1
|
Parkash M, Shoaib MH, Sikandar M, Yousuf RI, Saleem MT, Ahmed FR, Siddiqui F. Formulation development, characterization, and mechanistic PBPK modeling of metoclopramide loaded halloysite nanotube (HNT) based drug-in-adhesive type transdermal drug delivery system. Sci Rep 2024; 14:28512. [PMID: 39558078 PMCID: PMC11574258 DOI: 10.1038/s41598-024-80089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Metoclopramide is an antiemetic agent prescribed for motion sickness, cancer chemotherapy, and pregnancy. The present work aimed to design a metoclopramide-loaded halloysite nanotubes (HNTs) drug-in-adhesive transdermal drug delivery system. Four formulations F1, F2, and F3 with different ratios of HNTs to metoclopramide and a F4 without HNTs were developed using acrylic adhesive DURO-TAK 387-2510 by the solvent casting method. These formulated patches were thoroughly evaluated and in-vitro release and permeation studies were performed. The optimized formulation was analyzed using skin irritation, SEM, DSC, and FTIR studies. The GASTROPLUS TCAT model was used to predict the in-vivo performance. HNT-based formulations exhibited controlled drug release, achieving approximately 60% in 4 h, compared to over 80% release in the same period from the formulation without HNT. The optimized formulation (F3) demonstrated a lag time of 1.802 h with a flux of 0.103 mg/cm2/hr. The shelf life was 19.279 months at 5 ± 3 °C. The Cmax, Tmax, AUCt, and AUCinf were predicted as 40.84 ng/mL, 6.32 h, 561.51 ng/mL×h and 599.61 ng/mL×h for a 30 mg patch. The study demonstrated that metoclopramide can be effectively loaded into HNTs and proved safe and effective in drug-in-adhesive type transdermal systems using HNTs as a drug carrier.
Collapse
Affiliation(s)
- Monica Parkash
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
- Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Sikandar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
- Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Timbó ICG, Oliveira MSCS, Lima RA, Chaves AV, Pereira VDA, Fechine PBA, Regis RR. Microbiological, physicomechanical, and surface evaluation of an experimental self-curing acrylic resin containing halloysite nanotubes doped with chlorhexidine. Dent Mater 2024; 40:348-358. [PMID: 38142145 DOI: 10.1016/j.dental.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE The objective was to synthesize halloysite nanotubes loaded with chlorhexidine (HNT/CHX) and evaluate the antimicrobial activity, microhardness, color change, and surface characteristics of an experimental self-curing acrylic resin containing varying concentrations of the synthesized nanomaterial. METHODS The characterization of HNT/CHX was carried out by calculating incorporation efficiency, morphological and compositional, chemical and thermal evaluations. SAR disks were made containing 0 %, 3 %, 5 %, and 10 % of HNT/CHX. Specimens (n = 3) were immersed in distilled water and spectral measurements were carried out using UV/Vis spectroscopy to evaluate the release of CHX for up to 50 days. The antimicrobial activity of the composite against Candida albicans and Streptococcus mutans was evaluated by disk-diffusion test. Microhardness, color analyses (ΔE), and surface roughness (Ra) (n = 9) were performed before and after 30 days of immersion. Data were analyzed using ANOVA/Bonferroni. {Results.} The incorporation efficiency of CHX into HNT was of 8.15 %. All test groups showed controlled and cumulative CHX release up to 30 or 50 days. Significant antimicrobial activity was verified against both microorganisms (p < 0.001). After the 30-day immersion period, the 10 % HNT/CHX group showed a significant increase in hardness (p < 0.05) and a progressive color change (p < 0.001). At T0, the 5 % and 10 % groups exhibited Ra values similar to the control group (p > 0.05), while at T30, all groups showed similar roughness values (p > 0.05). {Significance.} The modification of a SAR with HNT/CHX provides antimicrobial effect and controlled release of CHX, however, the immediate surface roughness in the 3 % group was compromised when compared to the control group.
