1
|
Barkat H, Riaz B, Fatima A, AlShammari L, Ahmed YB, Ahmad W, Amir M, Israr J, Khatoon A, Siddiqui S. Nutritional, Medicinal, and Commercial Significance of Moringa oleifera L. Leaves: A Comprehensive Review. Chem Biodivers 2025:e202500559. [PMID: 40195685 DOI: 10.1002/cbdv.202500559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
Moringa oleifera L., widely referred to as the drumstick tree, is renowned for its leaves, which are abundant in vital nutrients and bioactive substances. This study systematically summarized and reviewed the literature on M. oleifera leaves as nutraceuticals from Scopus, Web of Science, PubMed, and other online databases. In addition, various online tools were utilized to calculate the drug-likeness, pharmacokinetics, and toxicity profiles of phytoconstituents from M. oleifera leaves. This review underscores the nutritional, pharmacological, and commercial significance of M. oleifera leaves, emphasizing both established knowledge and new findings that enhance our comprehension of this multifaceted plant. Moreover, this study explored the extensive phytochemical profile of Moringa leaves, encompassing vitamins, minerals, antioxidants, and anti-inflammatory compounds, as well as their contributions to human health. This study consolidates the current understanding of Moringa leaves and introduces a new paradigm for future research at the nexus of nutrition, medicine, and commerce, promoting its incorporation into global health initiatives and sustainable agricultural plans.
Collapse
Affiliation(s)
- Harshita Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Bushra Riaz
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Afreen Fatima
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Latifah AlShammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Yasmin Basheer Ahmed
- Department of Clinical Nutrition, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juveriya Israr
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Afsana Khatoon
- Department of Arab Culture, Karamat Husain Muslim Girls' P.G. College, University of Lucknow, Lucknow, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| |
Collapse
|
2
|
Kumar H, Guleria S, Dhalaria R, Nepovimova E, Bhardwaj N, Jha P, Dhanjal DS, Verma N, Malik T. Valorization of Moringa oleifera Lam.: Healthy green biomass for circular bioeconomy. Food Chem X 2025; 26:102358. [PMID: 40129732 PMCID: PMC11931315 DOI: 10.1016/j.fochx.2025.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Exploration of plant biodiversity that not only withstand extreme environmental conditions but also has the potential to fulfil sustainable development goals (SDGs) is the priority for researchers. Moringa oleifera is the best-suited plant in this category. It plays a primary role in SDGs due to its versatile features like health-beneficial effects. The polyphenols found in the different parts of this plant have exhibited health-promoting benefits and served as catalysts/resources for producing valuable ingredients. The current review outlines the potential application of Moringa oleifera in biofuel production, the synthesis of green nanomaterials, and the fortification of functional foods and feed to enhance nutritional value. Besides that, the application of Moringa oleifera in pharmaceutical products and the safety considerations associated with its utilization have also been examined. Conclusively, the review comprehensively aligns towards sustainable practices in the agro-industrial sector alongside the circular bioeconomy concept.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 70800 Ostrava-Poruba, Czech Republic
| | - Nidhi Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pooja Jha
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Narinder Verma
- School of Business Management, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144401, India
| |
Collapse
|
3
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
4
|
Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, Vijay H, Rahimi S. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. J Nanobiotechnology 2024; 22:71. [PMID: 38373982 PMCID: PMC10877787 DOI: 10.1186/s12951-024-02332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006, Republic of Korea.
| | - Johan Sukweenadhi
- Faculty of Biotechnology, University of Surabaya, Surabaya, 60293, Indonesia
| | - Sagnik Nag
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hari Vijay
- Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
5
|
Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of Green Synthesized Metal Nanoparticles - a Review. Biol Trace Elem Res 2024; 202:360-386. [PMID: 37046039 PMCID: PMC10097525 DOI: 10.1007/s12011-023-03645-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.
