Ana Cadete
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Olivera
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Guillaume Bastiat
- Micro et Nanomedecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France
| | - Jean-Pierre Benoit
- Micro et Nanomedecines Translationnelles, MINT, Université Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France
| | - María de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Marcos Garcia-Fuentes
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Alonso
- Nanobiofar Group, IDIS, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Dolores Torres
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Ganjibakhsh M, Mehraein F, Koruji M, Aflatoonian R, Farzaneh P. Three-dimensional decellularized amnion membrane scaffold as a novel tool for cancer research; cell behavior, drug resistance and cancer stem cell content. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:330-340. [DOI: 10.1016/j.msec.2019.02.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
|
27
|
Yu G, Ning Q, Mo Z, Tang S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1476-1487. [DOI: 10.1080/21691401.2019.1601104] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Guangping Yu
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Zhongcheng Mo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Henyang, China
| | - Shengsong Tang
- Learning Key Laboratory for Pharmacoproteomics of Hunan Province, Institute of Pharmacy and Pharmacology, University of South China, Henyang, China
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
28
|
Bi D, Zhao L, Li H, Guo Y, Wang X, Han M. A comparative study of polydopamine modified and conventional chemical synthesis method in doxorubicin liposomes form the aspect of tumor targeted therapy. Int J Pharm 2019; 559:76-85. [DOI: 10.1016/j.ijpharm.2019.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
29
|
Cabazitaxel and silibinin co-encapsulated cationic liposomes for CD44 targeted delivery: A new insight into nanomedicine based combinational chemotherapy for prostate cancer. Biomed Pharmacother 2018; 110:803-817. [PMID: 30554119 DOI: 10.1016/j.biopha.2018.11.145] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are the promising targets for cancer chemotherapy that cannot be eliminated by conventional chemotherapy. In this study cationic liposomes of cabazitaxel (CBX) and silibinin (SIL) were prepared with an aim to kill cancer cells and CSCs for prostate cancer. CBX act as cancer cell inhibitor and SIL as CSC inhibitor. Hyaluronic acid (HA), an endogenous anionic polysaccharide was coated on cationic liposomes for targeting CD44 receptors over expressed on CSCs. Liposomes were prepared by ethanol injection method with particle size below 100 nm and entrapment efficiency of more than 90% at 10% w/w drug loading. Liposomes were characterized by dynamic light scattering, transmission electron microscopy, 1H nuclear magnetic resonance and scanning electron microscopy-energy dispersive x-ray spectroscopy. Liposomes were evaluated for their anticancer action in androgen independent human prostate cancer cell lines (PC-3 and DU-145). HA coated liposomes showed potential cytotoxicity over other groups with low IC50, significantly inhibited cell migration and induced apoptosis. Synergistic cytotoxic effect was also observed with HA coated liposomes that resulted in colony formation inhibition and G2/M phase arrest. Proficient cytotoxicity against CD44+ cells (14.87 ± 0.41% in PC-3 and 33.95 ± 0.68% in DU-145 cells) indicated the efficiency of HA coated liposomes towards CSC targeting. Hence, the outcome of this combinational therapy with CD44 targeting indicates the suitability of HA coated CBX and SIL co-loaded liposomes as a potential approach for eradicating prostate cancer and herein might provide a insight for future studies.
