1
|
Zhang H, Osawa F, Okamoto H, Qiu Y, Liu Z, Ohshima N, Kajisa T, Sakata T, Izumi T, Sone H. Ultrasensitive Specific Detection of Anti-influenza A H1N1 Hemagglutinin Monoclonal Antibody Using Silicon Nanowire Field Effect Biosensors. ACS APPLIED BIO MATERIALS 2025; 8:1038-1049. [PMID: 39815599 DOI: 10.1021/acsabm.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes. The SiNW surface was chemically modified with 2-aminoethylphosphonic acid, followed by a dehydration condensation reaction with influenza A H1N1 hemagglutinin (HA1), to enable specific detection of anti-HA1 immunoglobulin G (IgG). We successfully detected the anti-influenza IgG with concentrations ranging from 1 aM to 100 nM, achieving a remarkable detection limit of 6.0 aM. To demonstrate specificity, a control experiment was conducted using normal mouse IgG with concentrations of 6 aM to 600 nM. The results showed a high specificity, with the signal being 6-fold greater for the target IgG compared to the control IgG. This work demonstrates the capability of SiNW biosensors to detect anti-influenza A H1N1 hemagglutinin monoclonal antibody with enhanced detection sensitivity and specificity. This work lays the groundwork for future applications in detecting antibodies after vaccination or immunotherapy, contributing to the effective management of infectious pandemics.
Collapse
Affiliation(s)
- Hui Zhang
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Fumiya Osawa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Haru Okamoto
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Yawei Qiu
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Zhiheng Liu
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Taira Kajisa
- SympaFit Company Limited, 16th Floor, Ark Hills South Tower 1-4-5 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-Ku, Tokyo 170-8445, Japan
| | - Hayato Sone
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
2
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024; 16:20864-20884. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
3
|
Qin M, Hu J, Li X, Liu J, Jiang R, Shi Y, Wang Z, Zhang L, Zhao Y, Gao H, Zhang Q, Zhao H, Li M, Huang C. Exosomal membrane proteins analysis using a silicon nanowire field effect transistor biosensor. Talanta 2024; 278:126534. [PMID: 39002259 DOI: 10.1016/j.talanta.2024.126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are of great significance in clinical diagnosis, due to their high homology with parental generation, which can reflect the pathophysiological status. However, the quantitative and classification detection of exosomes is still faced with the challenges of low sensitivity and complex operation. In this study, we develop an electrical and label-free method to directly detect exosomes with high sensitivity based on a Silicon nanowire field effect transistor biosensor (Si-NW Bio-FET). First, the impact of Debye length on Si-NW Bio-FET detection was investigated through simulation. The simulation results demonstrated that as the Debye length increased, the electrical response to Si-NW produced by charged particle at a certain distance from the surface of Si-NW was greater. A Si-NW Bio-FET modified with specific antibody CD81 on the nanowire was fabricated then used for detection of cell line-derived exosomes, which achieved a low limit of detection (LOD) of 1078 particles/mL in 0.01 × PBS. Furthermore, the Si-NW Bio-FETs modified with specific antibody CD9, CD81 and CD63 respectively, were employed to distinguish exosomes derived from human promyelocytic leukemia (HL-60) cell line in three different states (control group, lipopolysaccharide (LPS) inflammation group, and LPS + Romidepsin (FK228) drug treatment group), which was consistent with nano-flow cytometry. This study provides a highly sensitive method of directly quantifying exosomes without labeling, indicating its potential as a tool for disease surveillance and medication instruction.
Collapse
Affiliation(s)
- Meiyan Qin
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiawei Hu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; North China University of Technology, Beijing 100144, China
| | - Xue Li
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Jinlong Liu
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Rui Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yimin Shi
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizhen Wang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Hang Gao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Qingzhu Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China.
