1
|
Rojekar S, Gholap AD, Togre N, Bhoj P, Haeck C, Hatvate N, Singh N, Vitore J, Dhoble S, Kashid S, Patravale V. Current status of mannose receptor-targeted drug delivery for improved anti-HIV therapy. J Control Release 2024; 372:494-521. [PMID: 38849091 DOI: 10.1016/j.jconrel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Namdev Togre
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Priyanka Bhoj
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clement Haeck
- Population Council, , Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Snehal Kashid
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
2
|
Chen XJ, Huang MY, Wangkahart E, Cai J, Huang Y, Jian JC, Wang B. Immune response and protective efficacy of mannosylated polyethylenimine (PEI) as an antigen delivery vector, administered with a Streptococcus agalactiae DNA vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108684. [PMID: 36921882 DOI: 10.1016/j.fsi.2023.108684] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/26/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
This study examined the effectiveness of a DNA vaccine for S. agalactiae that was delivered by mannose-based polyethyleneimine (Man-PEI). The results showed that Man-PEI/pcDNA-Sip stimulated a higher serum antibody titer compared to control or other vaccine groups (p < 0.05). Additionally, it induced higher expression of immune-related genes, and increased activities of superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Furthermore, the Man-PEI/pcDNA-Sip group showed an improved relative percent survival (RPS) of 85.71%. These results demonstrate the potential value of Man-PEI as a vaccine delivery vehicle, and suggest that it can be effective in boosting the immune protective rate induced by pcDNA-Sip vaccines.
Collapse
Affiliation(s)
- Xin-Jin Chen
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Man-Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Jia Cai
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Ji-Chang Jian
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524002, PR China.
| |
Collapse
|
3
|
Liu XB, Yu GW, Gao XY, Huang JL, Qin LT, Ni HB, Lyu C. Intranasal delivery of plasmids expressing bovine herpesvirus 1 gB/gC/gD proteins by polyethyleneimine magnetic beads activates long-term immune responses in mice. Virol J 2021; 18:60. [PMID: 33743745 PMCID: PMC7981393 DOI: 10.1186/s12985-021-01536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background DNA vaccine is one of the research hotspots in veterinary vaccine development. Several advantages, such as cost-effectiveness, ease of design and production, good biocompatibility of plasmid DNA, attractive biosafety, and DNA stability, are found in DNA vaccines. Methods In this study, the plasmids expressing bovine herpesvirus 1 (BoHV-1) gB, gC, and gD proteins were mixed at the same mass ratio and adsorbed polyethyleneimine (PEI) magnetic beads with a diameter of 50 nm. Further, the plasmid and PEI magnetic bead polymers were packaged into double carboxyl polyethylene glycol (PEG) 600 to use as a DNA vaccine. The prepared DNA vaccine was employed to vaccinate mice via the intranasal route. The immune responses were evaluated in mice after vaccination. Results The expression of viral proteins could be largely detected in the lung and rarely in the spleen of mice subjected to a vaccination. The examination of biochemical indicators, anal temperature, and histology indicated that the DNA vaccine was safe in vivo. However, short-time toxicity was observed. The total antibody detected with ELISA in vaccinated mice showed a higher level than PBS, DNA, PEI + DNA, and PBS groups. The antibody level was significantly elevated at the 15th week and started to decrease since the 17th week. The neutralizing antibody titer was significantly higher in DNA vaccine than naked DNA vaccinated animals. The total IgA level was much greater in the DNA vaccine group compared to other component vaccinated groups. The examination of cellular cytokines and the percentage of CD4/CD8 indicated that the prepared DNA vaccine induced a strong cellular immunity. Conclusion The mixed application of plasmids expressing BoHV-1 gB/gC/gD proteins by nano-carrier through intranasal route could effectively activate long-term humoral, cellular, and mucosal immune responses at high levels in mice. These data indicate PEI magnetic beads combining with PEG600 are an efficient vector for plasmid DNA to deliver intranasally as a DNA vaccine candidate. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01536-w.