Collapse
Affiliation(s)
| | - Hary Razafindralambo
- ProBioLab, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liège, Belgium
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux AgroBio Tech/Université de Liège, Gembloux, Belgium, University of Liege, Liège, Belgium
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
6
|
Salam SGA, Rashed MM, Ibrahim NA, Rahim EAA, Aly TAA, Al-Farga A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum-graecum Linn.) seeds and leaves. Sci Rep 2023; 13:7032. [PMID: 37120447 PMCID: PMC10148852 DOI: 10.1038/s41598-023-31888-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/20/2023] [Indexed: 05/01/2023] Open
Abstract
The impact of household processes on fenugreek leaves and seeds has been analyzed for total phenolic (TP) and total flavonoid content (TF), and in-vitro biological activities such as antioxidant, antimicrobial, and anti-inflammatory properties. Processes included air-drying for leaves and germinating, soaking, and boiling for seeds. Air-dried fenugreek leaves (ADFL) had high TP (15.27 mg GAE g-1 D.W.) and TF (7.71 mg QE g-1 D.W.) (milligram quercetin equivalents per gram dry weight). The TP contents of unprocessed, germinated, soaked, and boiled seeds were 6.54, 5.60, 4.59, and 3.84 mg gallic acid equivalents per gram of dry weight (mg GAE g-1 D.W.), respectively. The TF contents in unprocessed fenugreek seeds, germinated fenugreek seeds, soaked fenugreek seeds, and boiled fenugreek seeds (BFS) were 4.23, 2.11, 2.10, and 2.33 mg QE g-1 D.W., respectively. Sixteen phenolic and nineteen flavonoid compounds has been identified using high-performance liquid chromatography. Antioxidant activity using 2,2-diphenyl-1-picrylhydrazil (DPPH·), 2,2-azinobis (3-ethylbenothiazoline-6-sulfonic acid (ABTS+·), and ferric reducing antioxidant power (FRAP·) assays indicated that ADFL had the highest activity. Antimicrobial activity has been evaluated against each of the eight pathogenic bacterial and fungal strains. ADFL showed the strongest activity with minimum inhibitory concentrations values ranging from 0.03 to 1.06 and 0.04 to 1.18 mg ml·1 against bacterial and fungal strains, respectively. Anti-inflammatory activity was evaluated in-vitro against RAW 264.7 macrophage cells using the nitric oxide (NO) assay. Results revealed that ADFL had the highest cytotoxicity and anti-inflammatory activity according to the NO assay. Household processes significantly reduced the in-vitro biological properties of processed seeds.
Collapse
Affiliation(s)
- Shaimaa G Abdel Salam
- Food Technology Research Institute, Agricultural Research Center, Giza, 12613, Egypt.
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Mohamed M Rashed
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Nabih A Ibrahim
- Food Technology Research Institute, Agricultural Research Center, Giza, 12613, Egypt
| | - Emam A Abdel Rahim
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Tahany A A Aly
- Regional Centre for Food and Feed, Agriculture Research Center, Ministry of Agriculture, Giza, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, P.O. Box 34, Jeddah, 21959, Saudi Arabia
| |
Collapse
|
7
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
8
|
Roa Cordero MV, Romero Pineda MF, Guerrero Rodríguez JM, López Ortíz JG, Leal Pinto SM. Exploring the potential of eco-friendly silver nanoparticles to inhibit azole-resistant clinical isolates of Candida spp. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:31-38. [PMID: 36724546 DOI: 10.1080/10934529.2023.2172267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The antimicrobial activity and biological efficiency of silver nanoparticles (AgNps) have been widely described and can be modeled through stabilizing and reducing agents, especially if they exhibit biocidal properties, which can enhance bioactivity against pathogens. The selective action of AgNps remains a major concern. In this regard, the use of plant extracts for the green synthesis of nanoparticles offers advantages because it improves the toxicity of Nps for microorganisms and is harmless to normal cells. However, biological evaluations of the activity of AgNps synthesized using different reducing agents are determined independently, and comparisons are frequently overlooked. Thus, we investigated and compared the antifungal and cytotoxic effects of two ecological AgNps synthesized from Moringa oleifera aqueous leaf extract (AgNp-M) and glucose (AgNp-G) against azole-resistant clinical isolates of Candida spp. and nontumor mammalian cells. Synthesized AgNps exhibited an antifungal effect on planktonic cells of drug-resistant C. albicans and C. tropicalis (MIC 0.21-52.6 µg/mL). The toxicity was influenced by size. However, the use of M. oleifera extracts allows us to obtain AgNps that are highly selective and nongenotoxic to Vero cells due to modifications of the shape and surface. Therefore, these results suggest that AgNp-M has antimicrobial potential and deserves further investigation for biomedical applications.
