1
|
Salama A, Hamed Salama A, Hasanein Asfour M. Tannic acid coated nanosuspension for oral delivery of chrysin intended for anti-schizophrenic effect in mice. Int J Pharm 2024; 656:124085. [PMID: 38580073 DOI: 10.1016/j.ijpharm.2024.124085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-β expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Alaa Hamed Salama
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
2
|
Ahmed TA, Almehmady AM, Alharbi WS, Alshehri AA, Almughem FA, Altamimi RM, Alshabibi MA, Omar AM, El-Say KM. Incorporation of Perillyl Alcohol into Lipid-Based Nanocarriers Enhances the Antiproliferative Activity in Malignant Glioma Cells. Biomedicines 2023; 11:2771. [PMID: 37893144 PMCID: PMC10604117 DOI: 10.3390/biomedicines11102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Perillyl alcohol (PA), a naturally existing monocyclic terpene related to limonene, is characterized by its poor aqueous solubility and very limited bioavailability. Its potential anti-cancer activity against malignant glioma has been reported. The aim was to develop PA-loaded lipid-based nanocarriers (LNCs), and to investigate their anti-cancer activity against two different brain cell lines. Non-medicated and PA-loaded LNCs were prepared and characterized. The mechanism of cytotoxic activity of PA was conducted using a molecular docking technique. The cell viabilities against A172 and ANGM-CSS cells were evaluated. The results revealed that the average particle size of the prepared LNCs ranged from 248.67 ± 12.42 to 1124.21 ± 12.77 nm, the polydispersity index was 0.418 ± 0.043-0.509 ± 0.064, while the zeta potential ranged from -36.91 ± 1.31 to -15.20 ± 0.96 mV. The molecular docking studies demonstrated that the drug had binding activity to human farnesyltransferase. Following exposure of the two glioblastoma cell lines to the PA-loaded nanoformulations, MTS assays were carried out, and the data showed a far lower half-maximal inhibitory concentration in both cell lines when compared to pure drug and non-medicated nanocarriers. These results indicate the potential in vitro antiproliferative activity of PA-loaded LNCs. Therefore, the prepared PA-loaded nanocarriers could be used to enhance drug delivery across the blood-brain barrier (BBB) in order to treat brain cancer, especially when formulated in a suitable dosage form. The size, surface charge, and lipid composition of the LNCs make them promising for drug delivery across the BBB. Detailed pharmacokinetic and pharmacodynamic assessments, including the evaluation of BBB penetration, are necessary to better understand the compound's distribution and effects within the brain.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (W.S.A.); (K.M.E.-S.)
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (W.S.A.); (K.M.E.-S.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (W.S.A.); (K.M.E.-S.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (F.A.A.); (R.M.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (F.A.A.); (R.M.A.)
| | - Reem M. Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (A.A.A.); (F.A.A.); (R.M.A.)
| | - Manal A. Alshabibi
- Healthy Aging Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.M.A.); (W.S.A.); (K.M.E.-S.)
| |
Collapse
|
3
|
Almehmady AM, El-Say KM, Mubarak MA, Alghamdi HA, Somali NA, Sirwi A, Algarni R, Ahmed TA. Enhancing the Antifungal Activity and Ophthalmic Transport of Fluconazole from PEGylated Polycaprolactone Loaded Nanoparticles. Polymers (Basel) 2022; 15:polym15010209. [PMID: 36616558 PMCID: PMC9823753 DOI: 10.3390/polym15010209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal eye infections are caused mainly by an eye injury and can result in serious eye damage. Fluconazole (FLZ), a broad-spectrum antifungal agent, is a poorly soluble drug with a risk of hepatotoxicity. This work aimed to investigate the antifungal activity, ocular irritation, and transport of FLZ-loaded poly (ε-caprolactone) nanoparticles using a rabbit eye model. Three formulation factors affecting the nanoparticle's size, zeta potential, and entrapment efficiency were optimized utilizing the Box-Behnken design. Morphological characteristics and antifungal activity of the optimized nanoparticles were studied. The optimized nanoparticles were loaded into thermosensitive in situ hydrogel and hydroxypropylmethylcellulose (HPMC) hydrogel ophthalmic formulations. The rheological behavior, in vitro release and in vivo corneal transport were investigated. Results revealed that the percentage of poly (ε-caprolactone) in the nanoparticle matrix, polymer addition rate, and mixing speed significantly affected the particle size, zeta potential, and entrapment efficiency. The optimized nanoparticles were spherical in shape and show an average size of 145 nm, a zeta potential of -28.23 mV, and a FLZ entrapment efficiency of 98.2%. The antifungal activity of FLZ-loaded nanoparticles was significantly higher than the pure drug. The developed ophthalmic formulations exhibited a pseudoplastic flow, prolonged the drug release and were found to be non-irritating to the cornea. The prepared FLZ pegylated nanoparticles were able to reach the posterior eye segment without eye irritation. As a result, the developed thermosensitive in situ hydrogel formulation loaded with FLZ polymeric nanoparticles is a promising drug delivery strategy for treating deep fungal eye infections.
