1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025; 33:2493-2522. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
Ahmadishoar S, Mones Saeed S, Salih Mahdi M, Mohammed Taher W, Alwan M, Jasem Jawad M, Khdyair Hamad A, Gandomkar H. The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer. J Drug Target 2025:1-34. [PMID: 40186857 DOI: 10.1080/1061186x.2025.2489979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumour microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognised as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionise cancer treatment with improved precision and efficacy.
Collapse
Affiliation(s)
- Shiva Ahmadishoar
- Department of Microbiology, Male.C., Islamic Azad University, Malekan, Iran
| | - Samaa Mones Saeed
- Dental Prosthetics Techniques Department, Health and Medical Techniques College/AlNoor University, Mosul, Iraq
| | | | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Hossein Gandomkar
- Department of Surgical Oncology, Tehran University of Medical Medicine, Tehran, Iran
| |
Collapse
|
3
|
Zhang YF, Lu M. Advances in magnetic induction hyperthermia. Front Bioeng Biotechnol 2024; 12:1432189. [PMID: 39161353 PMCID: PMC11331313 DOI: 10.3389/fbioe.2024.1432189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Magnetic induction hyperthermia (MIH), is a technique that has developed rapidly in recent years in the field of tumor thermotherapy. It implants a magnetic heating medium (millimeter-sized heat seeds, micron-sized magnetic particles and nanometer-sized magnetic fluids, etc.) inside the tumor. The material heats up under the induction of an external alternating magnetic field (100-500 kHz), which causes a high temperature zone to rapidly form in the local biological tissues and induces apoptosis in tumor cells. Magnetic induction hyperthermia has the advantages of high safety, strong targeting, repeatable treatment, and the size of the incision during treatment is negligible compared to surgical resection, and is currently used in clinical treatment. However, the millimeter-scale heat seed heating that is typically used in treatments can result in uneven temperatures within the tissue. Common MIH heating devices are bulky and complex in design, and are not easy for medical staff to get their hands on, which are issues that limit the diffusion of MIH. In this view, this paper will discuss the basic theoretical research on MIH and the progress of MIH-related technologies, with a focus on the latest research and development results and research hotspots of nanoscale ferromagnetic media and magnetic heat therapy devices, as well as the validation results and therapeutic efficacy of the new MIH technology on animal experiments and clinical trials. In this paper, it is found that induction heating using magnetic nanoparticles improves the uniformity of the temperature field, and the magneto-thermal properties of nanoscale ferromagnetic materials are significantly improved. The heating device was miniaturized to simplify the operation steps, while the focusing of the magnetic field was locally enhanced. However, there are fewer studies on the biotoxicity aspects of nanomedicines, and the localized alternating magnetic field uniformity used for heating and the safety of the alternating magnetic field after irradiation of the human body have not been sufficiently discussed. Ultimately, the purpose of this paper is to advance research related to magnetic induction thermotherapy that can be applied in clinical treatment.
Collapse
Affiliation(s)
| | - Mai Lu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
4
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Soon RH, Yin Z, Dogan MA, Dogan NO, Tiryaki ME, Karacakol AC, Aydin A, Esmaeili-Dokht P, Sitti M. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat Commun 2023; 14:3320. [PMID: 37339969 PMCID: PMC10282021 DOI: 10.1038/s41467-023-38689-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023] Open
Abstract
Untethered magnetic miniature soft robots capable of accessing hard-to-reach regions can enable safe, disruptive, and minimally invasive medical procedures. However, the soft body limits the integration of non-magnetic external stimuli sources on the robot, thereby restricting the functionalities of such robots. One such functionality is localised heat generation, which requires solid metallic materials for increased efficiency. Yet, using these materials compromises the compliance and safety of using soft robots. To overcome these competing requirements, we propose a pangolin-inspired bi-layered soft robot design. We show that the reported design achieves heating > 70 °C at large distances > 5 cm within a short period of time <30 s, allowing users to realise on-demand localised heating in tandem with shape-morphing capabilities. We demonstrate advanced robotic functionalities, such as selective cargo release, in situ demagnetisation, hyperthermia and mitigation of bleeding, on tissue phantoms and ex vivo tissues.