Collapse
Affiliation(s)
- Isabelle C G Timbó
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Mayara S C S Oliveira
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Ramille A Lima
- Department of Dentistry, Unichristus, Fortaleza, CE, Brazil
| | - Anderson V Chaves
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Vanessa de A Pereira
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Romulo R Regis
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Husain T, Shoaib MH, Ahmed FR, Yousuf RI, Siddiqui F, Saleem MT, Farooqi S, Jabeen S. Halloysite nanotubes-cellulose ether based biocomposite matrix, a potential sustained release system for BCS class I drug verapamil hydrochloride: Compression characterization, in-vitro release kinetics, and in-vivo mechanistic physiologically based pharmacokinetic modeling studies. Int J Biol Macromol 2023; 251:126409. [PMID: 37598820 DOI: 10.1016/j.ijbiomac.2023.126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the ability of natural nanotubular clay mineral (Halloysite) and cellulose ether based biocomposite matrix as a controlled release agent for Verapamil HCl (BCS Class-I). Drug-loaded halloysite was prepared and tablet formulations were designed by varying amount of hydroxy propyl methyl cellulose (HPMC K4M). Physical characterization was carried out using SEM, FTIR, and DSC. Tabletability profiles were evaluated using USP1062 guidelines. Drug release kinetics were studied, and physiologically based pharmacokinetic (PBPK) modeling was performed. Compressed tablets possess satisfactory yield pressure of 625 MPa with adequate hardness and disintegration within 30 min. The initial release of the drug was due to surface drug on tablets, while the prolonged release at later time points (around 80 % drug release at 12 h) were due to halloysite loading. The FTIR spectra exhibited electrostatic attraction between the positively charged drug and the negatively charged Si-O-Si functional group of halloysite, while the thermogram showed Verapamil HCl melting point at ~146 °C with enthalpy change of -126.82 J/g. PBPK modeling exhibited PK parameters of optimized matrix formulation (VER-HNT3%) comparable to in vivo data. The study effectively demonstrated the potential of prepared biocomposite matrix as a commercially viable oral release modifying agent for highly soluble drugs.
Collapse
Affiliation(s)
- Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics & Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sadaf Farooqi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sabahat Jabeen
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
4
|
Rauf-ur-Rehman, Shoaib MH, Ahmed FR, Yousuf RI, Siddiqui F, Saleem MT, Qazi F, Khan MZ, Irshad A, Bashir L, Naz S, Farooq M, Mahmood ZA. SeDeM expert system with I-optimal mixture design for oral multiparticulate drug delivery: An encapsulated floating minitablets of loxoprofen Na and its in silico physiologically based pharmacokinetic modeling. Front Pharmacol 2023; 14:1066018. [PMID: 36937845 PMCID: PMC10022826 DOI: 10.3389/fphar.2023.1066018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: A SeDeM expert tool-driven I-optimal mixture design has been used to develop a directly compressible multiparticulate based extended release minitablets for gastro-retentive drug delivery systems using loxoprofen sodium as a model drug. Methods: Powder blends were subjected to stress drug-excipient compatibility studies using FTIR, thermogravimetric analysis, and DSC. SeDeM diagram expert tool was utilized to assess the suitability of the drug and excipients for direct compression. The formulations were designed using an I-optimal mixture design with proportions of methocel K100M, ethocel 10P and NaHCO3 as variables. Powder was compressed into minitablets and encapsulated. After physicochemical evaluation lag-time, floating time, and drug release were studied. Heckel analysis for yield pressure and accelerated stability studies were performed as per ICH guidelines. The in silico PBPK Advanced Compartmental and Transit model of GastroPlus™ was used for predicting in vivo pharmacokinetic parameters. Results: Drug release follows first-order kinetics with fickian diffusion as the main mechanism for most of the formulations; however, a few formulations followed anomalous transport as the mechanism of drug release. The in-silico-based pharmacokinetic revealed relative bioavailability of 97.0%. Discussion: SeDeM expert system effectively used in QbD based development of encapsulated multiparticulates for once daily administration of loxoprofen sodium having predictable in-vivo bioavailability.