Collapse
Affiliation(s)
- Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.A.); (T.A.A.); Tel.: +966-2-640-0000 (ext. 24057) (A.M.A.); +966-2-640-0000 (ext. 22250) (T.A.A.)
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A. Mubarak
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haneen A. Alghamdi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Njood A. Somali
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rahmah Algarni
- Pharmaceutical Care Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.A.); (T.A.A.); Tel.: +966-2-640-0000 (ext. 24057) (A.M.A.); +966-2-640-0000 (ext. 22250) (T.A.A.)
| |
Collapse
|
4
|
Gorajiya A, Lalwani A. Leveraging the Exploratory and Predictive Capabilities of Design of Experiments in Development of Intraarticular Injection of Imatinib Mesylate Containing Lipospheres. AAPS PharmSciTech 2022; 23:275. [PMID: 36207604 DOI: 10.1208/s12249-022-02431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
An intraarticular, liposphere-based, formulation of Imatinib mesylate for weekly administration was developed. Lipospheres were prepared using double emulsion technique using dierucoyl phosphatidylcholine, 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt), cholesterol, and tricaprylin as lipid phase in dichloromethane in a four-step process. Primary emulsion, formed using a high-pressure homogenizer, was diluted using a secondary aqueous phase in an Inline mixer to form the liposomal dispersion. Nitrogen flushing was done to remove dichloromethane, and the dispersion was finally centrifuged and adjusted for potency. The amount of cholesterol and triglyceride was taken as formulation variables, and speed of homogenization was used as a process variable in the Box-Behnken design while particle size, % drug entrapment, and drug release at the end of 4 h and 5 days were taken as response variables. Multivariate data analysis grouped the variables in two latent variable sets, one based on the speed and the other on the composition of lipospheres. Multiple linear regression analysis was used to generate mathematical model for each response. Constraints were put on the values of responses, as per the requirements of the final product, and the "freedom to operate" design space was located using an overlay plot. The center point batch sufficed all the set criteria, and Monte Carlo simulations on the factor variables indicated a defect rate of 5%. The center point batch was characterized for viscosity, osmolality, pH, drug release, and lipocrit value. The dispersion was charged in a prefilled syringe and studied for stability. The product was found to be stable at 2-8°C over a period of 6 months.
Collapse
Affiliation(s)
- Amruta Gorajiya
- R and D - Injectables, Amneal Pharmaceuticals, Ahmedabad, India
| | - Anita Lalwani
- K. B. Institute of Pharmaceutical Education and Research, Gh 6 Road, Sector 23, Gandhinagar, 382023, Gujarat, India.
| |
Collapse
|
5
|
Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7792180. [PMID: 35971450 PMCID: PMC9375701 DOI: 10.1155/2022/7792180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
Finasteride is considered the drug of choice for androgenic alopecia and benign prostate hyperplasia. The aim of the study was to formulate nanodrug carriers of finasteride with enhanced retentive properties in the skin. The finasteride was formulated as solid lipid nanoparticles that were decorated with different concentrations of chitosan for improved retentive properties. Solid lipid nanoparticles (SLNs) were synthesized by “high-speed homogenization technique” using stearic acid as a solid lipid while PEG-6000 and Tween-80 were used as surfactants. The SLNs were evaluated for particle size, polydispersity index (PDI), zeta potential, drug entrapment efficiency, and drug release behavior. The mean particle size of SLNs was in the range of 10.10 nm to 144.2 nm. The PDI ranged from 0.244 to 0.412 while zeta potential was in the range of 8.9 mV to 62.6 mV. The drug entrapment efficiency in chitosan undecorated formulations was 48.3% while an increase in drug entrapment was observed in chitosan-decorated formulations (51.1% to 62%). The in vitro drug release studies of SLNs showed an extended drug release for 24 hours after 4 hours of initial burst release. The extended drug release was observed in chitosan-coated SLNs in comparison with uncoated nanoparticles. The permeation and retention study revealed higher retention of drug in the skin and low permeation with chitosan-decorated SLNs that ranged from 39.4 μg/cm2 to 13.2 μg/cm2. TEM images depicted spherical shape of SLNs. The stability study confirmed stable formulations in temperature range of 5°C and 40°C for three months. It is concluded from this study that the SLNs of finasteride were successfully formulated and chitosan decoration enhanced the drug retention in the skin layers. Therefore, these formulations could be used in androgenic alopecia and benign prostate hyperplasia to avoid the side effects, drug degradation, and prolonged use of drug with conventional oral therapy.
