1
|
Alkhathami AG, Pallathadka H, Shah S, Ganesan S, Sharma A, Devi S, Mustafa YF, Alasheqi MQ, Kadhim AJ, Zwamel AH. Mechanisms behind the LncRNAs-mediated regulation of paclitaxel (PTX) resistance in human malignancies. Exp Cell Res 2025; 445:114434. [PMID: 39921031 DOI: 10.1016/j.yexcr.2025.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Paclitaxel (PTX) is extensively used to treat various cancers, including those of the breast, ovary, lung, esophagus, stomach, pancreas, and neck. However, despite its effectiveness in clinical settings, patients often experience cancer recurrence due to the emergence of resistance to PTX. The mechanisms underlying this resistance in cancer cells exposed to PTX involve modifications in β-tubulin, the primary target molecule associated with mitosis, the activation of pathways that facilitate drug efflux, and the dysregulation of apoptosis-related proteins. Long non-coding RNAs (lncRNAs), which are RNA molecules exceeding 200 nucleotides in length and lacking protein-coding capabilities, play various regulatory roles in cellular functions. A growing body of evidence underscores the role of lncRNAs in cancer progression and their involvement in PTX resistance across different cancer types. As a result, lncRNAs have been identified as promising therapeutic targets for overcoming drug resistance in cancer therapies. This review aims to provide an overview of the current knowledge regarding lncRNAs and their contributions to resistance mechanisms to promote further research in this field. A summary of key lncRNAs and their related pathways associated with PTX resistance will be presented.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | | | - Sejal Shah
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Abhishek Sharma
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | | | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Yuan Q, Chen Y, Zhang D, Yang S, Yang M, Zhu X, Guan C. Characteristics of wild hazelnut populations in Northeast China and selection of superior provenances. PLoS One 2024; 19:e0313954. [PMID: 39625918 PMCID: PMC11614255 DOI: 10.1371/journal.pone.0313954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024] Open
Abstract
China possesses a copious and geographically diverse reservoir of hazel (Corylus spp.) resources, albeit scholarly endeavors focusing on the selection and domestication of indigenous wild hazelnut strains remain scant. To develop and utilize high-quality wild hazelnut resources, this study selected eight populations of wild hazelnuts from seven different provenances in Heilongjiang Province, China. Natural hybrid seeds of eight populations were sown in the Chohai Forest Farm in Longjiang County, Heilongjiang Province, in 2018. In April 2020, two-year-old seedlings were used to establish a provenance trial forest, thereby initiating the provenance trial. Growth parameters were measured using electronic calipers, and pollen characteristics were observed under an electron microscope. The trials meticulously explored the trees' flowering biology, growth parameters, and the economic attributes of the produced nuts. Principal component analysis was employed to comprehensively assess differences among the wild hazelnut populations from various provenances, aiming to identify superior wild hazelnut provenances. The results unveiled significant geographical variations among the tested provenances across several facets: the flowering period of male blossoms extended from April 2nd to April 19th, while female flowering occurred within the timeframe of April 2nd to April 22nd. Moreover, pollen grain morphology demonstrated variability, with the polar axis ranging from 14.02 to 17.09 micrometers, the equatorial axis spanning 16.02 to 18.75 micrometers, and the ratio of polar to equatorial axes fluctuating between 0.88 and 0.92. Through correlation analyses, nut length emerged as a pivotal determinant significantly influencing both kernel weight and the hundred-grain weight. A principal component analysis (PCA) further consolidated these findings, selecting the Nehe-originated variegated Corylus heterophylla as the superior provenance based on a comprehensive evaluation of its combined traits. This study constitutes a seminal contribution to the hazelnut breeding endeavor in China, establishing a robust foundation for informed cultivation strategies geared towards optimizing both the yield and the quality of hazelnut resources, thereby advancing the understanding and exploitation of China's wild hazelnut biodiversity.
Collapse
Affiliation(s)
- Qiwen Yuan
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Yang Chen
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Dongyang Zhang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Siyu Yang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Minghui Yang
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Xuesong Zhu
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Chunyu Guan
- College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
3
|
Binkhathlan Z, Ali R, Yusuf O, Alomrani AH, Badran MM, Alshememry AK, Alshamsan A, Alqahtani F, Qamar W, Attwa MW. Polycaprolactone-Vitamin E TPGS Micellar Formulation for Oral Delivery of Paclitaxel. Polymers (Basel) 2024; 16:2232. [PMID: 39125257 PMCID: PMC11314731 DOI: 10.3390/polym16152232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to investigate the potential of polycaprolactone-vitamin E TPGS (PCL-TPGS) micelles as a delivery system for oral administration of paclitaxel (PTX). The PCL-TPGS copolymer was synthesized using ring opening polymerization, and PTX-loaded PCL-TPGS micelles (PTX micelles) were prepared via a co-solvent evaporation method. Characterization of these micelles included measurements of size, polydispersity, and encapsulation efficiency. The cellular uptake of PTX micelles was evaluated in Caco-2 cells using rhodamine 123 (Rh123) as a fluorescent probe. Moreover, an everted rat sac study was conducted to evaluate the ex vivo permeability of PTX micelles. Additionally, a comparative pharmacokinetic study of PTX micelles versus the marketed formulation, Ebetaxel® (a Taxol generic), was performed after a single oral administration to rats. The results demonstrated that the micellar formulation significantly improved PTX solubility (nearly 1 mg/mL). The in vitro stability and release of PTX micelles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that PTX micelles remained stable for up to 24 h and significantly slowed the release of PTX in both media compared to Ebetaxel®. The in vitro cellular uptake, ex vivo intestinal permeability, and in vivo pharmacokinetic profile demonstrated that PTX micelles enhanced the permeability and facilitated a rapid absorption of the drug. Conclusively, the PCL7000-TPGS3500 micelles exhibit potential as an effective oral delivery system for PTX.