Collapse
Affiliation(s)
- Rauf-ur-Rehman
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
- *Correspondence: Muhammad Harris Shoaib, ,
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Faaiza Qazi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Momina Zarish Khan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Asma Irshad
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Lubna Bashir
- Department of Pharmaceutics, Faculty of Pharmacy, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Shazia Naz
- Department of Pharmaceutics, Faculty of Pharmacy, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Muhammad Farooq
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| | - Zafar Alam Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Sindh, Pakistan
| |
Collapse
|
5
|
Imshinetskiy I, Kashepa V, Nadaraia K, Mashtalyar D, Suchkov S, Zadorozhny P, Ustinov A, Sinebryukhov S, Gnedenkov S. PEO Coatings Modified with Halloysite Nanotubes: Composition, Properties, and Release Performance. Int J Mol Sci 2022; 24:ijms24010305. [PMID: 36613748 PMCID: PMC9820610 DOI: 10.3390/ijms24010305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, the properties of the coatings formed on the Mg-Mn-Ce alloy by plasma electrolytic oxidation (PEO) in electrolytes containing halloysite nanotubes (HNTs) were investigated. The incorporation of halloysite nanotubes into the PEO coatings improved their mechanical characteristics, increased thickness, and corrosion resistance. The studied layers reduced corrosion current density by more than two times in comparison with the base PEO layer without HNTs (from 1.1 × 10-7 A/cm2 to 4.9 × 10-8 A/cm2). The presence of halloysite nanotubes and products of their dihydroxylation that were formed under the PEO conditions had a positive impact on the microhardness of the obtained layers (this parameter increased from 4.5 ± 0.4 GPa to 7.3 ± 0.5 GPa). In comparison with the base PEO layer, coatings containing halloysite nanotubes exhibited sustained release and higher adsorption capacity regarding caffeine.
Collapse
|
6
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
7
|
Sikandar M, Shoaib MH, Yousuf RI, Ahmed FR, Ali FR, Saleem MT, Ahmed K, Sarfaraz S, Jabeen S, Siddiqui F, Husain T, Qazi F, Imtiaz MS. Nanoclay-Based Composite Films for Transdermal Drug Delivery: Development, Characterization, and in silico Modeling and Simulation. Int J Nanomedicine 2022; 17:3463-3481. [PMID: 35959283 PMCID: PMC9359522 DOI: 10.2147/ijn.s367540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Halloysite nanotubes (HNTs) are a versatile and highly investigated clay mineral due to their natural availability, low cost, strong mechanical strength, biocompatibility, and binding properties. The present work explores its role for retarding and controlling the drug release from the composite polymer matrix material. Methods For this purpose, nanocomposite films comprising propranolol HCl and different concentrations of HNTs were formulated using the “solution casting method”. The menthol in a concentration of 1% w/v was used as a permeation enhancer, and its effect on release and permeation was also determined. Quality characteristics of the nanocomposite were determined, and in vitro release and permeation studies were performed using the Franz diffusion system. The data was analyzed using various mathematical models and permeation parameters. Optimized formulation was also subjected to skin irritation test, FTIR, DSC, and SEM study. Systemic absorption and disposition of propranolol HCl from the nanocomposites were predicted using the GastroPlus TCAT® model. Results The control in drug release rate was associated with the higher concentration of HNTs. F8 released 50% of propranolol within 8 hours (drug, HNTs ratio, 1:2). The optimized formulation (F6) with drug: HNTs (2:1), exhibited drug release 80% in 4 hours, with maximum flux of 145.812 µg/cm2hr. The optimized formulation was found to be a non-irritant for skin with a shelf life of 35.46 months (28–30 ℃). The in silico model predicted Cmax, Tmax, AUCt, and AUCinf as 32.113 ng/mL, 16.58 h, 942.34 ng/mL×h, and 1102.9 ng/mL×h, respectively. Conclusion The study demonstrated that HNTs could be effectively used as rate controlling agent in matrix type transdermal formulations.