Collapse
Affiliation(s)
- Martha Viviana Roa Cordero
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación Manejo Clínico-Cliniudes, Bucarmanga, Colombia
| | - María Fernanda Romero Pineda
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Grupo de Investigación Zumoinnova, Zumotec S.A., Bucaramanga, Colombia
| | - Julián Mauricio Guerrero Rodríguez
- Grupo de Investigación Zumoinnova, Zumotec S.A., Bucaramanga, Colombia
- Facultad de Ingeniería Química, Grupo de Investigación Interfase, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Sandra Milena Leal Pinto
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación Manejo Clínico-Cliniudes, Bucarmanga, Colombia
| |
Collapse
|
9
|
Sayed AI, Mansour YE, Ali MA, Aly O, Khoder ZM, Said AM, Fatahala SS, Abd El-Hameed RH. Novel pyrrolopyrimidine derivatives: design, synthesis, molecular docking, molecular simulations and biological evaluations as antioxidant and anti-inflammatory agents. J Enzyme Inhib Med Chem 2022; 37:1821-1837. [PMID: 35762086 PMCID: PMC9246196 DOI: 10.1080/14756366.2022.2090546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 02/08/2023] Open
Abstract
Current medical approaches to control the Covid-19 pandemic are either to directly target the SARS-CoV-2 via innovate a defined drug and a safe vaccine or indirectly target the medical complications of the virus. One of the indirect strategies for fighting this virus has been mainly dependent on using anti-inflammatory drugs to control cytokines storm responsible for severe health complications. We revealed the discovery of novel fused pyrrolopyrimidine derivatives as promising antioxidant and anti-inflammatory agents. The newly synthesised compounds were evaluated for their in vitro anti-inflammatory activity using RAW264.7 cells after stimulation with lipopolysaccharides (LPS). The results revealed that 3a, 4b, and 8e were the most potent analogues. Molecular docking and simulations of these compounds against COX-2, TLR-2 and TLR-4 respectively was performed. The former results were in line with the biological data and proved that 3a, 4b and 8e have potential antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Amira I. Sayed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Yara E. Mansour
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed A. Ali
- Biochemistry Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Omnia Aly
- Medical Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Zainab M. Khoder
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Chemistry, The State University of New York, Buffalo, NY, USA
| | - Ahmed M. Said
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Department of Chemistry, The State University of New York, Buffalo, NY, USA
- Athenex Inc., Buffalo, NY, USA
| | - Samar S. Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rania H. Abd El-Hameed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
10
|
Naik J, David M. ROS mediated apoptosis and cell cycle arrest in human lung adenocarcinoma cell lines by silver nanoparticles synthesized using Swietenia macrophylla seed extract. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ramarao KDR, Somasundram C, Razali Z, Kunasekaran W, Jin TL, Musa S, Achari VM. Antiproliferative effects of dried Moringa oleifera leaf extract on human Wharton's Jelly mesenchymal stem cells. PLoS One 2022; 17:e0274814. [PMID: 36197921 PMCID: PMC9534417 DOI: 10.1371/journal.pone.0274814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have seen an elevated use in clinical works like regenerative medicine. Its potential therapeutic properties increases when used in tandem with complementary agents like bio-based materials. Therefore, the present study is the first to investigate the cytotoxicity of a highly valued medicinal plant, Moringa oleifera, on human Wharton's Jelly mesenchymal stem cells (hWJMSCs) and its effects on the cells' gene expression when used as a pre-treatment agent in vitro. M. oleifera leaves (MOL) were dried and subjected to UHPLC-QTOF/MS analysis, revealing several major compounds like apigenin, kaempferol, and quercetin in the MOL, with various biological activities like antioxidant and anti-cancer properties. We then treated the hWJMSCs with MOL and noticed a dose-dependant inhibition on the cells' proliferation. RNA-sequencing was performed to explain the possible mechanism of action and revealed genes like PPP1R1C, SULT2B1, CDKN1A, mir-154 and CCNB1, whose expression patterns were closely associated with the negative cell cycle regulation and cell cycle arrest process. This is also evident from gene set enrichment analysis where the GO and KEGG terms for down-regulated pathways were closely related to the cell cycle regulation. The Ingenuity pathway analysis (IPA) software further predicted the significant activation of (p < 0.05, z-score > 2) of the G2/M DNA damage checkpoint regulation pathway. The present study suggests that MOL exhibits an antiproliferative effect on hWJMSCs via cell cycle arrest and apoptotic pathways. We believe that this study provides an important baseline reference for future works involving MOL's potential to accompany MSCs for clinical works. Future works can take advantage of the cell's strong anti-cancer gene expression found in this study, and evaluate our MOL treatment on various cancer cell lines.