Collapse
|
30
|
Wang J, Wang L, Li Y, Wang X, Tu P. Apically targeted oral micelles exhibit highly efficient intestinal uptake and oral absorption. Int J Nanomedicine 2018; 13:7997-8012. [PMID: 30538473 PMCID: PMC6263247 DOI: 10.2147/ijn.s183796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction Polymeric micelles (PMs) hold promise for improving solubility and oral absorption of poorly soluble drugs. Unfortunately, the oral absorption of PMs is also limited by intestinal epithelium. To improve the oral delivery efficiency of micelles, transporter-mediated micelles could enhance the transport efficiency across the epithelial barrier, and they have attracted more attention. Methods Peptide transporter 1 (PepT1)-mediated micelles (Val-PMs/Phe-PMs) were designed by grafting valine (or phenylalanine) onto the surface of curcumin (Cur)-loaded-D-α-tocopheryl polyethylene glycol 1000 succinate micelles (TP-PMs). The oral absorption mechanism and oral bioavailability were further investigated in vitro and in vivo. Results The cellular study showed that Val-PMs/Phe-PMs had a high PepT1 affinity, resulting in a higher drug uptake and transcellular transport than TP-PMs. In rats, Val-PMs/Phe-PMs exhibited higher intestinal accumulation in the apical side of the intestinal epithelium than TP-PMs, promoting drug diffusion across epithelial barrier. The oral bioavailability of Cur was significantly improved by Val-PMs/Phe-PMs, which was about 10.50- and 3.40-fold greater than that of Cur-Sol and TP-PMs, respectively. Conclusion PepT-1-mediated micelles, using PepT1 as a target on intestinal epithelium, have unique functions with intestine and prove promising for oral delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Jinling Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Lifang Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Ying Li
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Xiaohui Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Pengfei Tu
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| |
Collapse
|
31
|
Tian G, Sun X, Bai J, Dong J, Zhang B, Gao Z, Wu J. Doxorubicin‑loaded dual‑functional hyaluronic acid nanoparticles: Preparation, characterization and antitumor efficacy in vitro and in vivo. Mol Med Rep 2018; 19:133-142. [PMID: 30483793 PMCID: PMC6297777 DOI: 10.3892/mmr.2018.9687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
A novel GHH copolymer was synthesized using hyaluronic acid modified with glycyrrhetinic acid and L-histidine (His), and doxorubicin-loaded GHH nanoparticles (DOX/GHH) were prepared for liver-targeted drug delivery and pH-responsive drug release. In the present study, GHH nanoparticles were characterized, and their pH-responsive behaviors were evaluated at different pH levels. The antitumor effect of the DOX/GHH nanoparticles was investigated in vitro and in vivo. Results showed that the DOX/GHH nanoparticles were spherical, and the particle sizes ranged from 238.1 to 156.7 nm with an increase in the degree of substitution of His. The GHH nanoparticles were obviously internalized into human hepatoblastoma cells. In vitro cytotoxicity assay results showed that the DOX/GHH nanoparticles exhibited a dose-dependent antitumor effect. Compared with free DOX, the DOX/GHH nanoparticles displayed higher antitumor efficacy. These results indicate that GHH nanoparticles could be a promising nano-delivery carrier of hydrophobic drugs for liver-targeted therapy.
Collapse
Affiliation(s)
- Guixiang Tian
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiue Sun
- Department of Psychology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
32
|
Bi D, Zhao L, Yu R, Li H, Guo Y, Wang X, Han M. Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Deliv 2018; 25:564-575. [PMID: 29457518 PMCID: PMC6058689 DOI: 10.1080/10717544.2018.1440447] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One major challenge of current surface modification of nanoparticles is the demand for chemical reactive polymeric layers, such modification is always complicated, inefficient, and may lead the polymer lose the ability to encapsulate drug. To overcome this limitation, we adopted a pH-sensitive platform using polydopamine (PDA) as a way of functionalizing nanoparticles (NPs) surfaces. All this method needed to be just a brief incubation in weak alkaline solution of dopamine, which was simple and applicable to a variety of polymer carriers regardless of their chemical reactivity. We successfully conjugated the doxorubicin (DOX)-PDA-poly (lactic-co-glycolic acid) (PLGA) NPs with two typical surface modifiers: folate (FA) and a peptide (Arg-Gly-Asp, RGD). The DOX-PDA-FA-NPs and DOX-PDA-RGD-NPs (targeting nanoparticles) were characterized by particle size, zeta potential, and surface morphology. They were quite stable in various physiological solutions and exhibited pH-sensitive property in drug release. Compared to DOX-NPs, the targeting nanoparticles possessed an excellent targeting ability against HeLa cells. In addition, the in vivo study demonstrated that targeting nanoparticles achieved a tumor inhibition rate over 70%, meanwhile prominently decreased the side effects of DOX and improve drug distribution in tumors. Our studies indicated that the DOX-PLGA-NPs modified with PDA and various functional ligands are promising nanocarriers for targeting tumor therapy.