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Li Y, Wei S, Xiong E, Hu J, Zhang X, Wang Y, Zhang J, Yan J, Zhang Z, Yin H, Zhang Q. Ultrasensitive 3D Stacked Silicon Nanosheet Field-Effect Transistor Biosensor with Overcoming Debye Shielding Effect for Detection of DNA. BIOSENSORS 2024; 14:144. [PMID: 38534249 DOI: 10.3390/bios14030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Silicon nanowire field effect (SiNW-FET) biosensors have been successfully used in the detection of nucleic acids, proteins and other molecules owing to their advantages of ultra-high sensitivity, high specificity, and label-free and immediate response. However, the presence of the Debye shielding effect in semiconductor devices severely reduces their detection sensitivity. In this paper, a three-dimensional stacked silicon nanosheet FET (3D-SiNS-FET) biosensor was studied for the high-sensitivity detection of nucleic acids. Based on the mainstream Gate-All-Around (GAA) fenestration process, a three-dimensional stacked structure with an 8 nm cavity spacing was designed and prepared, allowing modification of probe molecules within the stacked cavities. Furthermore, the advantage of the three-dimensional space can realize the upper and lower complementary detection, which can overcome the Debye shielding effect and realize high-sensitivity Point of Care Testing (POCT) at high ionic strength. The experimental results show that the minimum detection limit for 12-base DNA (4 nM) at 1 × PBS is less than 10 zM, and at a high concentration of 1 µM DNA, the sensitivity of the 3D-SiNS-FET is approximately 10 times higher than that of the planar devices. This indicates that our device provides distinct advantages for detection, showing promise for future biosensor applications in clinical settings.
Collapse
Affiliation(s)
- Yinglu Li
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Enyi Xiong
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Jiawei Hu
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Xufang Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Yanrong Wang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Jing Zhang
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Jiang Yan
- School of Information Science and Technology, North China University of Technology, Beijing 100144, China
| | - Zhaohao Zhang
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Huaxiang Yin
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| | - Qingzhu Zhang
- Advanced Integrated Circuits R&D Center, Institute of Microelectronic of the Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
5
|
Kumar N, Towers D, Myers S, Galvin C, Kireev D, Ellington AD, Akinwande D. Graphene Field Effect Biosensor for Concurrent and Specific Detection of SARS-CoV-2 and Influenza. ACS NANO 2023; 17:18629-18640. [PMID: 37703454 DOI: 10.1021/acsnano.3c07707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for devices capable of carrying out rapid differential detection of viruses that may manifest similar physiological symptoms yet demand tailored treatment plans. Seasonal influenza may be exacerbated by COVID-19 infections, increasing the burden on healthcare systems. In this work, we demonstrate a technology based on liquid-gated graphene field-effect transistors (GFETs), for rapid and ultraprecise sensing and differentiation of influenza and SARS-CoV-2 surface protein. Most distinctively, the device consists of 4 onboard GFETs arranged in a quadruple architecture, where each quarter is functionalized individually (with either antibodies or chemically passivated control) but measured jointly. The sensor platform was tested against a range of concentrations of viral surface proteins from both viruses with the lowest tested and detected concentration at ∼50 ag/mL, or 88 zM for COVID-19 and 227 zM for Flu, which is 5-fold lower than the values reported previously on a similar platform. Unlike the classic real-time polymerase chain reaction test, which has a turnaround time of a few hours, the graphene technology presents an ultrafast response time of ∼10 s even in complex and clinically relevant media such as saliva. Thus, we have developed a multianalyte, highly sensitive, and fault-tolerant technology for rapid diagnostic of contemporary, emerging, and future pandemics.
Collapse
Affiliation(s)
- Neelotpala Kumar
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dalton Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samantha Myers
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cooper Galvin
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Dmitry Kireev
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Massachusetts 01003, United States
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Zhang H, Qiu Y, Osawa F, Itabashi M, Ohshima N, Kajisa T, Sakata T, Izumi T, Sone H. Estimation of the Depletion Layer Thickness in Silicon Nanowire-Based Biosensors from Attomolar-Level Biomolecular Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19892-19903. [PMID: 37046176 DOI: 10.1021/acsami.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Silicon nanowire (SiNW) biosensors have attracted a lot of attention due to their superior sensitivity. Recently, the dependence of biomolecule detection sensitivity on the nanowire (NW) width, number, and doping density has been partially investigated. However, the primary reason for achieving ultrahigh sensitivity has not been elucidated thus far. In this study, we designed and fabricated SiNW biosensors with different widths (10.8-155 nm) by integrating a complementary metal-oxide-semiconductor process and electron beam lithography. We aimed to investigate the detection limit of SiNW biosensors and reveal the critical effect of the 10-nm-scaled SiNW width on the detection sensitivity. The sensing performance was evaluated by detecting antiovalbumin immunoglobulin G (IgG) with various concentrations (from 6 aM to 600 nM). The initial thickness of the depletion region of the SiNW and the changes in the depletion region due to biomolecule binding were calculated. The basis of this calculation are the resistance change ratios as functions of IgG concentrations using SiNWs with different widths. The calculation results reveal that the proportion of the depletion region over the entire SiNW channel is the essential reason for high-sensitivity detection. Therefore, this study is crucial for an indepth understanding on how to maximize the sensitivity of SiNW biosensors.