Collapse
|
6
|
Ramkar S, Suresh PK. Finasteride-loaded nano-lipidic carriers for follicular drug delivery: preformulation screening and Box-Behnken experimental design for optimization of variables. Heliyon 2022; 8:e10175. [PMID: 36042733 PMCID: PMC9420366 DOI: 10.1016/j.heliyon.2022.e10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/18/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Finasteride (FIN), a 5-α reductase enzyme inhibitor is mainly used orally for the treatment of androgenic alopecia and benign prostate hyperplasia. The present study was undertaken for systematic optimization and assessment of the designed nanostructured lipid carriers (NLC) to enhance follicular delivery of FIN by topical administration. The NLCs were prepared by microemulsion method, by employing a 33 Box-Behnken design and subsequently confirmed by ANOVA analysis. Compritol ATO-888 and Fenugreek oil were selected as the solid lipid and liquid lipid respectively for the fabrication of NLCs. The formulations were characterized for particle size, zeta potential, entrapment efficiency, storage stability and in vitro drug release profile. Morphological profile of the NLCs nanocarriers was studied by transmission electron microscopy (TEM). The Fourier Transform Infrared Spectroscopy (FT-IR) spectrum and differential scanning calorimetry (DSC) thermogram demonstrated that FIN entrapment within NLCs was devoid of chemical interaction with the components. The prepared NLCs had satisfactory particle dimensions, zeta potential and entrapment efficiency. The numerical optimization process indicated the optimal NLC composition with 3 mg of SPC, 6 mg lipid and 5 mg of drug. NLCs loaded with FIN had acceptable particle size at 379.8 nm, zeta potential of −37.1 mV and an entrapment efficiency of 84%. Transmission electron microscopy indicated the spherical morphology. In vitro release profile indicated a fast initial release and subsequently a prolonged release of FIN from the carrier for 24 h. The release kinetics data displayed a Higuchi diffusion release model with the best match R2 value (0.848). Short-term stability tests conducted over 4 weeks at 6° and 25 °C demonstrated that the formulation could retain their initial properties during the test period.
Collapse
|
7
|
Ahmad A, Ahmad M, Minhas MU, Sarfraz M, Sohail M, Khan KU, Tanveer S, Ijaz S. Synthesis and Evaluation of Finasteride-Loaded HPMC-Based Nanogels for Transdermal Delivery: A Versatile Nanoscopic Platform. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2426960. [PMID: 35909483 PMCID: PMC9325624 DOI: 10.1155/2022/2426960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Herein, we report nanogels comprising diverse feed ratio of polymer hydroxypropyl methylcellulose (HPMC), monomer acrylic acid (AA), and cross-linker methylene bisacrylamide (MBA) fabricated for transdermal delivery of finasteride (FIN). Free radical solution polymerization method with subsequent condensation was employed for the synthesis using ammonium per sulfate (APS) and sodium hydrogen sulfite (SHS) as initiators. Carbopol-940 gel (CG) was formulated as assisting platform to deliver FIN nanogels transdermally. Developed formulations were evaluated by several in vitro, ex vivo, and in vivo parameters such as particle size and charge distribution analysis, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffractogram (XRD), rheological testing, in vitro swelling and drug release, and ex vivo skin permeation, irritation, and toxicity assessment. The results endorsed the nanogel formation (117.3 ± 29.113 nm), and the impact of synthesizing method was signified by high yield of nanogels (≈91%). Efficient response for in vitro swelling and FIN release was revealed at pH 5.5 and 7.4. Skin irritation and toxicity assessment ensured the biocompatibility of prepared nanocomposites. On the basis of the results obtained, it can be concluded that the developed nanogels were stable with excellent drug permeation profile across skin.
Collapse
Affiliation(s)
- Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mahmood Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy Al Ain University, Al Ain Campus, Al Ain, UAE
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060 KPK, Pakistan
| | | | - Sana Tanveer
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
8
|
Novel tip-loaded dissolving and implantable microneedle array patches for sustained release of finasteride. Int J Pharm 2021; 606:120885. [PMID: 34271153 DOI: 10.1016/j.ijpharm.2021.120885] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022]
Abstract
Finasteride (FND) is a competitive inhibitor of 5α-reductase, an enzyme involved in benign prostatic hyperplasia (BPH) and androgenic alopecia. FND is administered in oral, often lifelong treatments, increasing the pill burden of polymedicated patients. Microneedle array patches (MAPs) are minimally invasive devices that painlessly pierce the outermost layers of the skin, forming slowly-dissolving drug depots in the dermis, which can release drugs over weeks or months, making this platform an attractive, patient-friendly option for long-term treatments. This work describes the development of long-acting dissolving and implantable PLGA MAPs aimed for systemic release of FND for at least two weeks. Mechanically strong tip-loaded MAPs with pyramidal geometry were obtained using micromoulding methodology. In vitro studies revealed that the dissolving and implantable MAPs were able to release the drug for over 7 and 14 days, respectively. Skin deposition experiments in Franz cells demonstrated that after 24 h, dissolving and implantable MAPs were able to deposit 629.00 ± 214.54 μg and 1861.64 ± 383.30 μg of FND in the skin, respectively. On the other hand, transdermal permeation studies showed that both formulations produced a slow release of the drug to the receptor compartment of the Franz cells, with dissolving and implantable MAPs releasing 90.43 ± 6.20 μg and 27.80 ± 3.94 μg of FND after 24 h. The formulations described here could be an alternative to current oral treatments, having the potential to deliver the drug for extended periods, simplifying the treatment of BPH and androgenic alopecia.