Collapse
Affiliation(s)
- Ziyad Binkhathlan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osman Yusuf
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Neelain University, Khartoum 11121, Sudan
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.); (O.Y.); (A.H.A.); (M.M.B.); (A.K.A.); (A.A.)
- Nanobiotechnology Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (W.Q.)
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.); (W.Q.)
| | - Mohamed W. Attwa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
Kaweesa EN, Bazioli JM, Pierre HC, Lantvit DD, Kulp SK, Hill KL, Phelps MA, Coss CC, Fuchs JR, Pearce CJ, Oberlies NH, Burdette JE. Exploration of Verticillins in High-Grade Serous Ovarian Cancer and Evaluation of Multiple Formulations in Preclinical In Vitro and In Vivo Models. Mol Pharm 2023; 20:3049-3059. [PMID: 37155928 PMCID: PMC10405366 DOI: 10.1021/acs.molpharmaceut.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.
Collapse
Affiliation(s)
- Elizabeth N Kaweesa
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jaqueline M Bazioli
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kasey L Hill
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mitch A Phelps
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Christopher C Coss
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Ng MJ, Kong BH, Teoh KH, Yap YHY, Ng ST, Tan CS, Mohamad Razif MF, Fung SY. In vivo anti-tumor activity of Lignosus rhinocerus TM02® using a MCF7-xenograft NCr nude mice model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:115957. [PMID: 36509254 DOI: 10.1016/j.jep.2022.115957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lignosus rhinocerus (Cooke) Ryvarden (also known as Tiger Milk mushroom, TMM), is a basidiomycete belonging to the Polyporaceae family. It has been documented to be used by traditional Chinese physicians and indigenous people in Southeast Asia to treat a variety of illnesses, such as gastritis, arthritis, and respiratory conditions, as well as to restore patients' physical well-being. TMM has also been used in folk medicine to treat cancer. For example, people from the indigenous Kensiu tribe of northeast Kedah (Malaysia) apply shredded TMM sclerotium mixed with water directly onto breast skin to treat breast cancer, while Chinese practitioners from Hong Kong, China prescribe TMM sclerotium as a treatment for liver cancer. L. rhinocerus has previously been demonstrated to possess selective anti-proliferative properties in vitro, however pre-clinical in vivo research has not yet been conducted. AIM OF STUDY This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells. MATERIALS AND METHODS The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW. RESULTS Our results revealed that intraperitoneal TRF-injection (90 μg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 μg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization. CONCLUSION Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.
Collapse
Affiliation(s)
- Min Jia Ng
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Boon Hong Kong
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kean Hooi Teoh
- Department of Pathology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Laboratory, Sunway Medical Center, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Yeannie Hui-Yeng Yap
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia
| | - Szu Ting Ng
- LiGNO Biotech Sdn. Bhd, 43300, Balakong Jaya, Selangor, Malaysia
| | - Chon Seng Tan
- LiGNO Biotech Sdn. Bhd, 43300, Balakong Jaya, Selangor, Malaysia
| | - Muhammad Fazril Mohamad Razif
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Shin Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Lodhi N, Nagpal P, Sarojini S, Keck M, Chiu YM, Parvez Z, Adrianzen L, Suh KS. Synergetic effect of high dose rate radiations (10× FFF/2400 MU/min/10 MV x-rays) and paclitaxel selectively eliminates melanoma cells. Cancer Rep (Hoboken) 2023; 6:e1733. [PMID: 36241419 PMCID: PMC9940010 DOI: 10.1002/cnr2.1733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive cancers, with 1.6% of total cancer deaths in the United States. In recent years treatment options for metastatic melanoma have been improved by the FDA approval of new therapeutic agents. However, these inhibitors-based therapies are non-specific and have severe toxicities, including hyperkeratosis, photosensitivity, hepatitis, arthralgia, and fatigue. AIMS The aim of this study is to determine the synthetic lethal effect (paclitaxel and radiations) on melanoma cells and reduce the total radiation doses by increasing the dose rates up to 2400 MU/min. METHODS AND RESULTS We previously reported a radiation treatment (10 MV x-rays, 10X-FFF, dose rate 2400MU/min, low total dose 0.5 Gy) that kills melanoma cells with 80% survival of normal HEM in vitro. In this study, we extended the radiation cycle up to four and included paclitaxel treatment to study the synthetic lethal effect on melanoma and two other normal primary cells, HDF and HEK. Cells were treated with paclitaxel prior to the radiation at a dose rate of 400 and 2400 MU/min with a total radiation dose of only 0.5 Gy. Mitochondrial respiration assay, DNA damage assay, and colony formation assays were performed to study apoptosis and cell death induction. Four days of consequent radiation treatment with paclitaxel significantly reduces the survival of melanoma cells by inducing apoptosis and mitochondrial damage. After treatment, excessive DNA damage in melanoma cells leads to an increase in the expression of pro-apoptotic genes (Caspase-3) and a decrease in the expression of DNA repair gene (PARP1) and anti-apoptotic gene (Bcl-2) to activate the apoptosis pathway. The combination of paclitaxel and radiation reduces the survival of melanoma cells colonies compared to radiation alone. CONCLUSION Our study indicates that radiations with paclitaxel have a potential synthetic lethal effect on melanoma cells and can be developed as a melanoma therapy without toxicities or harmful effects on normal primary skin cells.