Collapse
Affiliation(s)
- Hui Zhang
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Yawei Qiu
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Fumiya Osawa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Meiko Itabashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Taira Kajisa
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-Ku, Tokyo 170-8445, Japan
| | - Hayato Sone
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
7
|
Fauzi N, Mohd Asri RI, Mohamed Omar MF, Manaf AA, Kawarada H, Falina S, Syamsul M. Status and Prospects of Heterojunction-Based HEMT for Next-Generation Biosensors. MICROMACHINES 2023; 14:325. [PMID: 36838025 PMCID: PMC9966278 DOI: 10.3390/mi14020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
High electron mobility transistor (HEMT) biosensors hold great potential for realizing label-free, real-time, and direct detection. Owing to their unique properties of two-dimensional electron gas (2DEG), HEMT biosensors have the ability to amplify current changes pertinent to potential changes with the introduction of any biomolecules, making them highly surface charge sensitive. This review discusses the recent advances in the use of AlGaN/GaN and AlGaAs/GaAs HEMT as biosensors in the context of different gate architectures. We describe the fundamental mechanisms underlying their operational functions, giving insight into crucial experiments as well as the necessary analysis and validation of data. Surface functionalization and biorecognition integrated into the HEMT gate structures, including self-assembly strategies, are also presented in this review, with relevant and promising applications discussed for ultra-sensitive biosensors. Obstacles and opportunities for possible optimization are also surveyed. Conclusively, future prospects for further development and applications are discussed. This review is instructive for researchers who are new to this field as well as being informative for those who work in related fields.
Collapse
Affiliation(s)
- Najihah Fauzi
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Rahil Izzati Mohd Asri
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Mohamad Faiz Mohamed Omar
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Mohd Syamsul
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
8
|
Li H, Wang S, Li X, Cheng C, Shen X, Wang T. Dual-Channel Detection of Breast Cancer Biomarkers CA15-3 and CEA in Human Serum Using Dialysis-Silicon Nanowire Field Effect Transistor. Int J Nanomedicine 2022; 17:6289-6299. [PMID: 36536938 PMCID: PMC9758920 DOI: 10.2147/ijn.s391234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/03/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignant tumors and the leading cause of cancer deaths among women. The early diagnosis and treatment of BC are effective measures that can increase survival rates and reduce mortality. Carbohydrate antigens 15-3 (CA15-3) and carcinoma embryonic antigens (CEA) have been regarded as the most two valuable tumor markers of BC. The combined detection of CA15-3 and CEA could improve the sensitivity and accuracy of early diagnosis for BC. METHODS The multi-channel double-gate silicon nanowire field effect transistor (SiNW-FET) biosensors were fabricated by using the top-down semiconductor manufacturing technology. By surface modification of the different SiNW surfaces with monoclonal CA15-3 and CEA antibodies separately, the prepared SiNW-FET was processed into biosensor for dual-channel detection of CA15-3 and CEA. RESULTS The prepared SiNW-FET biosensors were proved to have high sensitivity and specificity for the dual-channel detection of CA15-3 and CEA, and the detection limit is as low as 0.1U/mL CA15-3 and 0.01 ng/mL CEA. Moreover, the SiNW-FET biosensors were able to detect CA15-3 and CEA in serum by connecting a miniature hemodialyzer. CONCLUSION The present study reported a SiNW-FET biosensor for dual-channel detection of breast cancer biomarkers CA15-3 and CEA in serum, which has potential clinical application value for the early diagnosis and curative effect observation of BC.