Collapse
|
9
|
Amekyeh H, Billa N. Lyophilized Drug-Loaded Solid Lipid Nanoparticles Formulated with Beeswax and Theobroma Oil. Molecules 2021; 26:908. [PMID: 33572168 PMCID: PMC7914714 DOI: 10.3390/molecules26040908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) have the potential to enhance the systemic availability of an active pharmaceutical ingredient (API) or reduce its toxicity through uptake of the SLNs from the gastrointestinal tract or controlled release of the API, respectively. In both aspects, the responses of the lipid matrix to external challenges is crucial. Here, we evaluate the effects of lyophilization on key responses of 1:1 beeswax-theobroma oil matrix SLNs using three model drugs: amphotericin B (AMB), paracetamol (PAR), and sulfasalazine (SSZ). Fresh SLNs were stable with sizes ranging between 206.5-236.9 nm. Lyophilization and storage for 24 months (4-8 °C) caused a 1.6- and 1.5-fold increase in size, respectively, in all three SLNs. Zeta potential was >60 mV in fresh, stored, and lyophilized SLNs, indicating good colloidal stability. Drug release was not significantly affected by lyophilization up to 8 h. Drug release percentages at end time were 11.8 ± 0.4, 65.9 ± 0.04, and 31.4 ± 1.95% from fresh AMB-SLNs, PAR-SLNs, and SSZ-SLNs, respectively, and 11.4 ± 0.4, 76.04 ± 0.21, and 31.6 ± 0.33% from lyophilized SLNs, respectively. Thus, rate of release is dependent on API solubility (AMB < SSZ < PAR). Drug release from each matrix followed the Higuchi model and was not affected by lyophilization. The above SLNs show potential for use in delivering hydrophilic and lipophilic drugs.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, PMB 31, Ho, Ghana;
| | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Shah DS, Jha DK, Amin PD. Development, validation, and application of an RP-HPLC method for concurrent quantification of Minoxidil and Finasteride in a topical solution for hair regrowth. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 79:194-206. [PMID: 33091398 DOI: 10.1016/j.pharma.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
A topical solution comprising of Minoxidil (MXL) and Finasteride (FNS) for alopecia is formulated in the present work, which essentially contains a lipid-Lauroglycol FCC as a penetration enhancer. The objective of the proposed work was to develop a rapid, simple, and robust reverse phase high performance liquid chromatographic (RP-HPLC) method to determine MXL and FNS in the said formulation. Herein, the chromatographic conditions were optimized based on the theoretical principles of separation and physicochemical properties such as pKa and log P of both the Active Pharmaceutical Ingredients (APIs). The separation was accomplished on an Inertsil® ODS-3 C18 column (150mm×4.6mm; 5μm of particle size) at 25°C by using a mobile phase composed of 70:30 v/v ratio of Methanol and Milli-Q water along with 0.5% Triethylamine at pH 6.4 adjusted with Ortho Phosphoric Acid. Drug peaks showed a good resolution at 210nm. The retention times for MXL and FNS were found to be 2.40min and 6.39min, respectively. The developed method was found to be linear (R2≥0.998) in a concentration range of 5-100μg/mL for both the drugs. The method was validated according to the ICH guidelines Q2 (R1). The ability of the method to differentiate between the types formulations was demonstrated by the in vitro diffusion data performed using a highly sophisticated Strat-M® membrane. The cumulative amount of drug released (MXL and FNS) at the end of 24hours was maximum for the topical formulation containing lipids prepared using isopropyl alcohol and propylene glycol as the base.
Collapse
Affiliation(s)
- D S Shah
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, 400019 Matunga, India
| | - D K Jha
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, 400019 Matunga, India
| | - P D Amin
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, 400019 Matunga, India.