Collapse
Affiliation(s)
- Niraj Lodhi
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Poonam Nagpal
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
- College of Natural, Applied, and Health SciencesKean UniversityUnionNew JerseyUSA
| | - Sreeja Sarojini
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Michaela Keck
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Yuk Ming Chiu
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Zeenath Parvez
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Laura Adrianzen
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - K. Stephen Suh
- The Genomics and Biomarkers ProgramHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
- DiagnoCineHackensackNew JerseyUSA
| |
Collapse
|
7
|
Mysona D, Dorr K, Ward A, Shaver E, Rungruang B, Ghamande S. Pharmacogenetics as a predictor chemotherapy induced peripheral neuropathy in gynecologic cancer patients treated with Taxane-based chemotherapy. Gynecol Oncol 2023; 168:114-118. [PMID: 36434945 DOI: 10.1016/j.ygyno.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study investigated whether there are pharmacogenomic markers predictive of chemotherapy induced peripheral neuropathy (CIPN) as a result of taxane-based chemotherapy. METHODS Patients were enrolled from August 2020 to November 2020 in a prospective, case-control trial evaluating pharmacogenetic predictors of CIPN. All women were treated with at least 3 cycles of taxane-based chemotherapy for histologically confirmed gynecologic malignancies. Buccal saliva samples were used to test for 32 drug metabolism variations. All testing was performed by ⍺LPHA-GENOMIX laboratories. Fisher's Exact test was used to assess for event differences of categorical variables. RESULTS Of 102 enrolled patients, 58%, 28%, and 14% had ovarian, endometrial, or cervical cancers, respectively. The median age was 67, 72% were Caucasian and 25% were African American. 16% of patients were treated with 3-4 cycles, 57% received 5-7 cycles, and 27% received 8 or more cycles of chemotherapy that included paclitaxel. Grade 2 CIPN was experienced by 51 patients. There was no difference in age, race, disease site, or number of chemotherapy cycles (p > 0.05) between those who did or did not develop CIPN. CYP2D6 genotype (p = 0.009) and CYP3A5 genotype (p = 0.023) had different frequencies among those with and without CIPN. Patients classified as having poor or intermediate function of CYP2D6 had increased risk of CIPN (OR 1.63, 95% CI 1.04-2.57, p = 0.026). There was no difference in CYP2D6 phenotype by race (p = 0.29). No patients with normal function of CYP3A5 developed CIPN. There were no Caucasians with normal function of CYP3A5, but 28% of African Americans had normal CYP3A5 function (p < 0.001). CONCLUSIONS Pharmacogenomics appear associated with the development of CIPN and may be able to help personalize treatment decision making.
Collapse
Affiliation(s)
- David Mysona
- The Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA; Center for Biotechnology and Genomic Medicine at Augusta University, Augusta, GA 30912, USA
| | - Katherine Dorr
- The Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| | - Alex Ward
- The Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| | - Ellen Shaver
- Consultative Genomix, Peachtree Corners, GA 30092, USA
| | - Bunja Rungruang
- The Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA; Augusta University Medical Center, Department of Obstetrics & Gynecology, Augusta, GA 30912, USA
| | - Sharad Ghamande
- The Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA; Augusta University Medical Center, Department of Obstetrics & Gynecology, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Zhou W, Deng Y, Zhang C, Liu Z, Zhang J, Zhou L, Shao L, Zhang C. Current status of therapeutic drug monitoring for methotrexate, imatinib, paclitaxel in China. Clin Biochem 2022; 104:44-50. [PMID: 35331753 DOI: 10.1016/j.clinbiochem.2022.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accurate TDMs of plasma methotrexate, imatinib and paclitaxel assist in the development of optimal therapeutic regimes. This study aims to investigate the current status of methotrexate, imatinib and paclitaxel measurements in China and explore the suitable EQA materials for those drugs. METHODS 4 processed plasma samples including 2 levels of frozen pooled plasma samples and 2 levels of lyophilized pooled plasma samples were measured in different laboratories using different measurement systems. The inter-laboratory %CV and intra-measurement-system %CV of laboratories were calculated to assess the status of methotrexate, imatinib and paclitaxel measurements. The short-term stability and homogeneity of those processed samples were studied and compared. The relative differences (%) between the results of those two kinds of processed samples were also calculated to determine whether there were significant differences in their matrix effects for various measurement systems. RESULTS The mean inter-laboratory %CVs ranged from 12.8% to 15.3%, 14.7% to 19.6% and 56.8% to 81.6% for methotrexate, imatinib and paclitaxel, respectively. The intra-measurement %CV of homogeneous commercial measurement systems was better than other measurement systems. The lyophilized samples were more stable than frozen samples and there were no obvious differences in their matrix effects for most measurement systems. CONCLUSIONS The agreement among the results of methotrexate, imatinib, and especially paclitaxel from different laboratories was not satisfactory. Currently, the lyophilized samples were the more suitable EQA material for methotrexate, imatinib and paclitaxel than frozen samples.
Collapse
Affiliation(s)
- Weiyan Zhou
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Yuhang Deng
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Chao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zhenni Liu
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Li Zhou
- Beijing Health Bio Technology Co., Ltd, PR China
| | - Lijun Shao
- Beijing Health Bio Technology Co., Ltd, PR China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
9
|
Nash A, Aghlara-Fotovat S, Hernandez A, Scull C, Veiseh O. Clinical translation of immunomodulatory therapeutics. Adv Drug Deliv Rev 2021; 176:113896. [PMID: 34324885 PMCID: PMC8567306 DOI: 10.1016/j.addr.2021.113896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Immunomodulatory therapeutics represent a unique class of drug products that have tremendous potential to rebalance malfunctioning immune systems and are quickly becoming one of the fastest-growing areas in the pharmaceutical industry. For these drugs to become mainstream medicines, they must provide greater therapeutic benefit than the currently used treatments without causing severe toxicities. Immunomodulators, cell-based therapies, antibodies, and viral therapies have all achieved varying amounts of success in the treatment of cancers and/or autoimmune diseases. However, many challenges related to precision dosing, off-target effects, and manufacturing hurdles will need to be addressed before we see widespread adoption of these therapies in the clinic. This review provides a perspective on the progress of immunostimulatory and immunosuppressive therapies to date and discusses the opportunities and challenges for clinical translation of the next generation of immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Amanda Nash
- Rice University, Department of Bioengineering, Houston TX, United States
| | | | - Andrea Hernandez
- Rice University, Department of Bioengineering, Houston TX, United States
| | | | - Omid Veiseh
- Rice University, Department of Bioengineering, Houston TX, United States.