Collapse
Affiliation(s)
- Xing-Bo Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Guo-Wei Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Xin-Yu Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Jin-Long Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Li-Ting Qin
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, China.,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, 266100, China
| | - Hong-Bo Ni
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China. .,College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Chuang Lyu
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, 266100, China. .,Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao, 266100, China.
| |
Collapse
|
4
|
Tan L, Zheng T, Li M, Zhong X, Tang Y, Qin M, Sun X. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Deliv Transl Res 2020; 10:678-689. [PMID: 32048201 DOI: 10.1007/s13346-020-00725-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Messenger RNA (mRNA) vaccines have attracted great interest in recent years due to their high potency, safety profile, and potential of rapid development. Although a number of mRNA vaccines have entered clinical trials, there remain several challenges. Inefficient in vivo delivery of mRNA is the foremost one. Here we synthesized a conjugate composed of β-cyclodextrin (β-CD) and branched polyethyleneimine (molecular weight 2 kDa, bPEI2k) to deliver an mRNA vaccine. The CD-PEI (CP) conjugate helped the encapsulated mRNA molecules pass through the plasma membranes and escape from the endosomes, which consequently ensured high transfection efficiency. On this basis, we optimized several structural elements of mRNA molecules via synthesizing an advanced cap structure and incorporating untranslated regions (UTRs) and an extended poly(A) tail into the sequence. These modifications led to a higher expression level of encoded proteins, which was expected to induce potent immune responses with a relatively low dosage. We also investigated the relevance of the administration route to the immune responses induced by CP-assisted mRNA vaccines with in vivo evidence, providing a basis for the selection of optimum administration route in specific cases. This CP-based mRNA vaccine platform, with an optimized mRNA structure and administrated in a most appropriate route, holds a promise to be applied to specific antigens in the future. Graphical abstract.
Collapse
Affiliation(s)
- Lu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Dalle Vedove E, Costabile G, Merkel OM. Mannose and Mannose-6-Phosphate Receptor-Targeted Drug Delivery Systems and Their Application in Cancer Therapy. Adv Healthc Mater 2018; 7:e1701398. [PMID: 29719138 PMCID: PMC6108418 DOI: 10.1002/adhm.201701398] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Indexed: 12/21/2022]
Abstract
In order to overcome the main disadvantages of conventional cancer therapies, which prove to be inadequate because of their lack of selectivity, the development of targeted delivery systems is one of the main focuses in anticancer research. It is repeatedly shown that decorating the surface of nanocarriers with high-affinity targeting ligands, such as peptides or small molecules, is an effective way to selectively deliver therapeutics by enhancing their specific cellular uptake via the binding between a specific receptor and the nanosystems. Nowadays, the need of finding new potential biological targets with a high endocytic efficiency as well as a low tendency to mutate is urgent and, in this context, mannose and mannose-6-phosphate receptors appear promising to target anticancer drugs to cells where their expression is upregulated. Moreover, they open the path to encouraging applications in immune-based and gene therapies as well as in theragnostic purposes. In this work, the potential of mannose- and mannose-6-phosphate-targeted delivery systems in cancer therapy is discussed, emphasizing their broad application both in direct treatments against cancer cells with conventional chemotherapeutics or by gene therapy and also their encouraging capabilities in immunotherapy and diagnostics purposes.
Collapse
Affiliation(s)
- Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| |
Collapse
|
6
|
Li S, Guo Z, Zeng G, Zhang Y, Xue W, Liu Z. Polyethylenimine-Modified Fluorescent Carbon Dots As Vaccine Delivery System for Intranasal Immunization. ACS Biomater Sci Eng 2017; 4:142-150. [PMID: 33418684 DOI: 10.1021/acsbiomaterials.7b00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescent carbon dots (CDs) as a luminescent nanomaterial have obtained much attention in the biomedical field. To make good use of their luminescent property and nanoscaled size, we developed CDs as a vaccine delivery system for intranasal immunization in this work. To this aim, polyethylenimine-modified CDs were prepared via a simple microwave method. Intranasal immunization was performed by using the CDs as an antigen carrier to deliver model protein antigen ovalbumin. The results showed that the CDs as an intranasal vaccine delivery system enhanced the immunization efficacy by significantly increasing IgG titer, IgA induction in the local and distant mucous membrane sites, splenocyte proliferation, cytokine IFN-γ secretion by splenocytes, and memory T cells. From the results, the CDs could be used as vaccine delivery systems with the advantage of tracing the antigen transportation from administration site to the lymph organs.