| |
Collapse
|
11
|
Katrajkar K, Thakkar S, Kshirsagar B, Sirsikar B, Polaka S, Misra M. Development and evaluation of crystalline inclusion complex of finasteride using electrospraying as a novel approach. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
El-Say KM, Ahmed TA, Ahmed OAA, Elimam H. Enhancing the Hypolipidemic Effect of Simvastatin in Poloxamer-Induced Hyperlipidemic Rats via Liquisolid Approach: Pharmacokinetic and Pharmacodynamic Evaluation. AAPS PharmSciTech 2020; 21:223. [PMID: 32749629 DOI: 10.1208/s12249-020-01754-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022] Open
Abstract
This study aimed to enhance the dissolution of simvastatin (SMV) through its formulation in liquisolid tablets (LSTs) to improve its bioavailability and hypolipidemic activity after oral administration. SMV-LSTs were optimized using Box-Behnken design to maximize the rate and extent of SMV dissolution. The optimized SMV-LST was evaluated for pharmacokinetic parameters and potential hypolipidemic activity on induced hyperlipidemic rats. The dissolution parameters revealed a shortening of mean dissolution time from 10.99 to 6.82 min, increasing of dissolution rate during the first 10 min from 1253.15 to 1667.31 μg/min, and enhancing of dissolution efficiency after 60 min from 71.92 to 86.93% for SMV-LSTs versus the commercial SMV tablets. The obtained data reflected an improvement in the relative bioavailability of SMV with 148.232% which was confirmed by the significant reduction of the levels of circulating total cholesterol, triglycerides that reached the normal level after 12 h. In particular, the optimized SMV-LSTs reduced serum low-density lipoproteins (LDL) by 44.6% which was significantly different from the commercial SMV tablets. In contrast, the level of serum high-density lipoprotein (HDL) was significantly augmented after 4 h in rats treated with the optimized SMV-LSTs by 47.6%. Finally, the optimized SMV-LSTs showed a significant lower atherosclerotic index value which could maximize its potential in decreasing the risk of coronary disease and atherosclerosis. Overall enhancement in pharmacokinetics and pharmacodynamics in comparison with the commercial tablets confers the potential of the liquisolid approach as a promising alternative for improved oral bioavailability, hypolipidemic, and cardioprotective effects of SMV. Graphical abstract.
Collapse
|
13
|
Ahmed TA, Bawazir AO, Alharbi WS, Safo MK. Enhancement of Simvastatin ex vivo Permeation from Mucoadhesive Buccal Films Loaded with Dual Drug Release Carriers. Int J Nanomedicine 2020; 15:4001-4020. [PMID: 32606661 PMCID: PMC7294046 DOI: 10.2147/ijn.s256925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Simvastatin (SMV), a hypocholesterolemic agent, suffers from very low bioavailability due to its poor aqueous solubility and extensive first-pass metabolism. METHODS Two SMV carrier systems, namely, polymeric drug inclusion complex (IC) and mixed micelles (MM) nanoparticles, were developed and loaded into mucoadhesive buccal films to enhance SMV bioavailability. The two carrier systems were characterized and their permeation across human oral epithelial cells (OEC) was studied. The effect of IC to MM ratio (X1) and the mucoadhesive polymer concentration (X2) on the cumulative percent of drug released, elongation percent and the mucoadhesive strength, from the prepared mucoadhesive films, were optimized. Ex vivo permeation across bovine mucosal tissue was investigated. The permeation parameters for the in vitro and ex vivo release data were calculated. RESULTS Complexation of SMV with hydroxypropyl beta-cyclodextrin (HP β-CD) was superior to all other polymers as revealed by the equilibrium saturation solubility, stability constant, complexation efficiency and thermodynamic potential. SMV-HP β-CD IC was utilized to develop a saturated polymeric drug solution. Both carrier systems showed enhanced permeation across OEC when compared to pure drug. X1 and X2 were significantly affecting the characteristics of the prepared films. The optimized mucoadhesive buccal film formulation loaded with SMV IC and drug MM nanoparticles demonstrated superior ex vivo permeation when compared to the corresponding pure drug buccal film, and the calculated permeation parameters confirmed this finding. CONCLUSION Mucoadhesive buccal films containing SMV IC and drug MM can be used to improve drug bioavailability; however, additional pharmacokinetic and pharmacodynamic studies are required.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa O Bawazir
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Martin K Safo
- Department of Medicinal Chemistry and the Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA23298, USA
| |
Collapse
|
14
|
Pervaiz F, Saleem M, Ashames A, Rehmani S, Qaiser R, Noreen S, Murtaza G. Development and ex-vivo skin permeation studies of finasteride–poly(lactic acid-co-glycolic acid) and minoxidil–chitosan nanoparticulate systems. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520913906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to improve the permeability of two drugs (finasteride and minoxidil) through the skin. Finasteride-loaded poly(lactic acid- co-glycolic acid) and minoxidil-loaded chitosan nanoparticles were prepared by nanoprecipitation and ionic gelation method, respectively, and subsequently incorporated into semisolid Carbopol 940 gel. These fabricated nanoparticles were characterized for their pharmaceutical and chemical behavior. Nanoparticles were found a nearly spherical shape in the scanning electron microscopic studies and exhibited particle size in a range of 211–1012 nm. Finasteride- and minoxidil-loaded nanoparticles were optimized for relatively higher entrapment efficiency of 98% and 95%, respectively, by using the optimal concentration of polymers and stabilizers. All formulations were clear with smooth homogeneous texture and having pH values compatible with that of skin. This nanoparticulate system suspended in gel prolonged the release of drugs for up to 24 h and enhanced the drug permeability through the skin and retention of drug-loaded nanoparticles within the hair follicular routes. Therefore, these nanoparticles incorporated in the gel were found as a promising candidate for topical application in the treatment of alopecia by reducing the dosing frequency and adverse effects and as an effective strategy for improving the patient compliance toward therapy.