Collapse
Affiliation(s)
- Hang Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Shuai Wang
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiaosong Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Cong Cheng
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu Province, People’s Republic of China
| | - Xiping Shen
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People’s Republic of China
| | - Tong Wang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
9
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
10
|
Amen MT, Pham TTT, Cheah E, Tran DP, Thierry B. Metal-Oxide FET Biosensor for Point-of-Care Testing: Overview and Perspective. Molecules 2022; 27:molecules27227952. [PMID: 36432052 PMCID: PMC9698540 DOI: 10.3390/molecules27227952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Metal-oxide semiconducting materials are promising for building high-performance field-effect transistor (FET) based biochemical sensors. The existence of well-established top-down scalable manufacturing processes enables the reliable production of cost-effective yet high-performance sensors, two key considerations toward the translation of such devices in real-life applications. Metal-oxide semiconductor FET biochemical sensors are especially well-suited to the development of Point-of-Care testing (PoCT) devices, as illustrated by the rapidly growing body of reports in the field. Yet, metal-oxide semiconductor FET sensors remain confined to date, mainly in academia. Toward accelerating the real-life translation of this exciting technology, we review the current literature and discuss the critical features underpinning the successful development of metal-oxide semiconductor FET-based PoCT devices that meet the stringent performance, manufacturing, and regulatory requirements of PoCT.
Collapse
|
11
|
Chen H, Deng L, Sun J, Li H, Zhu X, Wang T, Jiang Y. Dynamic Detection of HbA1c Using a Silicon Nanowire Field Effect Tube Biosensor. BIOSENSORS 2022; 12:916. [PMID: 36354424 PMCID: PMC9688244 DOI: 10.3390/bios12110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As an emerging diabetes diagnostic indicator and a dynamic change index, HbA1c can not only reflect the average blood glucose level over a period of time but can also well predict the incidence of related microvascular complications. It is important to develop a detection method that can dynamically characterize HbA1c. Silicon nanowire (SiNW) devices were mass-produced using top-down sputtering technology, and a microdialyzer was installed in a SiNW field effect tube biosensor detection system. Finally, the detection system was used to detect HbA1c levels quantitatively and dynamically in experimental rabbits. Various measurements showed that mass-produced SiNW devices have ideal dimensions, stable structures, and good performance. A series of microscopy results showed that the SiNW surface can be functionalized for intermolecular interactions. The addition of a dialysis device can effectively overcome Debye shielding, making the blood test similar to the pure standard test. Finally, the dynamic detection of HbA1c within 40 h was realized. SiNW biosensors are capable of the dynamic detection of biomolecules, and dynamic observation of the interaction between blood glucose and HbA1c provides new ideas for the diagnosis and treatment of patients with diabetes. Therefore, the SiNW biosensor can reflect the dynamic changes in HbA1c in a shorter time, which has a certain potential value in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Hang Chen
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lijuan Deng
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jialin Sun
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Hang Li
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Xiaoping Zhu
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tong Wang
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Yanfeng Jiang
- Internet of Things Institute, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Thriveni G, Ghosh K. Advancement and Challenges of Biosensing Using Field Effect Transistors. BIOSENSORS 2022; 12:647. [PMID: 36005043 PMCID: PMC9405812 DOI: 10.3390/bios12080647] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022]
Abstract
Field-effect transistors (FETs) have become eminent electronic devices for biosensing applications owing to their high sensitivity, faster response and availability of advanced fabrication techniques for their production. The device physics of this sensor is now well understood due to the emergence of several numerical modelling and simulation papers over the years. The pace of advancement along with the knowhow of theoretical concepts proved to be highly effective in detecting deadly pathogens, especially the SARS-CoV-2 spike protein of the coronavirus with the onset of the (coronavirus disease of 2019) COVID-19 pandemic. However, the advancement in the sensing system is also accompanied by various hurdles that degrade the performance. In this review, we have explored all these challenges and how these are tackled with innovative approaches, techniques and device modifications that have also raised the detection sensitivity and specificity. The functional materials of the device are also structurally modified towards improving the surface area and minimizing power dissipation for developing miniaturized microarrays applicable in ultra large scale integration (ULSI) technology. Several theoretical models and simulations have also been carried out in this domain which have given a deeper insight on the electron transport mechanism in these devices and provided the direction for optimizing performance.