Collapse
Affiliation(s)
- Sha Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Zhong Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, No. 601 West Huangpu Avenue, Guangzhou 510632, China
| | - Yu Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, No. 601 West Huangpu Avenue, Guangzhou, 510632, China
| |
Collapse
|
7
|
Guo Z, Li S, Lv M, Liu Z, Xue W. Redox-Responsive Biodegradable Polycation Poly(amido amine) Used As Intranasal Vaccine Delivery Systems. ACS Biomater Sci Eng 2017; 3:2420-2430. [DOI: 10.1021/acsbiomaterials.7b00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhong Guo
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Sha Li
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Meng Lv
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Zonghua Liu
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
8
|
Shen C, Li J, Zhang Y, Li Y, Shen G, Zhu J, Tao J. Polyethylenimine-based micro/nanoparticles as vaccine adjuvants. Int J Nanomedicine 2017; 12:5443-5460. [PMID: 28814862 PMCID: PMC5546778 DOI: 10.2147/ijn.s137980] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses.
Collapse
Affiliation(s)
- Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuce Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintao Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Abstract
The use of gene delivery systems for the expression of antigenic proteins is an established means for activating a patient’s own immune system against the cancer they carry. Since tumor cells are poor antigen-presenting cells, cross-presentation of tumor antigens by dendritic cells (DCs) is essential for the generation of tumor-specific cytotoxic T-lymphocyte responses. A number of polymer-based nanomedicines have been developed to deliver genes into DCs, primarily by incorporating tumor-specific, antigen-encoding plasmid DNA with polycationic molecules to facilitate DNA loading and intracellular trafficking. Direct in vivo targeting of plasmid DNA to DC surface receptors can induce high transfection efficiency and long-term gene expression, essential for antigen loading onto major histocompatibility complex molecules and stimulation of T-cell responses. This chapter summarizes the physicochemical properties and biological information on polymer-based non-viral vectors used for targeting DCs, and discusses the main challenges for successful in vivo gene transfer into DCs.
Collapse
Affiliation(s)
- Kenneth A. Howard
- Department of Molecular Biology and Gen, Interdisciplinary Nanoscience Center (i, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Biophysical I, Aarhus University, Aarhus, Denmark
| | - Dan Peer
- Britannia Bldg, 2nd Fl, Rm 226, Tel-Aviv Univ, Dept Cell Research, Tel-Aviv, Israel
| |
Collapse
|
10
|
A Toxoplasma gondii vaccine encoding multistage antigens in conjunction with ubiquitin confers protective immunity to BALB/c mice against parasite infection. Parasit Vectors 2015; 8:498. [PMID: 26420606 PMCID: PMC4588682 DOI: 10.1186/s13071-015-1108-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a widely prevalent intracellular parasite which infects almost all warm-blooded animals including humans and causes serious zoonotic toxoplasmosis. DNA vaccines have proved effective in the protection against parasites. However, the problems of weak immunity and inefficient delivery of DNA vaccine remain major issues. Therefore, comprehensive antigens derived from all stages of the parasite, effective adjuvants and delivery systems should be considered in the vaccine construction. METHODS SAG3101-144,ROP18347-396, MIC6288-347, GRA7182-224, MAG158-125, BAG1156-211 and SPA142-200, derived from antigens in tachyzoite, bradyzoite and sporozoite stages of T. gondii were screened based on CD8(+) T cell epitope binding affinity to HLA and H-2. We constructed a recombinant DNA vaccine and an adenovirus vaccine encoding multi-stage antigen of T. gondii linked to ubiquitin molecules and vaccinated BALB/c mice with different strategies. Antibodies, cytokines, splenocytes proliferation, as well as the percentage of CD4(+) and CD8(+) T cells in immunized mouse were analyzed by the Enzyme-Linked Immunosorbent Assays (ELISA), Flow Cytometry (FCM). Protective efficacy was evaluated by challenging immunized mice with type I and type II parasite. RESULTS Our results indicated that the DNA vaccine had the advantage of inducing a stronger humoral response, whereas the adenovirus-vectored vaccine effectively improved the cellular immune response. Priming with DNA vaccine and boosting with adenovirus-vectored vaccine induced Th1-type immune responses with highest levels of IgG2a and secretion of cytokines IL-2 and IFN-γ. Effective protection against type I and type II parasite with an increase in survival rate and a decrease in brain cyst burden was achieved in immunized mice. CONCLUSIONS Priming vaccination with DNA vaccine and boosting with the recombinant adenovirus vaccine encoding ubiquitin conjugated multi-stage antigens of T. gondii was proved to be a potential strategy against the infection of type I and type II parasite.