| |
Collapse
|
10
|
McCorkle JR, Gorski JW, Liu J, Riggs MB, McDowell AB, Lin N, Wang C, Ueland FR, Kolesar JM. Lapatinib and poziotinib overcome ABCB1-mediated paclitaxel resistance in ovarian cancer. PLoS One 2021; 16:e0254205. [PMID: 34347777 PMCID: PMC8336885 DOI: 10.1371/journal.pone.0254205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/22/2021] [Indexed: 11/19/2022] Open
Abstract
Conventional frontline treatment for ovarian cancer consists of successive chemotherapy cycles of paclitaxel and platinum. Despite the initial favorable responses for most patients, chemotherapy resistance frequently leads to recurrent or refractory disease. New treatment strategies that circumvent or prevent mechanisms of resistance are needed to improve ovarian cancer therapy. We established in vitro paclitaxel-resistant ovarian cancer cell line and organoid models. Gene expression differences in resistant and sensitive lines were analyzed by RNA sequencing. We manipulated candidate genes associated with paclitaxel resistance using siRNA or small molecule inhibitors, and then screened the cells for paclitaxel sensitivity using cell viability assays. We used the Bliss independence model to evaluate the anti-proliferative synergy for drug combinations. ABCB1 expression was upregulated in paclitaxel-resistant TOV-21G (q < 1x10-300), OVCAR3 (q = 7.4x10-156) and novel ovarian tumor organoid (p = 2.4x10-4) models. Previous reports have shown some tyrosine kinase inhibitors can inhibit ABCB1 function. We tested a panel of tyrosine kinase inhibitors for the ability to sensitize resistant ABCB1-overexpressing ovarian cancer cell lines to paclitaxel. We observed synergy when we combined poziotinib or lapatinib with paclitaxel in resistant TOV-21G and OVCAR3 cells. Silencing ABCB1 expression in paclitaxel-resistant TOV-21G and OVCAR3 cells reduced paclitaxel IC50 by 20.7 and 6.2-fold, respectively. Furthermore, we demonstrated direct inhibition of paclitaxel-induced ABCB1 transporter activity by both lapatinib and poziotinib. In conclusion, lapatinib and poziotinib combined with paclitaxel synergizes to inhibit the proliferation of ABCB1-overexpressing ovarian cancer cells in vitro. The addition of FDA-approved lapatinib to second-line paclitaxel therapy is a promising strategy for patients with recurrent ovarian cancer.
Collapse
Affiliation(s)
- J. Robert McCorkle
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Justin W. Gorski
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Jinpeng Liu
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - McKayla B. Riggs
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Anthony B. McDowell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nan Lin
- College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| | - Chi Wang
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - Frederick R. Ueland
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Jill M. Kolesar
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- College of Pharmacy, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
11
|
Tofani LB, Sousa LO, Luiz MT, Abriata JP, Marchetti JM, Leopoldino AM, Swiech K. Generation of a Three-Dimensional in Vitro Ovarian Cancer Co-Culture Model for Drug Screening Assays. J Pharm Sci 2021; 110:2629-2636. [PMID: 33848527 DOI: 10.1016/j.xphs.2021.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
In vitro 3D culture models have emerged in the cancer field due to their ability to recapitulate characteristics of the in vivo tumor. Herein, we described the establishment and characterization of 3D multicellular spheroids using ovarian cancer cells (SKOV-3) in co-culture with mesenchymal cells (MUC-9) or fibroblasts (CCD27-Sk). We demonstrated that SKOV-3 cells in co-culture were able to form regular and compact spheroids with diameters ranging from 300 to 400 µm and with a roundness close to 1.0 regardless of the type of stromal cell used. In the 3D culture an increase was not observed in spheroid diameter nor was there significant cell growth. What is more, the 3D co-cultures presented an up regulation of genes related to tumorigenesis, angiogenesis and metastases (MMP2, VEGFA, SNAI1, ZEB1 and VIM) when compared with 2D and 3D monoculture. As expected, both 3D cultures (mono and co-cultures) exhibited a higher Paclitaxel chemoresistance when compared to 2D condition. Although we did not observe differences in the Paclitaxel resistance between the 3D mono and co-cultures, the gene expression results indicate that the presence of mesenchymal cells and fibroblasts better recapitulate the in vivo tumor microenvironment, being able, therefore, to more accurately evaluate drug efficacy for ovarian cancer therapy.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Lucas Oliveira Sousa
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Juliana Maldonado Marchetti
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Andréia Machado Leopoldino
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil
| | - Kamilla Swiech
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Avenida do Café w/n, Ribeirão Preto, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Sun X, Diao X, Zhu X, Yin X, Cheng G. Nanog-mediated stem cell properties is critical for MBNL3 associated paclitaxel resistance of ovarian cancer. J Biochem 2021; 169:747-756. [PMID: 33599261 DOI: 10.1093/jb/mvab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel (PTX) is the standard first-line treatment of ovarian cancer, but its efficacy is limited by multi-drug resistance. Therefore, it is crucial to identify effective drug targets to facilitate PTX-sensitivity for ovarian cancer treatment. Seventy PTX-administrated ovarian cancer patients were recruited in this study for gene expression and survival rate analyses. Muscleblind-like-3 (MBNL3) gain- and loss-of-function experiments were carried out in ovarian cancer cells (parental and PTX-resistant) and xenograft model. Cancer cell viability, apoptosis, spheroids formation, Nanog gene silencing were examined and conducted to dissect the underlying mechanism of MBNL3-mediated PTX-resistance. High expression of MBNL3 was positively correlated with PTX-resistance and poor prognosis of ovarian cancer. MBNL3 increased cell viability and decreased apoptosis in ovarian stem-like cells, through up-regulating Nanog. This study suggests the MBNL3-Nanog axis is a therapeutic target for the treatment of PTX-resistance in ovarian cancer management.