Collapse
Affiliation(s)
- Gokuraju Thriveni
- Department of Electronics and Communication Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Mysore Road, Kumbalgodu, Bengaluru 560074, India
| | - Kaustab Ghosh
- Centre for Nanoelectronics and VLSI Design, Vellore Institute of Technology, Vandalur Kelambakkam Road, Chennai 600127, India
- Vellore Institute of Technology, School of Electronics Engineering, Vandalur Kelambakkam Road, Chennai 600119, India
| |
Collapse
|
13
|
Diao L, Xu Z, Zhang W, Miao B, Hu Y, Gu Z, Li J. Direct protein detection in solutions of high ionic strength using polyethylene glycol‐modified AlGaN/GaN high electron mobility transistors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Zhan Xu
- University of Science and Technology of China CHINA
| | - Wangyang Zhang
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences CHINA
| | - Bin Miao
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences CHINA
| | - Yimin Hu
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences CHINA
| | - Zhiqi Gu
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences CHINA
| | | |
Collapse
|
14
|
Cheah E, Tran DP, Amen MT, Arrua RD, Hilder EF, Thierry B. Integrated Platform Addressing the Finger-Prick Blood Processing Challenges of Point-of-Care Electrical Biomarker Testing. Anal Chem 2022; 94:1256-1263. [DOI: 10.1021/acs.analchem.1c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Edward Cheah
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Duy P. Tran
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Mohamed T. Amen
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - R. Dario Arrua
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Emily F. Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- ARC Centre of Excellence for Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
15
|
Abstract
Bioelectronics explores the use of electronic devices for applications in signal transduction at their interfaces with biological systems. The miniaturization of the bioelectronic systems has enabled seamless integration at these interfaces and is providing new scientific and technological opportunities. In particular, nanowire-based devices can yield smaller sized and unique geometry detectors that are difficult to access with standard techniques, and thereby can provide advantages in sensitivity with reduced invasiveness. In this review, we focus on nanowire-enabled bioelectronics. First, we provide an overview of synthetic studies for designed growth of semiconductor nanowires of which structure and composition are controlled to enable key elements for bioelectronic devices. Second, we review nanowire field-effect transistor sensors for highly sensitive detection of biomolecules, their applications in diagnosis and drug discovery, and methods for sensitivity enhancement. We then turn to recent progress in nanowire-enabled studies of electrogenic cells, including cardiomyocytes and neurons. Representative advances in electrical recording using nanowire electronic devices for single cell measurements, cell network mapping, and three-dimensional recordings of synthetic and natural tissues, and in vivo brain mapping are highlighted. Finally, we overview the key challenges and opportunities of nanowires for fundamental research and translational applications.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jae-Hyun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Advanced Science Institute, Yonsei University, Seoul, 03722, Korea
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
16
|
Schick AJ, Yi L, Lam P, Pallante P, Swanson N, Tyler JY. Understanding Loss of Soluble High Molecular Weight Species during Filtration of Low Concentration Therapeutic Monoclonal Antibodies. J Pharm Sci 2021; 110:1997-2004. [PMID: 33610564 DOI: 10.1016/j.xphs.2021.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Sterile filtration is an integral step in the manufacturing process of biological therapeutics. Protein adsorption to the surface of the filter is an unfortunate, common occurrence that can result in manufacturing difficulties, such as filter fouling or product loss. Although many filters have surface modifications to minimize adsorption, under certain conditions binding can still occur. We observed the loss of high molecular weight species (HMWS) during sterile filtration of eight different therapeutic monoclonal antibodies formulated at low protein concentrations across a commonly used hydrophilic polyvinylidene fluoride or polyvinylidene difluoride (PVDF) filter membrane. The protein absorption was specific to HMWS, and each antibody exhibited different degrees of filter adsorption. Debye screening length parameters of the solution (e.g. ionic strength) were adjusted, and influenced the amount of HMWS lost during filtration. Additionally, HMWS of a representative antibody (mAb1) were observed to be more positively charged than other size variants by ion-exchange chromatography. From these results, it is concluded that this HMWS loss is due to electrostatic interactions between HMWS and the filter surface. This adsorption can be reduced by increasing the ionic strength of the buffer matrix, demonstrating the influence of the Debye screening length in the filtration of low concentration proteins.
Collapse
Affiliation(s)
- Arthur J Schick
- Genentech Inc, Protein Analytical Chemistry, South San Francisco, CA, USA
| | - Li Yi
- AbbVie Inc, Pharmaceutical Development, Redwood City, CA, USA
| | | | - Preston Pallante
- Genentech Inc, Purification Development, South San Francisco, CA, USA
| | | | - Jacqueline Y Tyler
- Genentech Inc, Pharmaceutical Development, South San Francisco, CA, USA.
| |
Collapse
|