Collapse
Affiliation(s)
- Ren Hao Soon
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Zhen Yin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Control Science and Engineering, Tongji University, Shanghai, China
- Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, China
| | - Metin Alp Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Mehmet Efe Tiryaki
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland
| | - Alp Can Karacakol
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Pouria Esmaeili-Dokht
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
6
|
Himiniuc LM, Toma BF, Popovici R, Grigore AM, Hamod A, Volovat C, Volovat S, Nica I, Vasincu D, Agop M, Tirnovanu M, Ochiuz L, Negura A, Grigore M. Update on the Use of Nanocarriers and Drug Delivery Systems and Future Directions in Cervical Cancer. J Immunol Res 2022; 2022:1636908. [PMID: 35571568 PMCID: PMC9095399 DOI: 10.1155/2022/1636908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cervical cancer represents a major health problem among females due to its increased mortality rate. The conventional therapies are very aggressive and unsatisfactory when it comes to survival rate, especially in terminal stages, which requires the development of new treatment alternatives. With the use of nanotechnology, various chemotherapeutic drugs can be transported via nanocarriers directly to cervical cancerous cells, thus skipping the hepatic first-pass effect and decreasing the rate of chemotherapy side effects. This review comprises various drug delivery systems that were applied in cervical cancer, such as lipid-based nanocarriers, polymeric and dendrimeric nanoparticles, carbon-based nanoparticles, metallic nanoparticles, inorganic nanoparticles, micellar nanocarriers, and protein and polysaccharide nanoparticles. Nanoparticles have a great therapeutic potential by increasing the pharmacological activity, drug solubility, and bioavailability. Through their mechanisms, they highly increase the toxicity in the targeted cervical tumor cells or tissues by linking to specific ligands. In addition, a nondifferentiable model is proposed through holographic implementation in the dynamics of drug delivery dynamics. As any hologram functions as a deep learning process, the artificial intelligence can be proposed as a new analyzing method in cervical cancer.
Collapse
Affiliation(s)
| | - Bogdan Florin Toma
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Razvan Popovici
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Ana Maria Grigore
- ”Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | | | - Constantin Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Simona Volovat
- Center of Oncology Euroclinic, 700110 Iasi, Romania
- “Grigore T. Popa” University of Medicine and Pharmacy, Department of Medical Oncology Radiotherapy, 700115 Iași, Romania
| | - Irina Nica
- Department of Odontology, Periodontics and Fixed Restoration, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Decebal Vasincu
- Department of Dental and Oro-Maxillo-Facial Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Maricel Agop
- Department of Physics, “Gheorghe Asachi” Technical University of Iasi, Iasi 700050, Romania
- Romanian Scientists Academy, Bucharest 050094, Romania
| | - Mihaela Tirnovanu
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lacramioara Ochiuz
- Department of Pharmaceutical and Biotechnological Drug Industry, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Anca Negura
- Oncogenetics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Biology Department, “Alexandru Ioan Cuza” University, 700506 Iaşi, Romania
| | - Mihaela Grigore
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
7
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
8
|
Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. JOURNAL OF HEAT TRANSFER 2022; 144:030801. [PMID: 35125512 PMCID: PMC8813031 DOI: 10.1115/1.4053007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.
Collapse
Affiliation(s)
- Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Md Musavvir Mahmud
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
9
|
Demin AM, Vakhrushev AV, Mekhaev AV, Uimin MA, Krasnov VP. Modification of Fe3O4 magnetic nanoparticles with a GRGD peptide. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3107-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Venkatas J, Singh M. Cervical cancer: a meta-analysis, therapy and future of nanomedicine. Ecancermedicalscience 2020; 14:1111. [PMID: 33144879 PMCID: PMC7581334 DOI: 10.3332/ecancer.2020.1111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is one of the leading causes of female death, with an annual mortality rate exceeding 200,000 in developing communities. Despite the past decade bearing witness to a reduction in cervical cancer cases throughout developed countries, the prevalence in developing countries continues to rapidly rise. The increase in cervical cancer cases is attributed to the lack of financial resources and the unavoidable risk factors of the disease. Traditional means of anticancer therapy are compromised by reduced drug potency, non-specificity, negative side effects and the development of multiple drug resistance (MDR), which leads to a decrease in the long-term anticancer therapeutic efficacy. Recent advances in nanomedicine have elucidated the potential of nanoparticles to reduce the side effects and improve the survival rate of patients, by enhancing selective delivery and uptake of photosensitive, therapeutic and genetic material to cervical cancer cells, thereby enhancing antitumour efficiency. This review paper analyses the risk factors and epidemiology of cervical cancer globally, especially in developing communities, whilst demonstrating the enhanced anticancer treatment using selected nanoparticles.