Collapse
Affiliation(s)
- Fahad Pervaiz
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Madiha Saleem
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Akram Ashames
- College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | | | - Rubina Qaiser
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sobia Noreen
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
15
|
Na YG, Pham TMA, Byeon JJ, Kim MK, Han MG, Baek JS, Lee HK, Cho CW. Development and evaluation of TPGS/PVA-based nanosuspension for enhancing dissolution and oral bioavailability of ticagrelor. Int J Pharm 2020; 581:119287. [PMID: 32243963 DOI: 10.1016/j.ijpharm.2020.119287] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/28/2022]
Abstract
In this study, we developed ticagrelor-dispersed nanosuspension (TCG-NSP) to enhance the dissolution and oral bioavailability of ticagrelor (TCG) through a statistical design approach. TCG, a reversible P2Y12 receptor antagonist, is classified as a biopharmaceutics classification system (BCS) class IV drug with low solubility and permeability, resulting in low oral bioavailability. Nanosuspension (NSP) is an efficient pharmaceutical technique for overcoming the disadvantages. First, we optimized TCG-NSP consisting of D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) and polyvinyl alcohol (PVA), which exhibited homogeneously dispersed TCG particle (233 nm) and low precipitation (3%). Characterization studies demonstrated that TCG-NSP provided amorphous TCG particles and supersaturation effect, resulting in higher dissolution than a commercial product. In addition, everted gut sac and pharmacokinetic studies confirmed that TCG-NSP improved the gastrointestinal permeation of TCG by 2.8-fold compared to commercial product, thereby enhancing the oral bioavailability (2.2-fold). These results suggested that TCG-NSP could be successfully used as an efficient pharmaceutical formulation to achieve the enhanced dissolution and oral bioavailability of TCG.
Collapse
Affiliation(s)
- Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Thi Mai Anh Pham
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jin-Ju Byeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Ki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Gu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong-Suep Baek
- Department of Herbal Medicine Resource, Kangwon National University, 346 Hwangjo-gil, Dogye-eup, Samcheok-si, Gangwon-do 25949, Republic of Korea
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
16
|
Luo Q, Wu M, Sun Y, Lv J, Zhang Y, Cao H, Wu D, Lin D, Zhang Q, Liu Y, Qin W, Chen H. Optimizing the Extraction and Encapsulation of Mucilage from Brasenia Schreberi. Polymers (Basel) 2019; 11:E822. [PMID: 31067742 PMCID: PMC6571674 DOI: 10.3390/polym11050822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022] Open
Abstract
The mucilage from Brasenia schreberi (BS) exhibits various biological activities, including antialgal, antibacterial, soluble-fiber properties, and excellent lubricating behavior. Thus, the extraction and wide use of mucilage in the food industry are crucial. In this study, the high-speed shear-assisted extraction of mucilage from BS was optimized by using response surface methodology (RSM). The optimal extraction conditions were as follows: Extraction temperature of 82 °C, extraction time of 113 min, liquid-solid ratio of 47 mL/g, and shear speed of 10,000 rpm. Under these conditions, the actual yield of BS mucilage was 71.67%, which highly matched the yield (73.44%) predicted by the regression model. Then, the BS mucilage extract was powdered to prepare the capsule, and the excipients of the capsule were screened using a single-factor test to improve the disintegration property and flowability. The final capsule formulation, which consisted of: 39% BS mucilage powder (60 meshes); 50% microcrystalline cellulose (60 meshes) as the filler; both 10% sodium starch glycolate and PVPP XL-10 (3:1, 60 meshes) as the disintegrant; both 1% colloidal silicon dioxide and sodium stearyl fumarate (1:1, 100 meshes) as the glidant by weight; were used for preparing the weights of a 320 mg/grain of capsule with 154.7 ± 0.95 mg/g polysaccharide content. Overall, the optimized extraction process had a high extraction rate for BS mucilage and the capsule formulation was designed reasonably.
Collapse
Affiliation(s)
- Qingying Luo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Min Wu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Yanan Sun
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Junxia Lv
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Yu Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Hongfu Cao
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
17
|
Abstract
Alopecia is the partial or total reduction of hair in a specific area of the skin that affects millions of men and women worldwide. Most common approved treatments present inconvenient therapeutic regimes and serious adverse effects. In this scenario, nanoencapsulation has emerged as a relatively simple technology for improving the therapeutic outcome of this pathology, promoting a targeted drug delivery with enhanced local bioavailability, which could reduce the adverse effects. Herein, we present some recent studies involving the nanosystems developed for the pharmacological treatment of alopecia, highlighting how each system represents an improvement in relation to conventional drug products and the future perspectives of these new technologies in reaching the market.