Collapse
Affiliation(s)
- Xueqin Sun
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Xinghua Diao
- Department of Reproductive Medicine, Binzhou Medical University Hospital, No. 661 of Huanghe 2 Road, Binzhou 256600, Shandong, China
| | - Xiaolin Zhu
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Xuexue Yin
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| | - Guangying Cheng
- Department of Gynecology, Zibo Central Hospital, No.54 of Gongqingtuan West Road, Zhangdian district, Zibo 255000, Shandong, China
| |
Collapse
|
13
|
Książek K. Where does cellular senescence belong in the pathophysiology of ovarian cancer? Semin Cancer Biol 2020; 81:14-23. [PMID: 33290845 DOI: 10.1016/j.semcancer.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Although ovarian cancer is the leading cause of death from gynecological malignancies, there are still some issues that hamper accurate interpretation of the complexity of cellular and molecular events underlying the pathophysiology of this disease. One of these is cellular senescence, which is the process whereby cells irreversibly lose their ability to divide and develop a phenotype that fuels a variety of age-related diseases, including cancer. In this review, various aspects of cellular senescence associated with intraperitoneal ovarian cancer metastasis are presented and discussed, including mechanisms of senescence in normal peritoneal mesothelial cells; the role of senescent mesothelium in ovarian cancer progression; the effect of drugs commonly used as first-line therapy in ovarian cancer patients on senescence of normal cells; mechanisms of spontaneous senescence in ovarian cancer cells; and, last but not least, other pharmacologic strategies to induce senescence in ovarian malignancies. Collectively, this study shows that cellular senescence is involved in several aspects of ovarian cancer pathobiology. Proper understanding of this phenomenon, particularly its clinical relevance, seems to be critical for oncology patients from both therapeutic and prognostic perspectives.
Collapse
Affiliation(s)
- Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
14
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
15
|
Cevik O, Acidereli H, Turut FA, Yildirim S, Acilan C. Cabazitaxel exhibits more favorable molecular changes compared to other taxanes in androgen-independent prostate cancer cells. J Biochem Mol Toxicol 2020; 34:e22542. [PMID: 32578930 DOI: 10.1002/jbt.22542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Taxane-based chemotherapy drugs (cabazitaxel, docetaxel, and paclitaxel) are microtubule inhibitors, which are effectively and frequently used to treat metastatic prostate cancer (PCa). Among these, cabazitaxel is offered as a new therapeutic option for patients with metastatic castration-resistant PC as that are resistant to other taxanes. Here, we investigated the cellular and molecular changes in response to cabazitaxel in comparison with docetaxel and paclitaxel in androgen-independent human PCas. The androgen-independent human PCa cell lines, PC3 and DU145, were treated with 1 to 5nM cabazitaxel, docetaxel, or paclitaxel, and assessed for cell viability (MTT assay), colony forming ability and migration (scratch assay). The induction of apoptosis was determined through measurement of mitochondrial membrane potential (JC-1 assay) and caspase-3 activity assay. The protein expression changes (caspase-3, caspase-8, Bax, Bcl-2, β-tubulin, nuclear factor-κB [NF-κB/p50, NF-κB/p65], vascular endothelial growth factor, WNT1-inducible signaling pathway protein-1 [WISP1], transforming growth factor β [TGF-β]) in response to drug treatment were screened via western blotting. Under our experimental conditions, all taxanes significantly reduced WISP1 and TGF-β expressions, suggesting an anti-metastatic/antiangiogenic effect for these drugs. On the other hand, cabazitaxel induced more cell death and inhibited colony formation compared to docetaxel or paclitaxel. The highest fold change in caspase-3 activity and Bax/Bcl-2 ratio was also detected in response to cabazitaxel. Furthermore, the induction of β-tubulin expression was lower in cabazitaxel-treated cells relative to the other taxanes. In summary, cabazitaxel shows molecular changes in favor of killing PCa cells compared to other taxanes, at least for the parameters analyzed herein. The differences with other taxanes may be important while designing other studies or in clinical settings.