Collapse
Affiliation(s)
- Jeaneen Venkatas
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- https://orcid.org/0000-0001-5061-0788
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- https://orcid.org/0000-0002-9985-6567
| |
Collapse
|
12
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 608] [Impact Index Per Article: 121.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Iurciuc-Tincu CE, Cretan MS, Purcar V, Popa M, Daraba OM, Atanase LI, Ochiuz L. Drug Delivery System Based on pH-Sensitive Biocompatible Poly(2-vinyl pyridine)-b-poly(ethylene oxide) Nanomicelles Loaded with Curcumin and 5-Fluorouracil. Polymers (Basel) 2020; 12:polym12071450. [PMID: 32605272 PMCID: PMC7408444 DOI: 10.3390/polym12071450] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Smart polymeric micelles (PMs) are of practical interest as nanocarriers for the encapsulation and controlled release of hydrophobic drugs. Two hydrophobic drugs, naturally-based curcumin (Cur) and synthetic 5-fluorouracil (5-FU), were loaded into the PMs formed by a well-defined pH-sensitive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP90-b-PEO398) block copolymer. The influence of the drug loading on the micellar sizes was investigated by dynamic light scattering (DLS) and it appears that the size of the PMs increases from around 60 to 100 nm when Cur is loaded. On the contrary, the loading of the 5-FU has a smaller effect on the micellar sizes. This difference can be attributed to higher molar mass of Cur with respect to 5-FU but also to higher loading efficiency of Cur, 6.4%, compared to that of 5-FU, 5.8%. In vitro drug release was studied at pH 2, 6.8, and 7.4, and it was observed that the pH controls the release of both drugs. At pH 2, where the P2VP sequences from the “frozen-in” micellar core are protonated, the drug release efficiencies exceed 90%. Moreover, it was demonstrated, by in vitro assays, that these PMs are hemocompatible and biocompatible. Furthermore, the PMs protect the Cur against the photo-degradation, whereas the non-ionic PEO corona limits the adsorption of bovine serum albumin (BSA) protein on the surface. This study demonstrates that these pH-sensitive PMs are suitable for practical utilization as human-safe and smart, injectable drug delivery systems.
Collapse
Affiliation(s)
- Camelia-Elena Iurciuc-Tincu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University street, no. 16, 700115 Iaşi, Romania; (C.-E.I.-T.); (M.S.C.); (L.O.)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iaşi, Romania;
| | - Monica Stamate Cretan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University street, no. 16, 700115 Iaşi, Romania; (C.-E.I.-T.); (M.S.C.); (L.O.)
| | - Violeta Purcar
- National R&D Institute for Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei 202, 6th district, 060021 Bucharest, Romania;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iaşi, Romania;
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucharest, Romania
| | - Oana Maria Daraba
- Faculty of Dental Medicine, “Apollonia” University of Iasi, Pacurari street, no. 11, 700355 Iași, Romania;
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, Pacurari street, no. 11, 700355 Iași, Romania;
- Correspondence: or
| | - Lacramioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University street, no. 16, 700115 Iaşi, Romania; (C.-E.I.-T.); (M.S.C.); (L.O.)
| |
Collapse
|
15
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
16
|
Scheeren LE, Nogueira-Librelotto DR, Macedo LB, de Vargas JM, Mitjans M, Vinardell MP, Rolim CMB. Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:72. [PMID: 0 DOI: 10.1007/s11051-020-04798-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
|
17
|
Kazi J, Mukhopadhyay R, Sen R, Jha T, Ganguly S, Debnath MC. Design of 5-fluorouracil (5-FU) loaded, folate conjugated peptide linked nanoparticles, a potential new drug carrier for selective targeting of tumor cells. MEDCHEMCOMM 2019; 10:559-572. [PMID: 31057736 PMCID: PMC6482664 DOI: 10.1039/c8md00565f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
In the present investigation folate peptide (FA-Pep) conjugated 5-fluorouracil (5-FU) loaded nanoparticles were synthesized and their tumor targeting potentiality was monitored by different in vitro and in vivo techniques. FA-Pep-1 and FA-Pep-2 were synthesized and radiolabeled with 99mTc(CO)3(H2O)3. 99mTc(CO)3-FA-Pep-1 exhibited promising tumor uptake in an in vivo model (nude mice bearing HeLa cell xenograft and Balb/c mice bearing B16F10 melanoma tumor) as compared to 99mTc(CO)3-FA-Pep-2. FA-Pep-1 was then conjugated with 5-FU-NPs (118 ± 4.3), as confirmed by the XPS study. These showed promising cytotoxic and apoptotic potential in B16F10 cell lines as compared to free 5-FU and unconjugated 5-FU-NPs. In vivo biodistribution and gamma-scintigraphy showed good accumulation of peptide conjugated NPs in the tumor region. Therapeutic efficacy studies in B16F10 tumor xenografts also exhibited substantial tumor growth inhibition. The above studies reveal that folate peptide conjugation may facilitate the tumor-targeting approach of 5-FU-NPs.