Collapse
|
18
|
Ahmed TA. Formulation and clinical investigation of optimized vinpocetine lyoplant-tabs: new strategy in development of buccal solid dosage form. Drug Des Devel Ther 2018; 13:205-220. [PMID: 30643387 PMCID: PMC6312694 DOI: 10.2147/dddt.s189105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND This work aimed to develop a new solid dosage formulation of vinpocetine (VPN) in the form of buccal freeze-dried pullulan-based tablets (lyoplant-tabs) loaded with physically modified drug binary system. METHODS Different polyvinyl pyrrolidone (PVP) grades were studied to prepare an efficient VPN binary system characterized by enhanced equilibrium saturation solubility, solubilization efficiency, thermodynamic stability, and permeation through oral mucosal cell lines. The concentrations of pullulan and swelling-aid polymer that affect the quality attributes of lyoplant-tabs were optimized. Clinical pharmacokinetics study on human volunteers for the optimized lyoplant-tabs compared to marketed product was accomplished. RESULTS A promising drug binary system with polyvinyl pyrrolidone vinyl acetate (PVP-VA64) utilizing the lyophilization technique was developed. Solid-state characterization confirmed transformation of VPN completely into the amorphous form. The concentrations of pullulan and swelling-aid polymer were significantly affecting the characteristics of the tablets. Compared to the commercial VPN tablets, pullulan-based buccal tablets demonstrated enhancement in the studied pharmacokinetic parameters with positive impact on the drug bioavailability. CONCLUSION These VPN lyoplant-tabs containing lyophilized PVP-VA64-VPN binary system can be considered as an alternative to currently available marketed tablets; however, further preclinical investigations using large number of volunteers are required.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt,
| |
Collapse
|
19
|
Ahmed TA, Al-Abd AM. Effect of finasteride particle size reduction on its pharmacokinetic, tissue distribution and cellular permeation. Drug Deliv 2018; 25:555-563. [PMID: 29451038 PMCID: PMC6058569 DOI: 10.1080/10717544.2018.1440446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Finasteride (FSD), a specific competitive inhibitor of the steroid type-II 5α-reductase enzyme, is used in treatment of benign prostate hyperplasia (BPH) and male pattern baldness. The drug is of limited solubility that affect its dissolution and bioavailability. The aim was to study the effect of FSD particle size reduction on the pharmacokinetic, tissue distribution and cellular permeation. An optimized drug micro- and nano-particles were developed, characterized, administered to group of rats, and systemic pharmacokinetic and tissue distribution within target and not-target organs were determined using near-infrared (NIR) spectroscopy technique. Moreover, the cellular permeation of the prepared formulations through normal prostate epithelial cells was assessed and compared to pure FSD. The developed micro- and nano-particles were of 930 and 645 nm, respectively. Plasma maximum drug levels (Cmax) and overall exposure (AUC) of both formulations were not significantly higher than unformulated drug. However, micronized FSD achieved significant higher concentration within the target tissue (prostate) within the current study compared to pure drug and nano-sized formulation as well. Yet, this is explained by the higher sequestration ability of spleen tissue to the nano-sized formula compared to micro-sized FSD. At the cellular level, permeation of nano-sized FSD through prostate epithelial cells was superior to the unformulated FSD as well as the micro-sized drug formulation. FSD particle size reduction significantly influences its cellular permeation and to a lesser extend affect its systemic pharmacokinetics and tissue distribution after oral administration.
Collapse
Affiliation(s)
- Tarek A Ahmed
- a Department of Pharmaceutics , King Abdulaziz University , Jeddah , Kingdom of Saudi Arabia.,b Department of Pharmaceutics and Industrial Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Ahmed M Al-Abd
- c Department of Pharmacology , King Abdulaziz University , Jeddah , Kingdom of Saudi Arabia.,d Department of Pharmacology, Medical Division , National Research Centre , Giza , Egypt
| |
Collapse
|
20
|
Ahmed TA, El-Say KM, Hosny KM, Aljaeid BM. Development of optimized self-nanoemulsifying lyophilized tablets (SNELTs) to improve finasteride clinical pharmacokinetic behavior. Drug Dev Ind Pharm 2017; 44:652-661. [PMID: 29139305 DOI: 10.1080/03639045.2017.1405977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Preparation of an optimized finasteride (FSD) lyophilized tablets loaded with self-nanoemulsifying drug delivery system (SNEDDS). SIGNIFICANCE Enhance FSD bioavailability in male pattern baldness and benign prostatic hyperplasia. METHODS Two-step optimization was implemented to achieve the study goals. First; the mixture design was used to develop an optimized SNEDDS through which the effect of cosurfactant number of carbon atoms on SNEDDS particle size and thermodynamic stability has been tested. Second; the different tablet excipients have been used to develop an optimized self-nanoemulsifying lyophilized tablets (SNELTs). The prepared tablets have been fully characterized. Interaction among tablet components has been studied. Finally, FSD clinical pharmacokinetic has been investigated on human volunteers. RESULTS Anise oil and tween 80 were selected as oily phase and surfactant, respectively while different aliphatic alcohols were studied as cosurfactants. Percentages of oil, surfactant, and cosurfactants were significantly affecting SNEDDS particle size. Increasing cosurfactant number of carbon atoms achieved smaller particle size and higher stability. The optimized SNEDDS was found to contain 10.3455, 45.8972, and 43.7573% of anise oil, tween 80, and butanol, respectively. Variations in FSD cumulative release and disintegration time, from the prepared tablets, were attributed to change in the percent of plasdone XL, Avicel and silica. No interaction among components was noticed. Clinical pharmacokinetics illustrated significant enhancement in the studied parameters from the optimized lyophilized tablets loaded with drug SNEDDS when compared to marketed FSD product. CONCLUSION Lyophilized tablets could be considered as a good alternative for conventional solid dosage forms especially when loaded with drug nanosystems.