Collapse
|
11
|
Yang J, Li Y, Jin S, Xu J, Wang PC, Liang XJ, Zhang X. Engineered biomaterials for development of nucleic acid vaccines. Biomater Res 2015; 19:5. [PMID: 26331076 PMCID: PMC4552455 DOI: 10.1186/s40824-014-0025-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/23/2014] [Indexed: 01/28/2023] Open
Abstract
Nucleic acid vaccines have attracted many attentions since they have presented some superiority over traditional vaccines. However, they could only induce moderate immunogenicity. The route and formulation of nucleic acid vaccines have strong effects on the immune response and efficiency. Numerous biomaterials are used as a tool to enhance the immunogenicity of antigens. They deliver the antigens into the cells through particle- and non-particle-mediated pathway. However, challenges remain due to lack of comprehensive understanding of the actions of these biomaterials as a carrier/adjuvant. Herein, this review focuses on the evolution of biomaterials used for nucleic acid vaccines, discusses the advantages and disadvantages for gene delivery and immunostimulation of variety of structures of the biomaterials, in order to provide new thought on rational design of carrier/adjuvant and better understanding of mechanism of action in both immunostimulatory and delivery methods.
Collapse
Affiliation(s)
- Jun Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 PR China
| | - Yan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 PR China ; University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Shubin Jin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190 PR China
| | - Jing Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190 PR China
| | - Paul C Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060 USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190 PR China
| | - Xin Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 PR China
| |
Collapse
|
12
|
Quirk EK, Brown EL, Leavitt RY, Mogg R, Mehrotra DV, Evans RK, DiNubile MJ, Robertson MN. Safety Profile of the Merck Human Immunodeficiency Virus-1 Clade B gag DNA Plasmid Vaccine With and Without Adjuvants. Open Forum Infect Dis 2014; 1:ofu016. [PMID: 25734089 PMCID: PMC4324197 DOI: 10.1093/ofid/ofu016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/04/2014] [Indexed: 12/14/2022] Open
Abstract
The immunogenicity results from 3 phase I trials of the Merck DNA human immunodeficiency virus (HIV) vaccine have previously been reported. Because preventive DNA vaccine strategies continue to be leveraged for diverse infections, the safety and tolerability results from these studies can inform the field moving forward, particularly regarding adverse reactions and adjuvants. No serious vaccine-related adverse events were reported during the 3-dose priming phase. Pain at the injection site was more common with adjuvanted formulations than with the phosphate-buffered saline diluent alone. Febrile reactions were usually low grade. Although the AlPO4 or CRL1005 adjuvants used in these studies did not significantly enhance the immunogenicity of the DNA vaccine, adverse events were numerically more common with adjuvanted formulations than without adjuvants.
Collapse
Affiliation(s)
- Erin K Quirk
- Merck Research Laboratories , West Point, Pennsylvania
| | | | | | - Robin Mogg
- Merck Research Laboratories , West Point, Pennsylvania
| | | | | | - Mark J DiNubile
- Office of the Chief Medical Officer, Merck , Upper Gwynedd, Pennsylvania
| | | |
Collapse
|
13
|
De Filette M, Soehle S, Ulbert S, Richner J, Diamond MS, Sinigaglia A, Barzon L, Roels S, Lisziewicz J, Lorincz O, Sanders NN. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge. PLoS One 2014; 9:e87837. [PMID: 24503579 PMCID: PMC3913677 DOI: 10.1371/journal.pone.0087837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/31/2013] [Indexed: 12/02/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI) covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.
Collapse
Affiliation(s)
- Marina De Filette
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
| | - Silke Soehle
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Justin Richner
- Departments of Medicine, Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | | | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefan Roels
- Operational Direction Interactions and Surveillance, Veterinary and Agrochemical Research Centre (CODA/CERVA), Brussels, Belgium
| | - Julianna Lisziewicz
- Genetic Immunity, Budapest, Hungary and McLean, Virginia, United States of America
| | - Orsolya Lorincz
- Genetic Immunity, Budapest, Hungary and McLean, Virginia, United States of America
| | - Niek N. Sanders
- Laboratory of Gene Therapy, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
14
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|