Collapse
Affiliation(s)
- Julekha Kazi
- Infectious Diseases and Immunology Division , CSIR-Indian Institute of Chemical Biology , Kolkata , India .
| | - Ria Mukhopadhyay
- Infectious Diseases and Immunology Division , CSIR-Indian Institute of Chemical Biology , Kolkata , India .
| | - Ramkrishna Sen
- Infectious Diseases and Immunology Division , CSIR-Indian Institute of Chemical Biology , Kolkata , India .
| | - Tarun Jha
- Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center , Thakurpukur Cancer Center and Welfare Home Campus , Kolkata , India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division , CSIR-Indian Institute of Chemical Biology , Kolkata , India .
| |
Collapse
|
18
|
Exploiting PLGA-Based Biocompatible Nanoparticles for Next-Generation Tolerogenic Vaccines against Autoimmune Disease. Int J Mol Sci 2019; 20:ijms20010204. [PMID: 30626016 PMCID: PMC6337481 DOI: 10.3390/ijms20010204] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/01/2022] Open
Abstract
Tolerogenic vaccines are aimed at inhibiting antigen-specific immune responses. Antigen-loaded nanoparticles (NPs) have been recently emerged as ideal tools for tolerogenic vaccination because their composition, size, and capability of loading immunomodulatory molecules can be readily exploited to induce peripheral tolerance. Among polymeric NPs, poly(lactic-co-glycolic acid) (PLGA) NPs have the advantage of currently holding approval for several applications in drug delivery, diagnostics, and other clinical uses by the Food and Drug Administration (FDA). PLGA-NPs are non-toxic and display excellent biocompatibility and biodegradability properties. Moreover, surface functionalization may improve their interaction with biological materials, thereby optimizing targeting and performance. PLGA-NPs are the most extensively studied in pre-clinical model in the field of tolerogenic vaccination. Thus, this review describes their potential applications in the treatment of autoimmune diseases.
Collapse
|
19
|
Ernest U, Chen HY, Xu MJ, Taghipour YD, Asad MHHB, Rahimi R, Murtaza G. Anti-Cancerous Potential of Polyphenol-Loaded Polymeric Nanotherapeutics. Molecules 2018; 23:2787. [PMID: 30373235 PMCID: PMC6278361 DOI: 10.3390/molecules23112787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has extensively demonstrated the anticancer potential of nutraceuticals, including plant polyphenols. Polymeric nanocarrier systems have played an important role in improving the physicochemical and pharmacological properties of polyphenols, thus ameliorating their therapeutic effectiveness. This article summarizes the benefits and shortcomings of various polymeric systems developed for the delivery of polyphenols in cancer therapy and reveals some ideas for future work.
Collapse
Affiliation(s)
- Umeorah Ernest
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Yan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming-Jun Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 1416663547, Iran.
| | | | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 5165665931, Iran.
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54600, Pakistan.