Collapse
Affiliation(s)
- Kivaandra Dayaa Rao Ramarao
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Chandran Somasundram
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Zuliana Razali
- Institute of Biological Sciences, Faculty of Science and The Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | | | - Tan Li Jin
- Cytonex Sdn. Bhd., Menara UOA Bangsar, Bangsar, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry & Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayan Manickam Achari
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Green Biosynthesis of Silver Nanoparticles from Moringa oleifera Leaves and Its Antimicrobial and Cytotoxicity Activities. Int J Biomater 2022; 2022:4136641. [PMID: 36193175 PMCID: PMC9526645 DOI: 10.1155/2022/4136641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The plant occupied the largest area in the biosynthesis of silver nanoparticles, especially the medicinal plants, and it has shown great potential in biotechnology applications. In this study, green synthesis of silver nanoparticles from Moringa oleifera leaves extract and its antifungal and antitumor activities were investigated. The formation of silver nanoparticles was observed after 1 hour of preparation color changing. The ultraviolet and visible spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques were used to characterize synthesis particles. Ultraviolet and visible spectroscopy showed a silver surface plasmon resonance band at 434 nm. Fourier transform infrared analysis shows the possible interactions between silver and bioactive molecules in Moringa oleifera leaves extracts, which may be responsible for the synthesis and stabilization of silver nanoparticles. X-ray diffraction showed that the particles were a semicubic crystal structure and with a size of 38.495 nm. Scanning electron microscopy imaging shows that the atoms are spherical in shape and the average size is 17 nm. The transmission electron microscopy image demonstrated that AgNPs were spherical and semispherical particles with an average of (50–60) nm. The nanoparticles also showed potent antimicrobial activity against pathogenic bacteria and fungi using the well diffusion method. Candida glabrata found that the concentration of 1000 μg/mL exhibited the highest inhibition. As for bacteria, the concentration of 1000 μg/mL appeared to be the inhibition against Staphylococcus aureus. Moringa oleifera AgNPs inhibited human melanoma cells A375 line significant concentration-dependent cytotoxic effects. The powerful bioactivity of the green synthesized silver nanoparticles from medical plants recommends their biomedical use as antimicrobial as well as cytotoxic agents.