Collapse
Affiliation(s)
- Muhammad Sikandar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
- Correspondence: Muhammad Harris Shoaib, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan, Email ;
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fatima Ramzan Ali
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
- Jinnah College of Pharmacy, Sohail University, Karachi, 74000, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kamran Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sabahat Jabeen
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Tazeen Husain
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Faaiza Qazi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Suleman Imtiaz
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
8
|
Pumchan A, Sae-Ueng U, Prasittichai C, Sirisuay S, Areechon N, Unajak S. A Novel Efficient Piscine Oral Nano-Vaccine Delivery System: Modified Halloysite Nanotubes (HNTs) Preventing Streptococcosis Disease in Tilapia ( Oreochromis sp.). Vaccines (Basel) 2022; 10:1180. [PMID: 35893829 PMCID: PMC9331641 DOI: 10.3390/vaccines10081180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Generally, the injection method is recommended as the best efficient method for vaccine applications in fish. However, labor-intensive and difficult injection for certain fish sizes is always considered as a limitation to aquatic animals. To demonstrate the effectiveness of a novel oral delivery system for the piscine vaccine with nano-delivery made from nano clay, halloysite nanotubes (HNTs) and their modified forms were loaded with killed vaccines, and we determined the ability of the system in releasing vaccines in a mimic digestive system. The efficaciousness of the oral piscine vaccine nano-delivery system was evaluated for its level of antibody production and for the level of disease prevention in tilapia. Herein, unmodified HNTs (H) and modified HNTs [HNT-Chitosan (HC), HNT-APTES (HA) and HNT-APTES-Chitosan (HAC)] successfully harbored streptococcal bivalent vaccine with inactivated S. agalactiae, designated as HF, HAF, HCF and HACF. The releasing of the loading antigens in the mimic digestive tract demonstrated a diverse pattern of protein releasing depending on the types of HNTs. Remarkably, HCF could properly release loading antigens with relevance to the increasing pH buffer. The oral vaccines revealed the greatest elevation of specific antibodies to S. agalactiae serotype Ia in HCF orally administered fish and to some extent in serotype III. The efficacy of streptococcal disease protection was determined by continually feeding with HF-, HAF-, HCF- and HACF-coated feed pellets for 7 days in the 1st and 3rd week. HCF showed significant RPS (75.00 ± 10.83%) among the other tested groups. Interestingly, the HCF-treated group exhibited noticeable efficacy similar to the bivalent-vaccine-injected group (RPS 81.25 ± 0.00%). This novel nano-delivery system for the fish vaccine was successfully developed and exhibited appropriated immune stimulation and promised disease prevention through oral administration. This delivery system can greatly support animals' immune stimulation, which conquers the limitation in vaccine applications in aquaculture systems. Moreover, this delivery system can be applied to carrying diverse types of biologics, including DNA, RNA and subunit protein vaccines.
Collapse
Affiliation(s)
- Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| | - Udom Sae-Ueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chaiya Prasittichai
- Department of Chemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
| | - Soranuth Sirisuay
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (S.S.); (N.A.)
| | - Nontawith Areechon
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (S.S.); (N.A.)