Collapse
Affiliation(s)
- Dongdong Bi
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| | - Lei Zhao
- b Life Science and Environmental Science Center , Harbin University of Commerce , Harbin , PR China
| | - Runqi Yu
- c School of Pharmacy , Heilongjiang University of Chinese Medicine , Harbin , PR China
| | - Haowen Li
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| | - Yifei Guo
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| | - Xiangtao Wang
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| | - Meihua Han
- a Institute of Medicinal Plant Development , Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , PR China
| |
Collapse
|
33
|
Wang J, Li Y, Wang L, Wang X, Tu P. Comparison of hyaluronic acid-based micelles and polyethylene glycol-based micelles on reversal of multidrug resistance and enhanced anticancer efficacy in vitro and in vivo. Drug Deliv 2018; 25:330-340. [PMID: 29350064 PMCID: PMC6058673 DOI: 10.1080/10717544.2018.1428385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Polyethylene glycol (PEG)-based block copolymer micelles and hyaluronic acid (HA)-based grafted copolymer micelles have been widely investigated in chemotherapy. In this study, to evaluate the differences among HA-based grafted polymer micelles, PEG-based block polymer micelles and the mixed of these two micelles in enhancing antitumor effects and overcoming MDR, two amphiphilic vitamin E succinate (VES) derivatives, HA VES (HA-g-VES) and PEG 2000 VES (TPGS2k), were applied as nanocarriers to prepare HA-VES micelles (HA-PMs), TPGS2k micelles (TPGS2k-PMs) and the mixed micelles (HA/TPGS2k-PMs) for the co-delivery of doxorubicin (DOX) and curcumin (Cur). With the addition of TPGS2k, the particle size of HA/TPGS2k-PMs (153.37 ± 1.00 nm) was smaller than that of HA-PMs (223.83 ± 1.84) but significantly larger than that of TPGS2k-PMs (about 20 nm). The loading efficiency of HA/TPGS2k-PMs was 7.10%, which was lower than HA-PMs (8.31 ± 0.15%) but higher than TPGS2k-PMs (4.38 ± 0.24%). In vitro, HA/TPGS2k-PMs and TPGS2k-PMs exhibited higher cytotoxicity and reversal MDR effects than HA-PMs in MCF-7/Adr cells. However, HA/TPGS2k-PMs, HA-PMs and TPGS2k-PMs all significantly improved the tumor biodistribution, the antitumor effects and reduced the side effects of DOX in 4T1-tumor-bearing mice, but these three micelles displayed no differences in vivo. Therefore, EPR passive targeting effects caused by PEGylated micelles and CD44 active targeting effects caused by HA-based micelles have no significant variance in the delivery of antitumor drugs by i.v.
Collapse
Affiliation(s)
- Jinling Wang
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Ying Li
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Lifang Wang
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Xiaohui Wang
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| | - Pengfei Tu
- a School of Chinese Materia Medica , Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , PR China
| |
Collapse
|
34
|
Lima-Sousa R, de Melo-Diogo D, Alves CG, Costa EC, Ferreira P, Louro RO, Correia IJ. Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photothermal therapy. Carbohydr Polym 2018; 200:93-99. [PMID: 30177213 DOI: 10.1016/j.carbpol.2018.07.066] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022]
Abstract
Reduced graphene oxide (rGO) nanomaterials display promising properties for application in cancer photothermal therapy (PTT). rGO is usually obtained by treating graphene oxide (GO) with hydrazine hydrate. However, this reducing agent contributes for the low cytocompatibility exhibited by rGO. Furthermore, rGO has a low water stability and does not show selectivity towards cancer cells. Herein, rGO attained using an environmentally-friendly method was functionalized with a novel hyaluronic acid (HA)-based amphiphilic polymer to be used in targeted cancer PTT. Initially, the green-reduction of GO with L-Ascorbic acid was optimized considering the near infrared absorption and the size distribution of the nanomaterials. Then, rGO was functionalized with the HA-based amphiphile. The functionalization of rGO improved its stability, cytocompatibility and internalization by CD44 overexpressing cells, which indicates the targeting capacity of this nanoformulation. Furthermore, the on-demand PTT mediated by HA-functionalized rGO induced cancer cells' ablation, thereby confirming its potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisabete C Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, 3030-790 Coimbra, Portugal
| | - Ricardo O Louro
- ITQB - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
35
|