Collapse
Affiliation(s)
- Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Efeler, Aydın, Turkey
| | - Hilal Acidereli
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Fatma Aysun Turut
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Sahin Yildirim
- Department of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ceyda Acilan
- Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
16
|
Nair JB, Mohapatra S, Joseph MM, Maniganda S, Gupta V, Ghosh S, Maiti KK. Tracking the Footprints of Paclitaxel Delivery and Mechanistic Action via SERS Trajectory in Glioblastoma Cells. ACS Biomater Sci Eng 2020; 6:5254-5263. [PMID: 33455274 DOI: 10.1021/acsbiomaterials.0c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The design and development of an efficacious tumor-specific drug-delivery system is a challenging task. In this study, we have synthesized target-specific small peptide substrates on an octaguanidine sorbitol scaffold, named small molecular targeted drug-delivery conjugate (SMTDDC). The SMTDDC fabrication, with dual targeting cRGD and Cathepsin B (Cath B)-specific tripeptide (Glu-Lys-Phe), altered the microtubule network of glioblastoma cells by the orchestrated release of the cytotoxic paclitaxel (PTX). Cath B assisted PTX delivery was monitored by high-performance liquid chromatography and Surface-Enhanced Raman Scattering (SERS) modalities. The time-dependent SERS fingerprinting and imaging revealed a fast and accurate PTX release profile and subsequent in vitro cytotoxicity as well as the apoptotic events and microtubule network alteration in U-87 MG glioblastoma cells. Furthermore, SMTDDC displayed adequate stability under physiological conditions and demonstrated biocompatibility toward red blood cells and lymphocytes. This study indicated a new insight on SERS-guided peptidomimetic sorbitol molecular transporter, enabling a greater promise with high potential for the further development of PTX delivery in glioblastoma treatment.
Collapse
Affiliation(s)
- Jyothi B Nair
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saswat Mohapatra
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
| | - Santhi Maniganda
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Wang HF, Liu Y, Wang T, Yang G, Zeng B, Zhao CX. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5040-5050. [DOI: 10.1021/acsbiomaterials.0c00650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao-Fei Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tong Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bijun Zeng
- Diamantina Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Kamal MA, Al-Zahrani MH, Khan SH, Khan MH, Al-Subhi HA, Kuerban A, Aslam M, Al-Abbasi FA, Anwar F. Tubulin Proteins in Cancer Resistance: A Review. Curr Drug Metab 2020; 21:178-185. [DOI: 10.2174/1389200221666200226123638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells are altered with cell cycle genes or they are mutated, leading to a high rate of proliferation
compared to normal cells. Alteration in these genes leads to mitosis dysregulation and becomes the basis of tumor
progression and resistance to many drugs. The drugs which act on the cell cycle fail to arrest the process, making
cancer cell non-responsive to apoptosis or cell death. Vinca alkaloids and taxanes fall in this category and are
referred to as antimitotic agents. Microtubule proteins play an important role in mitosis during cell division as a
target site for vinca alkaloids and taxanes. These proteins are dynamic in nature and are composed of α-β-tubulin
heterodimers. β-tubulin specially βΙΙΙ isotype is generally altered in expression within cancerous cells. Initially,
these drugs were very effective in the treatment of cancer but failed to show their desired action after initial
chemotherapy. The present review highlights some of the important targets and their mechanism of resistance
offered by cancer cells with new promising drugs from natural sources that can lead to the development of a new
approach to chemotherapy.
Collapse
Affiliation(s)
- Mohammad Amjad Kamal
- Metabolomics and Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maryam Hassan Al-Zahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salman Hasan Khan
- Department of Orthodontics, and Dentofacial Orthopaedics, TMU Dental College, Moradabad, Uttar Pradesh, India
| | - Mateen Hasan Khan
- Department of Pharmacology, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh, India
| | - Hani Awad Al-Subhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abudukadeer Kuerban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Aslam
- Department of Statistics, Faculy of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Ahmed Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Bhattacharyya R, Ha MJ, Liu Q, Akbani R, Liang H, Baladandayuthapani V. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome. JCO Clin Cancer Inform 2020; 4:399-411. [PMID: 32374631 PMCID: PMC7265783 DOI: 10.1200/cci.19.00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Personalized network inference on diverse clinical and in vitro model systems across cancer types can be used to delineate specific regulatory mechanisms, uncover drug targets and pathways, and develop individualized predictive models in cancer. METHODS We developed TransPRECISE (personalized cancer-specific integrated network estimation model), a multiscale Bayesian network modeling framework, to analyze the pan-cancer patient and cell line interactome to identify differential and conserved intrapathway activities, to globally assess cell lines as representative models for patients, and to develop drug sensitivity prediction models. We assessed pan-cancer pathway activities for a large cohort of patient samples (> 7,700) from the Cancer Proteome Atlas across ≥ 30 tumor types, a set of 640 cancer cell lines from the MD Anderson Cell Lines Project spanning 16 lineages, and ≥ 250 cell lines' response to > 400 drugs. RESULTS TransPRECISE captured differential and conserved proteomic network topologies and pathway circuitry between multiple patient and cell line lineages: ovarian and kidney cancers shared high levels of connectivity in the hormone receptor and receptor tyrosine kinase pathways, respectively, between the two model systems. Our tumor stratification approach found distinct clinical subtypes of the patients represented by different sets of cell lines: patients with head and neck tumors were classified into two different subtypes that are represented by head and neck and esophagus cell lines and had different prognostic patterns (456 v 654 days of median overall survival; P = .02). High predictive accuracy was observed for drug sensitivities in cell lines across multiple drugs (median area under the receiver operating characteristic curve > 0.8) using Bayesian additive regression tree models with TransPRECISE pathway scores. CONCLUSION Our study provides a generalizable analytic framework to assess the translational potential of preclinical model systems and to guide pathway-based personalized medical decision making, integrating genomic and molecular data across model systems.