Collapse
|
13
|
El-salam SG.A, Rashed MM, Ibrahim NA, Rahim EA, Aly TAA, Al-farga A. Phytochemical screening and in-vitro biological properties of unprocessed and household processed fenugreek (Trigonella foenum- graecum Linn.) seeds and leaves.. [DOI: 10.21203/rs.3.rs-1952713/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
The impact of household processes on fenugreek leaves and seeds was analyzed for total phenolic (TP) and total flavonoid content (TF), and in-vitro biological activities such as antioxidant, antimicrobial, and anti-inflammatory properties. Processes included air-drying of leaves and germinating, soaking, and boiling of seeds. Air-dried fenugreek leaves (ADFL) had high TP (15.27 mg GAE/g D.W.) and TF (7.71 mg QE/g D.W.). The TF of unprocessed, germinated, soaked, and boiled seeds had 6.54, 5.60, 4.59, and 3.84 mg GAE/g D.W., respectively. The TF in UFS, GFS, SFS, and BFS were 4.23, 2.11, 2.10, and 2.33 mg QE/g D.W., respectively. Sixteen phenolic and nineteen flavonoid compounds were identified using the HPLC. Antioxidant activity using DPPH•, ABTS+•, and FRAP• assays indicated that ADFL had high activity. Antimicrobial activity was evaluated against each eight pathogenic bacterial and fungal strains. ADFL showed a strong activity with MIC values ranging from 0.03 to 1.06 and 0.04 to 1.18 mg ml− 1 against bacterial and fungal strains, respectively. Anti-inflammatory activity was evaluated in-vitro against RAW 264.7 macrophage cells using of NO assay. Results revealed that ADFL had the highest cytotoxicity and anti-inflammatory activity according to NO assay. Household processes significantly declined the in-vitro biological properties of processed seeds.
Collapse
|
14
|
Michalak I, Püsküllüoğlub M. Look into my onco-forest - review of plant natural products with anticancer activity. Curr Top Med Chem 2022; 22:922-938. [PMID: 35240958 DOI: 10.2174/1568026622666220303112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a multistage process that can be treated by numerous modalities including systemic treatment. About half of the molecules that have been approved in the last few decades count for plant derivatives. This review presents the application of tree/shrub-derived biologically active compounds as anticancer agents. Different parts of trees/shrubs - wood, bark, branches, roots, leaves, needles, fruits, flowers etc. - contain a wide variety of primary and secondary metabolites, which demonstrate anticancer properties. Special attention was paid to phenolics (phenolic acids and polyphenols, including flavonoids and non-flavonoids (tannins, lignans, stilbenes)), essential oils and their main constituents such as terpenes/terpenoids, phytosterols, alkaloids and many others. Anticancer properties of these compounds are mainly attributed to their strong antioxidant properties. In vitro experiments on various cancer cell lines revealed a cytotoxic effect of tree-derived extracts. Mechanisms of anticancer action of the extracts are also listed. Examples of drugs that successfully underwent clinical trials with well-established position in the guidelines created by oncological societies are provided. The review also focuses on directions for the future in the development of anticancer agents derived from trees/shrubs. Applying biologically active compounds derived from trees and shrubs as anticancer agents continuously seems a promising strategy in cancer systemic treatment.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Mirosława Püsküllüoğlub
- Labcorp (Polska) Sp. z o.o., Warsaw, Poland; c Department of Clinical Oncology, Maria Sklodowska Curie National Research Institute of Oncology, Cracow Branch, Kraków, Poland
| |
Collapse
|
15
|
El-Mekkawy S, Hassan AZ, Abdelhafez MA, Mahmoud K, Mahrous KF, Meselhy MR, Sendker J, Abdel-Sattar E. Cytotoxicity, genotoxicity, and gene expression changes induced by methanolic extract of Moringa stenopetala leaf with LC-qTOF-MS metabolic profile. Toxicon 2021; 203:40-50. [PMID: 34610271 DOI: 10.1016/j.toxicon.2021.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022]
Abstract
Moringa stenopetala (Baker f.) Cuf.and other Moringa species have traditionally been used to treat various diseases. The purpose of this study was to determine the cytotoxic and genotoxic effects of the methanolic extract of M. stenopetala leaf and its fractions on selected tumor cells. Cytotoxicity was determined by MTT assay. The comet assay was used toassess DNA damage, and gel electrophoresis was used to determine DNA fragmentation. Gene expression was analyzed by qPCR using two specific genes for each cancer cell line. Fractionation of the methanolic extract (E-1) on Diaion HP-20 yielded five fractions (Fr-2 to Fr-6); only Fr-4 and Fr-6 were cytotoxic to breast cancer cells (MCF-7; IC50 = 58.3 ± 0.93 and 35.8 ± 2.44 μg/mL, respectively), human hepatocellular carcinoma cells (HepG2; IC50 = 57.8 ± 1.57 and 39.3 ± 1.90 μg/mL, respectively), and Fr-4 was cytotoxic to human colon cancer cells (HCT-116; IC50 = 94.2 ± 4.9 μg/mL). In addition, exposure of the cancer cells to Fr-4 and Fr-6 resulted in a high level of DNA damage. Moreover, relative expression of MTAP and CDKN2A in MCF-7 were increased, whereas expression of p21 and p53 in HCT-116, and APC and TERT in HepG2 were decreased, similar to that of doxorubicin. LC-qTOF-MS was used to identify metabolites in E-1, the majority of which were enriched in Fr-4. Two terpenes (loliolide and dihydroactinidiolide), the majority of the flavonoids, and niazirin were about two fold enriched in Fr-4, whereas the majority of the lipids were 4-10 fold enriched. However, Fr-6 hardly showed compounds other than the two terpenes that were enriched 1.5 and 7 fold. The findings suggest that Fr-4 and Fr-6 are promising sources of compounds possessing cytotoxic and genotoxic properties.