Qi B, Crawford AJ, Wojtynek NE, Holmes MB, Souchek JJ, Almeida-Porada G, Ly QP, Cohen SM, Hollingsworth MA, Mohs AM. Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:769-780. [PMID: 29325740 PMCID: PMC5899013 DOI: 10.1016/j.nano.2017.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023]
Abstract
Pancreatic ductal adenocarcinoma is highly lethal and surgical resection is the only potential curative treatment for the disease. In this study, hyaluronic acid derived nanoparticles with physico-chemically entrapped indocyanine green, termed NanoICG, were utilized for intraoperative near infrared fluorescence detection of pancreatic cancer. NanoICG was not cytotoxic to healthy pancreatic epithelial cells and did not induce chemotaxis or phagocytosis, it accumulated significantly within the pancreas in an orthotopic pancreatic ductal adenocarcinoma model, and demonstrated contrast-enhancement for pancreatic lesions relative to non-diseased portions of the pancreas. Fluorescence microscopy showed higher fluorescence intensity in pancreatic lesions and splenic metastases due to NanoICG compared to ICG alone. The in vivo safety profile of NanoICG, including, biochemical, hematological, and pathological analysis of NanoICG-treated healthy mice, indicates negligible toxicity. These results suggest that NanoICG is a promising contrast agent for intraoperative detection of pancreatic tumors.
Collapse
Affiliation(s)
- Bowen Qi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ayrianne J Crawford
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Megan B Holmes
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Joshua J Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Graca Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samuel M Cohen
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE; Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
36
|
Wang G, Gao S, Tian R, Miller-Kleinhenz J, Qin Z, Liu T, Li L, Zhang F, Ma Q, Zhu L. Theranostic Hyaluronic Acid-Iron Micellar Nanoparticles for Magnetic-Field-Enhanced in vivo Cancer Chemotherapy. ChemMedChem 2017; 13:78-86. [PMID: 29086481 DOI: 10.1002/cmdc.201700515] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/25/2017] [Indexed: 12/15/2022]
Abstract
The delivery of therapeutic cancer agents using nanomaterials has recently attracted much attention. Although encouraging progress with chemotherapeutics has been made, tumor treatment response remains unsatisfactory. To address this concern, we constructed a new micellar nanocomplex by covalently conjugating hyaluronic acid (HA) with an iron oxide nanoparticle (IONP). When an external magnetic field was applied to the tumor area, HA-IONP specifically accumulated in the tumor, due to the strong IONP magnetism. In addition, HA was shown to bind to cluster determinant 44 (CD44), which is overexpressed on tumor cells. With combined magnetic, CD44, and enhanced permeability retention (EPR) targeting, the efficient delivery of HA-IONP to the tumor is expected to enhance cancer treatment efficiency. After encapsulation of the chemotherapy drug homocamptothecin (HCPT), the theranostic potency of HA-IONP/HCPT (HIH) was investigated both in vitro and in vivo. The improved tumor homing behavior of HIH was observed by magnetic resonance imaging (MRI) when an external magnetic field was used. Moreover, HIH showed remarkable tumor ablation efficiency, with magnetic targeting after 3 mg kg-1 intravenous administration (equivalent dose of free HCPT), and the tumors almost disappeared after treatment. No obvious systemic toxicity was detected. This excellent biocompatibility and tumor targetability suggests that HIH is a promising theranostic nanocomplex with great translational potency. Application of the HA-IONP platform could also be extended to delivery of other hydrophobic chemotherapy drugs or phototherapy agents.
Collapse
Affiliation(s)
- Guohao Wang
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Rui Tian
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, China
| | | | - Zainen Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Collaborative Innovation Center of Guangxi, Biological Medicine and the Medical and Scientific Research Center, Guangxi Medical University, Guangxi, China
| | - Tianji Liu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lu Li
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Fan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Qingjie Ma
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lei Zhu
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Surgery, Emory University, 1365-C Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|