Collapse
Affiliation(s)
- Tarek A Ahmed
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Khalid M El-Say
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Khaled M Hosny
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Bader M Aljaeid
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
21
|
Ahmed TA, Suhail MAA, Hosny KM, Abd-Allah FI. Clinical pharmacokinetic study for the effect of glimepiride matrix tablets developed by quality by design concept. Drug Dev Ind Pharm 2017; 44:66-81. [DOI: 10.1080/03639045.2017.1371740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammad A. A. Suhail
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Fathy I. Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Ahmed TA, Aljaeid BM. A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int J Nanomedicine 2017; 12:1863-1875. [PMID: 28331311 PMCID: PMC5352245 DOI: 10.2147/ijn.s131850] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oral ketoconazole therapy is commonly associated with serious hepatotoxicity. Improving ocular drug delivery could be sufficient to treat eye fungal infections. The purpose of this study was to develop optimized ketoconazole poly(lactide-co-glycolide) nanoparticles (NPs) with subsequent loading into in situ gel (ISG) formulation for ophthalmic drug delivery. Three formulation factors were optimized for their effect on particle size (Y1) and entrapment efficiency (Y2) utilizing central composite experimental design. Interaction among components was studied using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Ketoconazole crystalline state was studied using X-ray powder diffraction. Six different polymeric ISG formulations were prepared and loaded with either optimized NPs or a pure drug. The prepared ISG formulations were characterized for in vitro gelation, drug release and antifungal activity. The permeation through human epithelial cell line was also investigated. The results revealed that all the studied formulation parameters significantly affected Y1 and Y2 of the developed NPs. DSC and FTIR studies illustrated compatibility among NP components, while there was a change from the crystalline state to the amorphous state of the NPs. The in vitro release from the ISG formulations loaded with drug NPs showed sustained and enhanced drug release compared to pure drug formulations. In addition, ISG loaded with NPs showed enhanced anti-fungal activity compared to pure drug formulations. Alginate–chitosan ISG formulation loaded with optimized ketoconazole NPs illustrated higher drug permeation through epithelial cell lines and is considered as an effective ophthalmic drug delivery in the treatment of fungal eye infections.
Collapse
Affiliation(s)
- Tarek Abdelnapy Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bader M Aljaeid
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Ni S, Qiu L, Zhang G, Zhou H, Han Y. Lymph cancer chemotherapy: delivery of doxorubicin-gemcitabine prodrug and vincristine by nanostructured lipid carriers. Int J Nanomedicine 2017; 12:1565-1576. [PMID: 28280326 PMCID: PMC5338998 DOI: 10.2147/ijn.s120685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Radiation and chemotherapy are the most common course of treatment for B-cell lymphoma. Doxorubicin (DOX), gemcitabine (GEM), and vincristine (VCR) are the commonly used antilymphoma chemotherapeutic drugs. The aim of this study is to construct a novel drug delivery system for the combination delivery of the three drugs on lymphoma. MATERIALS AND METHODS DOX-GEM prodrug was synthesized. Novel nanostructured lipid carriers (NLCs) containing DOX-GEM prodrug and VCR were prepared and used to treat B-cell lymphoma through in vivo treatment to a lymph cancer animal model. The systemic toxicity of the nanomedicine was also evaluated during the treatment. RESULTS DOX-GEM prodrug and VCR-loaded NLCs (DOX-GEM VCR NLCs) exhibited the highest antitumor effect in B-cell lymphoma cells and lymphoma animal xenografts when compared with the single drug-loaded NLCs and the drug solutions. CONCLUSION It could be concluded that the highest antitumor effect can be achieved by the system due to the stable drug-loading capacity, attractive anticancer therapeutic effects, and reduced toxicities in human Burkitt's lymphoma cell line and mice-bearing cancer model. The resulting DOX-GEM VCR NLCs could be an efficient antilymph cancer agent and could be developed further for the treatment of other tumors.
Collapse
Affiliation(s)
- Shuqin Ni
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Lei Qiu
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Guodong Zhang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Haiyan Zhou
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| | - Yong Han
- Department of Internal Medicine Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Ji'nan, Shandong, People's Republic of China
| |
Collapse
|
24
|
Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf B Biointerfaces 2016; 147:475-491. [DOI: 10.1016/j.colsurfb.2016.08.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
|
25
|
Ahmed TA, El-Say KM. Transdermal film-loaded finasteride microplates to enhance drug skin permeation: Two-step optimization study. Eur J Pharm Sci 2016; 88:246-56. [DOI: 10.1016/j.ejps.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
|