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand;
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Chen L, Feng X, Ji H, Gu J, Liu J, Yan C, Song X. The enhanced encapsulation, release, and oral hypoglycemic performance of a biomacromolecule surface modified insulin-loaded halloysite nanocomposite: an in vitro and in vivo study. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lu Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | | | - Hangyu Ji
- School of Medicine, Southeast University, Nanjing, China
- Southeast University Zhongda Hospital, Nanjing, China
| | - Jun Gu
- Xishan People’s Hospital, Wuxi, China
| | - Junliang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Caifeng Yan
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaoli Song
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Zhang Y, Wo SK, Leng W, Gao F, Yan X, Zuo Z. Population pharmacokinetics and IVIVC for mesalazine enteric-coated tablets. J Control Release 2022; 346:275-288. [PMID: 35461968 DOI: 10.1016/j.jconrel.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Although in-vivo bioequivalence (BE) study serves as a golden standard for establishing interchangeability of oral dosage forms, it remains challenging for products with high inter-subject variability such as mesalazine enteric-coated tablet to fulfil the BE criteria set by regulatory authorities. Mesalazine, as a BCS class IV drug, targets to be delivered to distal ileum or colon with a pH-sensitive polymer coating for the remission of ulcerative colitis. Through population pharmacokinetic (PK) analysis and in-vitro in-vivo correlation (IVIVC) modeling on the dissolution and BE data of a generic enteric-coated product (EM) and its reference Salofalk® 250 mg tablet (SM), we for the first time revealed the underlying mechanism of the high inter-subject variability for such delayed-release formulation. It was also noted that the in-vivo start time of absorption (Ts) for EM and SM was positively correlated with their in-vitro lag time (Tlag) under the USP three-stage dissolution condition and reversely correlated with their in-vivo bioavailability. The varied oral bioavailability of mesalazine enteric-coated tablet was mainly due to the varied N-acetyltransferase activities along GI tract. Although such extensive intestinal first-pass metabolism with large individual differences led to a significant variation of mesalazine Cmax (coefficient of variation: 60-63.5%) and AUC0-t (coefficient of variation: 37.5-46.9%), the corresponding variations in the total absorbed mesalazine (mesalazine and its metabolite N-acetyl mesalazine) were significantly reduced by 12 to 45%. Since the BE purpose for mesalazine enteric-coated tablet focused on their comparable safety profiles, total absorbed mesalazine was recommended to be adopted for the development of the IVIVC model and BE evaluation for EM. All in all, our model-based approach has not only successfully identified the key factors that affect the BE of EM to guide its further formulation optimization, but also demonstrated the indispensable role of modeling in the development of generic pharmaceutical product at its early stages.
Collapse
Affiliation(s)
- Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Siu Kwan Wo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Wei Leng
- Europharm Laboratoires Co. Ltd., 12-14 Dai Wang Street, Tai Po Industrial Estate, Tai Po, New Territories, Hong Kong Special Administrative Region
| | - Fang Gao
- Europharm Laboratoires Co. Ltd., 12-14 Dai Wang Street, Tai Po Industrial Estate, Tai Po, New Territories, Hong Kong Special Administrative Region
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Asefifeyzabadi N, Das PK, Onorimuo AH, Durocher G, Shamsi MH. DNA interfaces with dimensional materials for biomedical applications. RSC Adv 2021; 11:28332-28341. [PMID: 35480758 PMCID: PMC9038036 DOI: 10.1039/d1ra04917h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
DNA interfaces with nano, micro, and macro materials have gained widespread attention for various applications. Such interfaces exhibit distinct functions and properties not only due to the unique properties of interfacing materials but also sequence- and conformation-dependent characteristics of the DNA. Therefore, DNA interfaces with diverse dimensional materials have advanced our understanding of the interaction mechanisms and the properties of such interfaces. The unique interfacial properties of such novel materials have applications in nanotechnology, biophysics, cell biology, biosensing, and bioelectronics. The field is growing rapidly with the frequent emergence of new interfaces carrying remarkable interfacial character. In this review article, we have classified the DNA interfaces into 0D, 1D, 2D, and 3D categories based on the types of dimensional materials. We review the key efforts made in the last five years and focus on types of interfaces, interfacing mechanisms, and their state-of-the-art applications. This review will draw a general interest because of the diversity in the DNA materials science but also the unique applications that will play a cutting-edge role in biomedical and biosensing research.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Prabhangshu Kumer Das
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Avokerie Hillary Onorimuo
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Mohtashim Hassan Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| |
Collapse
|