Collapse
Affiliation(s)
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Qingzhi Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
20
|
Gupta S, Pathak Y, Gupta MK, Vyas SP. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4066-4088. [PMID: 31625408 DOI: 10.1080/21691401.2019.1677680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the second most common gynaecological malignancy. It usually occurs in women older than 50 years, and because 75% of cases are diagnosed at stage III or IV it is associated with poor diagnosis. Despite the chemosensitivity of intraperitoneal chemotherapy, the majority of patients is relapsed and eventually dies. In addition to the challenge of early detection, its treatment presents several challenges like the route of administration, resistance to therapy with recurrence and specific targeting of cancer to reduce cytotoxicity and side effects. In ovarian cancer therapy, nanocarriers help overcome problems of poor aqueous solubility of chemotherapeutic drugs and enhance their delivery to the tumour sites either by passive or active targeting, and thus reducing adverse side effects to the healthy tissues. Moreover, the bioavailability to the tumour site is increased by the enhanced permeability and retention (EPR) mechanism. The present review aims to describe the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors designed against ovarian cancer to overcome the drawbacks of conventional delivery. Conclusively, targeted nanocarriers would optimise the intra-tumour distribution, followed by drug delivery into the intracellular compartment. These features may contribute to greater therapeutic effect.
Collapse
Affiliation(s)
- Swati Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh , Noida , India
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida Health , Tampa , FL , USA.,Faculty of Pharmacy, University of Airlangga , Surabaya , Indonesia
| | - Manish K Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), Gual Pahari, TERI Gram , Gurugram , India
| | - Suresh P Vyas
- Department of Pharmaceutical Sciences, Dr H.S. Gour University , Sagar , India
| |
Collapse
|
21
|
Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur J Med Chem 2020; 187:111965. [DOI: 10.1016/j.ejmech.2019.111965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
22
|
Duggal P, Mehan S. Neuroprotective Approach of Anti-Cancer Microtubule Stabilizers Against Tauopathy Associated Dementia: Current Status of Clinical and Preclinical Findings. J Alzheimers Dis Rep 2019; 3:179-218. [PMID: 31435618 PMCID: PMC6700530 DOI: 10.3233/adr-190125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuronal microtubule (MT) tau protein provides cytoskeleton to neuronal cells and plays a vital role including maintenance of cell shape, intracellular transport, and cell division. Tau hyperphosphorylation mediates MT destabilization resulting in axonopathy and neurotransmitter deficit, and ultimately causing Alzheimer’s disease (AD), a dementing disorder affecting vast geriatric populations worldwide, characterized by the existence of extracellular amyloid plaques and intracellular neurofibrillary tangles in a hyperphosphorylated state. Pre-clinically, streptozotocin stereotaxically mimics the behavioral and biochemical alterations similar to AD associated with tau pathology resulting in MT assembly defects, which proceed neuropathological cascades. Accessible interventions like cholinesterase inhibitors and NMDA antagonist clinically provides only symptomatic relief. Involvement of microtubule stabilizers (MTS) prevents tauopathy particularly by targeting MT oriented cytoskeleton and promotes polymerization of tubulin protein. Multiple in vitro and in vivo research studies have shown that MTS can hold substantial potential for the treatment of AD-related tauopathy dementias through restoration of tau function and axonal transport. Moreover, anti-cancer taxane derivatives and epothiolones may have potential to ameliorate MT destabilization and prevent the neuronal structural and functional alterations associated with tauopathies. Therefore, this current review strictly focuses on exploration of various clinical and pre-clinical features available for AD to understand the neuropathological mechanisms as well as introduce pharmacological interventions associated with MT stabilization. MTS from diverse natural sources continue to be of value in the treatment of cancer, suggesting that these agents have potential to be of interest in the treatment of AD-related tauopathy dementia in the future.
Collapse
Affiliation(s)
- Pallavi Duggal
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
23
|
Bang KH, Na YG, Huh HW, Hwang SJ, Kim MS, Kim M, Lee HK, Cho CW. The Delivery Strategy of Paclitaxel Nanostructured Lipid Carrier Coated with Platelet Membrane. Cancers (Basel) 2019; 11:cancers11060807. [PMID: 31212681 PMCID: PMC6627627 DOI: 10.3390/cancers11060807] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Strategies for the development of anticancer drug delivery systems have undergone a dramatic transformation in the last few decades. Lipid-based drug delivery systems, such as a nanostructured lipid carrier (NLC), are one of the systems emerging to improve the outcomes of tumor treatments. However, NLC can act as an intruder and cause an immune response. To overcome this limitation, biomimicry technology was introduced to decorate the surface of the nanoparticles with various cell membrane proteins. Here, we designed paclitaxel (PT)-loaded nanostructured lipid carrier (PT-NLC) with platelet (PLT) membrane protein because PLT is involved with angiogenesis and interaction of circulating tumor cells. After PLT was isolated from blood using the gravity-gradient method and it was used for coating PT-NLC. Spherical PT-NLC and platelet membrane coated PT-NLC (P-PT-NLC) were successfully fabricated with high encapsulation efficiency (EE) (99.98%) and small particle size (less than 200 nm). The successful coating of PT-NLC with a PLT membrane was confirmed by the identification of CD41 based on transmission electron microscopy (TEM), western blot assay and enzyme-linked immunosorbent assay (ELISA) data. Moreover, the stronger affinity of P-PT-NLC than that of PT-NLC toward tumor cells was observed. In vitro cell study, the PLT coated nanoparticles successfully displayed the anti-tumor effect to SK-OV-3 cells. In summary, the biomimicry carrier system P-PT-NLC has an affinity and targeting ability for tumor cells.
Collapse
Affiliation(s)
- Ki-Hyun Bang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Young-Guk Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hyun Wook Huh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Sung-Joo Hwang
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 162-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Korea.
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 609-735, Korea.
| | - Minki Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hong-Ki Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
24
|
Targeting Ovarian Cancer Cells Overexpressing CD44 with Immunoliposomes Encapsulating Glycosylated Paclitaxel. Int J Mol Sci 2019; 20:ijms20051042. [PMID: 30818864 PMCID: PMC6429518 DOI: 10.3390/ijms20051042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15–20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.