| |
Collapse
|
20
|
Ramirez-Nuñez AL, Jimenez-Garcia LF, Goya GF, Sanz B, Santoyo-Salazar J. In vitro magnetic hyperthermia using polyphenol-coated Fe 3O 4@γFe 2O 3 nanoparticles from Cinnamomun verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. NANOTECHNOLOGY 2018; 29:074001. [PMID: 29256440 DOI: 10.1088/1361-6528/aaa2c1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- A L Ramirez-Nuñez
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Av. IPN 2508, Zacatenco, 07360, Mexico
| | | | | | | | | |
Collapse
|
21
|
Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer. JOURNAL OF DRUG DELIVERY 2017; 2017:9090325. [PMID: 29464123 PMCID: PMC5804325 DOI: 10.1155/2017/9090325] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
Abstract
In nanomedicine, targeted therapeutic nanoparticle (NP) is a virtual outcome of nanotechnology taking the advantage of cancer propagation pattern. Tying up all elements such as therapeutic or imaging agent, targeting ligand, and cross-linking agent with the NPs is the key concept to deliver the payload selectively where it intends to reach. The microenvironment of tumor tissues in lymphatic vessels can also help targeted NPs to achieve their anticipated accumulation depending on the formulation objectives. This review accumulates the application of poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) based NP systems, with a specific perspective in cancer. Nowadays, PLGA, PEG, or their combinations are the mostly used polymers to serve the purpose of targeted therapeutic NPs. Their unique physicochemical properties along with their biological activities are also discussed. Depending on the biological effects from parameters associated with existing NPs, several advantages and limitations have been explored in teaming up all the essential facts to give birth to targeted therapeutic NPs. Therefore, the current article will provide a comprehensive review of various approaches to fabricate a targeted system to achieve appropriate physicochemical properties. Based on such findings, researchers can realize the benefits and challenges for the next generation of delivery systems.
Collapse
|
22
|
Bhatt PC, Verma A, Al-Abbasi FA, Anwar F, Kumar V, Panda BP. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ 40 plaques in Alzheimer's disease. Int J Nanomedicine 2017; 12:8749-8768. [PMID: 29263666 PMCID: PMC5732557 DOI: 10.2147/ijn.s144545] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
According to the World Health Organization, globally there are around 18 million patients suffering from Alzheimer’s disease (AD), and this number is expected to double by 2025. The pathophysiology of AD includes selective deposition of Aβ peptide in the mitochondria of cells, which inhibits uptake of glucose by neurons and key enzyme functions. Current drug treatments for AD are unable to rectify the underlying pathology of the disease; they only provide short-term symptomatic relief, so there is a need for the development of newer treatment regimes. The antiamyloid activity, antifibrinolytic activity, and antithrombotic activity of nattokinase holds potential for the treatment of AD. As nattokinase is a protein, its stability restricts its usage to a greater extent, but this limitation can be overcome by nanoencapsulation. In this work, we successfully synthesized polymeric nanoparticles of nattokinase and characterized its use by different techniques: transmission electron microscopy, scanning electron microscopy, DTS Nano, differential scanning calorimetry, Fourier-transform infrared spectroscopy, thioflavin T-binding assay, in vitro drug release, antifibrinolytic activity, and in vivo antiamyloid activity. As brain targeting of hydrophilic drugs is complicated due to the stringent nature of blood–brain barrier, in the current experimental study, we conjugated poly(lactic-co-glycolic acid) (PLGA)-encapsulated nattokinase with Tet1 peptide, which exhibits retrograde transportation properties because of its affinity to neurons. Our study suggests that PLGA-encapsulated nattokinase polymeric nanoparticles are able to downregulate amyloid aggregation and exhibit antifibrinolytic activity. The encapsulation of nattokinase in PLGA did not affect its enzyme activity, so the prepared nanoformulation containing nattokinase can be used as an effective drug treatment against AD.
Collapse
Affiliation(s)
- Prakash Chandra Bhatt
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Science, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Science, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| |
Collapse
|
23
|
Vittorio O, Curcio M, Cojoc M, Goya GF, Hampel S, Iemma F, Dubrovska A, Cirillo G. Polyphenols delivery by polymeric materials: challenges in cancer treatment. Drug Deliv 2017; 24:162-180. [PMID: 28156178 PMCID: PMC8241076 DOI: 10.1080/10717544.2016.1236846] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
Collapse
Affiliation(s)
- Orazio Vittorio
- a UNSW Australia, Children's Cancer Institute, Lowy Cancer Research Center and ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Australian Center for NanoMedicine , Sydney , NSW , Australia
| | - Manuela Curcio
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Monica Cojoc
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany
| | - Gerardo F Goya
- d Institute of Nanoscience of Aragon (INA) and Department of Condensed Matter Physics, University of Zaragoza , Zaragoza , Spain
| | - Silke Hampel
- e Leibniz Institute of Solid State and Material Research Dresden , Dresden , Germany , and
| | - Francesca Iemma
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| | - Anna Dubrovska
- c OncoRay-National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf , Dresden , Germany.,f German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Giuseppe Cirillo
- b Department of Pharmacy Health and Nutritional Science , University of Calabria, Arcavacata di Rende , Italy
| |
Collapse
|
24
|
Ding L, Li J, Huang R, Liu Z, Li C, Yao S, Wang J, Qi D, Li N, Pi J. Salvianolic acid B protects against myocardial damage caused by nanocarrier TiO 2; and synergistic anti-breast carcinoma effect with curcumin via codelivery system of folic acid-targeted and polyethylene glycol-modified TiO 2 nanoparticles. Int J Nanomedicine 2016; 11:5709-5727. [PMID: 27843313 PMCID: PMC5098748 DOI: 10.2147/ijn.s107767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Targeted delivery by the folate ligand is an effective way to enhance an anti-breast carcinoma effect, due to its high affinity for the folate receptor, which is overexpressed in many tumor cells. In this study, we firstly synthesized a folic acid (FA)-targeted and polyethylene glycol (PEG)-modified TiO2 nanocarrier. Then, an FA-PEG-TiO2 nanoparticle (NP) codelivery system loaded with curcumin and salvianolic acid B were prepared by emulsion evaporation-solidification at low temperature. The obtained folate-targeted NPs (FA-NPs) showed more cytotoxicity on MCF7 cells and MDA-MB-231 cells than a nontargeted NP group. Apart from a synergistic anti-breast cancer effect with curcumin, salvianolic acid B protects the cardiovascular system from oxidative injury by the TiO2 nanocarrier. With coumarin 6 as a fluorescent probe to observe cellular uptake of NPs, the results of in vitro cellular uptake demonstrated FA-NPs exhibited higher cellular uptake and accumulation in MCF7 cells and MDA-MB-231 cells than nontargeted NPs. Then, in vivo biodistribution of NPs was further qualitatively and quantitatively confirmed by in vivo imaging. More importantly, the animal study further suggested that FA-NPs had significantly stronger antitumor effects via receptor-mediated targeted delivery. Consequently, FA-PEG-TiO2 NPs loaded with curcumin and salvianolic acid B could be a promising drug-delivery system to treat breast cancer.
Collapse
Affiliation(s)
- Lingling Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
- Tianjin International Joint Academy of Biomedicine, Tianjin, People’s Republic of China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Rui Huang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Chunhua Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
- Tianjin International Joint Academy of Biomedicine, Tianjin, People’s Republic of China
| | - Shaozi Yao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Jinyan Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Dongli Qi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Nan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| | - Jiaxin Pi
- Tianjin State Key Laboratory of Modern Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Tianjin University of Traditional Chinese Medicine
| |
Collapse
|
25
|
Long R, Liu Y, Dai Q, Wang S, Deng Q, Zhou X. A Natural Bacterium-Produced Membrane-Bound Nanocarrier for Drug Combination Therapy. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E889. [PMID: 28774010 PMCID: PMC5457273 DOI: 10.3390/ma9110889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/25/2022]
Abstract
To minimize the non-specific toxicity of drug combination during cancer therapy, we prepared a new system synthesized from bacteria to deliver the anticancer drugs cytosine arabinoside (Ara-C) and daunorubicin (DNR). In this study, we selected genipin (GP) and poly-l-glutamic acid (PLGA) as dual crosslinkers. Herewith, we demonstrated the preparation, characterization and in vitro antitumor effects of Ara-C and DNR loaded GP-PLGA-modified bacterial magnetosomes (BMs) (ADBMs-P). The results show that this new system is stable and exhibits optimal drug-loading properties. The average diameters of BMs and ADBMs-P were 42.0 ± 8.6 nm and 65.5 ± 8.9 nm, respectively, and the zeta potential of ADBMs-P (-42.0 ± 6.4 mV) was significantly less than that of BMs (-28.6 ± 7.6 mV). The optimal encapsulation efficiency and drug loading of Ara-C were 68.4% ± 9.4% and 32.4% ± 2.9%, respectively, and those of DNR were 36.1% ± 2.5% and 17.9% ± 1.6%. Interestingly, this system also exhibits long-term release behaviour sequentially, without an initial burst release. The Ara-C drug continued to release about 85% within 40 days, while DNR release lasted only for 13 days. Moreover, similar to free drugs, ADBMs-Ps are strongly cytotoxic to cancer cells in vitro (HL-60 cells), with the inhibition rate approximately 96%. This study reveals that this new system has a potential for drug delivery application in the future, especially for combination therapy.
Collapse
Affiliation(s)
- Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China.