Collapse
Affiliation(s)
- Sahar El-Mekkawy
- Department of Chemistry of Natural Compounds, National Research Centre, Giza, 12622, Egypt
| | - Amal Z Hassan
- Department of Chemistry of Natural Compounds, National Research Centre, Giza, 12622, Egypt
| | | | - Khaled Mahmoud
- Pharmacognosy Department, National Research Centre, Giza, 12622, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, Giza, 12622, Egypt
| | - Meselhy R Meselhy
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Jandirk Sendker
- Institute of Pharmaceutical Biology and Phytochemistry,University of Münster, Münster, Germany
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
16
|
Chiu HI, Che Mood CNA, Mohamad Zain NN, Ramachandran MR, Yahaya N, Nik Mohamed Kamal NNS, Tung WH, Yong YK, Lee CK, Lim V. Biogenic Silver Nanoparticles of Clinacanthus nutans as Antioxidant with Antimicrobial and Cytotoxic Effects. Bioinorg Chem Appl 2021; 2021:9920890. [PMID: 34093698 PMCID: PMC8140852 DOI: 10.1155/2021/9920890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Silver nanoparticles (AgNPs) previously synthesised using leaf (AgNP-L) and stem (AgNP-S) extracts of Clinacanthus nutans (C. nutans) were tested to evaluate antimicrobial, antioxidant, and cytotoxicity activities. The AgNPs showed good inhibition against bacteria, but not fungi. The inhibition results showed the highest activity against Staphylococcus aureus (S. aureus) with 11.35 mm (AgNP-L) and 11.52 mm (AgNP-S), while the lowest inhibition was against Escherichia coli (E. coli) with 9.22 mm (AgNP-L) and 9.25 mm (AgNP-S) in the disc diffusion method. The same trend of results was noted in the well diffusion method. The IC50 of AgNP-L and AgNP-S in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays was 417.05 μg/mL and 434.60 μg/mL, as well as 304.31 μg/mL and 326.83 μg/mL, respectively. Ferric reducing power (FRAP) assay showed that AgNP-L [872.389 μmol/L Fe(II)] and AgNP-S [612.770 μmol/L Fe(II)] exhibited significantly (p < 0.05) greater antioxidant activities than leaf extract (CNL) [152.260 μmol/L Fe(II)] and stem extract (CNS) [110.445 μmol/L Fe(II)] of C. nutans. The AgNPs were also proven to possess cytotoxic effects on the breast (MCF-7), cervical (HeLa), and colon (HT-29) cancer cells in a dose-dependent manner. AgNP-S and AgNP-L showed significantly (p < 0.05) higher cytotoxicity against MCF-7 (117.43 μg/mL) and HT-29 (78.47 μg/mL), respectively. In conclusion, the biosynthesised AgNPs from aqueous extract leaves and stem of C. nutans have demonstrated promising potential towards antioxidant, antimicrobial, and cytotoxicity activities.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Che Nurul Azieyan Che Mood
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | | | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Nik Nur Syazni Nik Mohamed Kamal
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Wai Hau Tung
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800 Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| |
Collapse
|
17
|