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China.
| | - Qinglei Dai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shibin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
- Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China.
| | - Qiongjia Deng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Xia Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
26
|
Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. Oncotarget 2016; 6:42150-68. [PMID: 26517524 PMCID: PMC4747216 DOI: 10.18632/oncotarget.6243] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 10/11/2015] [Indexed: 12/02/2022] Open
Abstract
An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and PTX may provide useful guidance for effective and safe cancer chemotherapy, especially in tumors with high FA receptor expression.
Collapse
|
27
|
Kawabata R, Mizoguchi T, Kandori A. Improvement of immunoassay detection system by using alternating current magnetic susceptibility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:035112. [PMID: 27036824 DOI: 10.1063/1.4943256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
A major goal with this research was to develop a low-cost and highly sensitive immunoassay detection system by using alternating current (AC) magnetic susceptibility. We fabricated an improved prototype of our previously developed immunoassay detection system and evaluated its performance. The prototype continuously moved sample containers by using a magnetically shielded brushless motor, which passes between two anisotropic magneto resistance (AMR) sensors. These sensors detected the magnetic signal in the direction where each sample container passed them. We used the differential signal obtained from each AMR sensor's output to improve the signal-to-noise ratio (SNR) of the magnetic signal measurement. Biotin-conjugated polymer beads with avidin-coated magnetic particles were prepared to examine the calibration curve, which represents the relation between AC magnetic susceptibility change and polymer-bead concentration. For the calibration curve measurement, we, respectively, measured the magnetic signal caused by the magnetic particles by using each AMR sensor installed near the upper or lower part in the lateral position of the passing sample containers. As a result, the SNR of the prototype was 4.5 times better than that of our previous system. Moreover, the data obtained from each AMR sensor installed near the upper part in the lateral position of the passing sample containers exhibited an accurate calibration curve that represented good correlation between AC magnetic susceptibility change and polymer-bead concentration. The conclusion drawn from these findings is that our improved immunoassay detection system will enable a low-cost and highly sensitive immunoassay.
Collapse
Affiliation(s)
- R Kawabata
- Center for Technology Innovation, Hitachi, Ltd., Kokubunji, Tokyo 185-8601, Japan
| | - T Mizoguchi
- Center for Technology Innovation, Hitachi, Ltd., Kokubunji, Tokyo 185-8601, Japan
| | - A Kandori
- Center for Technology Innovation, Hitachi, Ltd., Kokubunji, Tokyo 185-8601, Japan
| |
Collapse
|
28
|
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 2015; 219:76-94. [PMID: 26407670 PMCID: PMC4669063 DOI: 10.1016/j.jconrel.2015.09.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J Wydra
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Nathanael A Stocke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
29
|
Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 2015; 95:40-9. [PMID: 26434537 PMCID: PMC4663124 DOI: 10.1016/j.addr.2015.09.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022]
Abstract
Nanoparticles that respond to internal and external stimuli to carry out controlled release of anticancer drugs have been developed. In this review, we focus on the development of mesoporous silica based nanoparticles, as this type of materials provides a relatively stable material that is amenable to various chemical modifications. We first provide an overview of various designs employed to construct MSN-based controlled release systems. These systems respond to internal stimuli such as pH, redox state and the presence of biomolecules as well as to external stimuli such as light and magnetic field. They are at a different stage of development; depending on the system, their operation has been demonstrated in aqueous solution, in cancer cells or in animal models. Efforts to develop MSNs with multi-functionality will be discussed. Safety and biodegradation of MSNs, issues that need to be overcome for clinical development of MSNs, will be discussed. Advances in the synthesis of mechanized theranostic nanoparticles open up the possibility to start envisioning future needs for medical equipment.
Collapse
Affiliation(s)
- Harutaka Mekaru
- Dept. of Microbio., Immunol. & Molec. Genet. Jonsson Comprehensive Cancer Center Molecular Biology Institute , University of California, Los Angeles, CA, United States
| | - Jie Lu
- Dept. of Microbio., Immunol. & Molec. Genet. Jonsson Comprehensive Cancer Center Molecular Biology Institute , University of California, Los Angeles, CA, United States
| | - Fuyuhiko Tamanoi
- Dept. of Microbio., Immunol. & Molec. Genet. Jonsson Comprehensive Cancer Center Molecular Biology Institute , University of California, Los Angeles, CA, United States.
| |
Collapse
|
30
|
Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015; 36:5727-42. [PMID: 26142733 DOI: 10.1007/s13277-015-3706-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023] Open
Abstract
The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.
Collapse
|
31
|
Liu YG, Dai QL, Wang SB, Deng QJ, Wu WG, Chen AZ. Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-l-glutamic acid-modified bacterial magnetosomes. Int J Nanomedicine 2015; 10:1387-97. [PMID: 25733831 PMCID: PMC4337507 DOI: 10.2147/ijn.s76123] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To solve the problem of synthesized magnetic nanoparticles in cancer therapy, a new drug delivery system synthesized from bacteria was used to load cytosine arabinoside (Ara-C). Genipin (GP) and poly-l-glutamic acid (PLGA) were selected as dual cross-linkers. The preparation and characterization of Ara-C-loaded GP-PLGA-modified bacterial magnetosomes (BMs) (ABMs-P), as well as their in vitro antitumor effects, were all investigated. Transmission electron micrographs (TEM) and Fourier transform infrared (FTIR) spectroscopy suggested that Ara-C could be bound to the membrane of BMs modified by GP-PLGA. The diameters of the BMs and ABMs-P were 42.0±8.6 nm and 74.9±8.2 nm, respectively. The zeta potential revealed that the nanoparticles were stable. Moreover, this system exhibited optimal drug-loading properties and long-term release behavior. The optimal encapsulation efficiency and drug-loading were 64.1%±6.6% and 38.9%±2.4%, respectively, and ABMs-P could effectively release 90% Ara-C within 40 days, without the release of an initial burst. In addition, in vitro antitumor experiments elucidated that ABMs-P is cytotoxic to HL-60 cell lines, with an inhibition rate of 95%. The method of coupling drugs on BMs using dual cross-linkers is effective, and our results reveal that this new system has potential applications for drug delivery in the future.
Collapse
Affiliation(s)
- Yuan-Gang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Qing-Lei Dai
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Qiong-Jia Deng
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Wen-Guo Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Ai-Zheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, People's Republic of China ; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, People's Republic of China
| |
Collapse
|
32
|
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014; 19:20839-63. [PMID: 25514225 PMCID: PMC6271749 DOI: 10.3390/molecules191220839] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
33
|
Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine 2014; 9:4107-16. [PMID: 25187713 PMCID: PMC4149457 DOI: 10.2147/ijn.s67770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nanostructured lipid carriers (NLC), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. The aim of this study was to develop surface-modified NLC as multifunctional nanomedicine for codelivery of enhanced green fluorescence protein plasmid (pEGFP) and doxorubicin (DOX). METHODS TWO DIFFERENT NANOCARRIERS: pEGFP- and DOX-loaded NLC, and solid lipid nanoparticles (SLN) were prepared. Transferrin-containing ligands were used for the surface coating of the vectors. Their average size, zeta potential, and drug encapsulation capacity were evaluated. In vitro transfection efficiency of the modified vectors was evaluated in human alveolar adenocarcinoma cell line (A549 cells), and in vivo transfection efficiency of the modified vectors was evaluated in a mouse bearing A549 cells model. RESULTS Transferrin-modified DOX and pEGFP coencapsulated NLC (T-NLC) has a particle size of 198 nm and a +19 mV surface charge. The in vitro cell viabilities of the T-NLC formulations were over 80% compared with the control. T-NLC displayed remarkably greater gene transfection efficiency and enhanced antitumor activity than DOX- and pEGFP-coencapsulated SLN in vivo. CONCLUSION The results demonstrate that T-NLC noticeably enhanced antitumor activity through the combination of gene therapy with chemotherapy. Also coating of active transferrin improved the lung cancer cell-targeting of the carriers. In summary, the novel gene and drug delivery system offers a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yiqun Han
- Department of Respiratory Medicine, General Hospital of Ji'nan Command, PLA, Ji'nan, People's Republic of China
| | - Ying Zhang
- Center of Interventional Therapy, Ji'nan Infectious Disease Hospital, PLA, Ji'nan, People's Republic of China
| | - Danni Li
- Department of Internal Neurology, Ji'nan Central Hospital Affiliated to Shandong University, PLA, Ji'nan, People's Republic of China
| | - Yuanyuan Chen
- Department of Respiratory Medicine, General Hospital of Ji'nan Command, PLA, Ji'nan, People's Republic of China
| | - Jiping Sun
- Department of Respiratory Medicine, General Hospital of Ji'nan Command, PLA, Ji'nan, People's Republic of China
| | - Fansheng Kong
- Department of Hematology, General Hospital of Ji'nan Command, PLA, Ji'nan, People's Republic of China
| |
Collapse
|