Solaiman MA, Ali MA, Abdel-Moein NM, Mahmoud EA. Synthesis of Ag-NPs developed by green-chemically method and evaluation of antioxidant activities and anti-inflammatory of synthesized nanoparticles against LPS-induced NO in RAW 264.7 macrophages. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Adebayo IA, Usman AI, Shittu FB, Ismail NZ, Arsad H, Muftaudeen TK, Samian MR. Boswellia dalzielii-Mediated Silver Nanoparticles Inhibited Acute Myeloid Leukemia (AML) Kasumi-1 Cells by Inducing Cell Cycle Arrest. Bioinorg Chem Appl 2020; 2020:8898360. [PMID: 33029114 PMCID: PMC7528135 DOI: 10.1155/2020/8898360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) persists to be a major health problem especially among children as effective chemotherapy to combat the disease is yet to be available. Boswellia dalzielii is a well-known herb that is traditionally used for treatment and management of many diseases including degenerative diseases. In this study, silver nanoparticles were synthesized from the phytochemicals of B. dalzielii stem bark aqueous extract. The silver nanoparticles were characterized by carrying out Fourier Transform Infrared (FTIR) spectroscopy, Energy Filtered Scanning Electron Microscopy (FESEM), X-ray diffraction, and Dynamic Light Scattering (DLS) analyses. Antioxidant capacity of the nanoparticles was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and the antiproliferative effect of the nanoparticles on Kasumi-1 leukemia cells was investigated using PrestoBlue assay. Flow cytometry analysis was performed to observe the effect of the nanoparticles on the leukemia cell cycle progression. RESULTS Our findings revealed that the synthesized silver nanoparticles were formed from electrons of the plant phytochemicals which include aromatic compounds, ethers, and alkynes. FESEM analysis revealed that the sizes of the nanoparticles range from 12 nm to 101 nm; however, DLS analysis estimated a larger average size of the nanoparticles (108.3 nm) because it measured the hydrodynamic radii of the nanoparticles. The zeta potential of the nanoparticles was -16 nm, and the XRD pattern of the nanoparticles has distinct peaks at 38.02°, 42.94°, 64.45°, 77.20°, and 81.47°, which is typical of face-centered cubic (fcc) structure of silver. The Trolox Equivalence Antioxidant Capacity (TEAC) of the nanoparticles was estimated to be 300.91 μM Trolox/mg silver nanoparticles. The nanoparticles inhibited Kasumi-1 cell proliferation. The half minimal inhibitory concentrations (IC50s) that inhibited Kasumi-1 cell proliferation are 49.5 μg/ml and 13.25 μg/ml at 48 and 72 hours, respectively. The nanoparticles induced cell cycle arrest in the Kasumi-1 cells at S (5% increase) and G2/M (3% increase) phases. CONCLUSION The nanoparticles synthesized from the stem bark extract of B. dalzielii inhibit the growth of Kasumi-1 leukemia cells by activating cell cycle arrest; thus, they are potential antileukemic agents.
Collapse
Affiliation(s)
- Ismail Abiola Adebayo
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, P.O. Box 71, Ishaka, Bushenyi, Uganda
| | - Adamu Ibrahim Usman
- Department of Physics, Faculty of Science, Federal University Kashere, Gombe, Gombe State, Nigeria
| | - Fatimah Bukola Shittu
- Science Laboratory Technology Department, School of Applied Sciences, The Federal Polytechnic, Offa, Kwara, Nigeria
| | - Noor Zafirah Ismail
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Hasni Arsad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Taoheed Kolawole Muftaudeen
- Department of Biological Sciences, Faculty of Computing and Applied Sciences, Baze University, Abuja, Nigeria
| | - Mohammed Razip Samian
- School of Biological Sciences, Universiti Sains Malaysia, 11800 George Town, Penang, Malaysia
| |
Collapse
|