Collapse
|
25
|
Developing a Prognostic Gene Panel of Epithelial Ovarian Cancer Patients by a Machine Learning Model. Cancers (Basel) 2019; 11:cancers11020270. [PMID: 30823599 PMCID: PMC6406249 DOI: 10.3390/cancers11020270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023] Open
Abstract
Epithelial ovarian cancer patients usually relapse after primary management. We utilized the support vector machine algorithm to develop a model for the chemo-response using the Cancer Cell Line Encyclopedia (CCLE) and validated the model in The Cancer Genome Atlas (TCGA) and the GSE9891 dataset. Finally, we evaluated the feasibility of the model using ovarian cancer patients from our institute. The 10-gene predictive model demonstrated that the high response group had a longer recurrence-free survival (RFS) (log-rank test, p = 0.015 for TCGA, p = 0.013 for GSE9891 and p = 0.039 for NTUH) and overall survival (OS) (log-rank test, p = 0.002 for TCGA and p = 0.016 for NTUH). In a multivariate Cox hazard regression model, the predictive model (HR: 0.644, 95% CI: 0.436⁻0.952, p = 0.027) and residual tumor size < 1 cm (HR: 0.312, 95% CI: 0.170⁻0.573, p < 0.001) were significant factors for recurrence. The predictive model (HR: 0.511, 95% CI: 0.334⁻0.783, p = 0.002) and residual tumor size < 1 cm (HR: 0.252, 95% CI: 0.128⁻0.496, p < 0.001) were still significant factors for death. In conclusion, the patients of high response group stratified by the model had good response and favourable prognosis, whereas for the patients of medium to low response groups, introduction of other drugs or clinical trials might be beneficial.
Collapse
|
26
|
Mikuła-Pietrasik J, Witucka A, Pakuła M, Uruski P, Begier-Krasińska B, Niklas A, Tykarski A, Książek K. Comprehensive review on how platinum- and taxane-based chemotherapy of ovarian cancer affects biology of normal cells. Cell Mol Life Sci 2019; 76:681-697. [PMID: 30382284 PMCID: PMC6514066 DOI: 10.1007/s00018-018-2954-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
One of the most neglected aspects of chemotherapy are changes, and possible consequences of these changes, that occur in normal somatic cells. In this review, we summarize effects of selected drugs used to treat ovarian cancer (platin derivatives-cisplatin and carboplatin; and taxanes-paclitaxel and docetaxel) on cellular metabolism, acquisition of reactive stroma features, cellular senescence, inflammatory reactions, apoptosis, autophagy, mitophagy, oxidative stress, DNA damage, and angiogenesis in various types of normal cells, including fibroblasts, epithelial cells, endothelial cells, and neurons. The activity of these drugs against the normal cells is presented from a broader perspective of their desirable anti-tumoral effects.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Anna Witucka
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Beata Begier-Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848, Poznań, Poland.
| |
Collapse
|
27
|
Nakamura K, Sawada K, Miyamoto M, Kinose Y, Yoshimura A, Ishida K, Kobayashi M, Shimizu A, Nakatsuka E, Hashimoto K, Mabuchi S, Kimura T. Downregulation of miR-194-5p induces paclitaxel resistance in ovarian cancer cells by altering MDM2 expression. Oncotarget 2019; 10:673-683. [PMID: 30774764 PMCID: PMC6363016 DOI: 10.18632/oncotarget.26586] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Paclitaxel is a first-line drug for treating epithelial ovarian cancer (EOC). However, prognosis for patients with advanced stage cancer remains poor due to primary or acquired drug resistance. Therefore, overcoming chemoresistance is one of the greatest challenges in treating EOC. In this study, we identified microRNAs (miRNA) that regulate paclitaxel resistance and tested their potential utility as therapeutic targets. Paclitaxel-resistant cell lines were established using two EOC cell lines: SKVO3ip1 and HeyA8. miRNA PCR arrays showed that miR-194-5p was downregulated in paclitaxel-resistant cells. Forced expression of miR-194-5p resensitized resistant cells to paclitaxel. Conversely, miR-194-5p inhibition induced paclitaxel resistance in parental cells. In silico analysis and luciferase reporter assay revealed that MDM2 is a direct target of miR-194-5p. MDM2 was upregulated in paclitaxel resistant cells compared with parental cells. MDM2 inhibition also resensitized resistant cells to paclitaxel and forced MDM2 induced paclitaxel resistance in parental cells. miR-194-5p induced p21 upregulation and G1 phase arrest in resistant cells by downregulating MDM2. Furthermore, a public database showed that high MDM2 expression was associated with a shorter progression-free survival in EOC patients treated with paclitaxel. Collectively, our results show that restoring miR-194-5p expression resensitizes EOCs to paclitaxel, and this may be exploited as a therapeutic option.
Collapse
Affiliation(s)
- Koji Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Mayuko Miyamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan.,Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania Perelman School of Medicine, Biomedical Research Building II/III, Philadelphia, PA, 19104, USA
| | - Akihiko Yoshimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Kyoso Ishida
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Erika Nakatsuka
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, 5650871, Japan
| |
Collapse
|
28
|
Hyun H, Park MH, Jo G, Kim SY, Chun HJ, Yang DH. Photo-Cured Glycol Chitosan Hydrogel for Ovarian Cancer Drug Delivery. Mar Drugs 2019; 17:E41. [PMID: 30634553 PMCID: PMC6356222 DOI: 10.3390/md17010041] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/30/2023] Open
Abstract
In this study, we prepared an injectable drug delivery depot system based on a visible light-cured glycol chitosan (GC) hydrogel containing paclitaxel (PTX)-complexed beta-cyclodextrin (β-CD) (GC/CD/PTX) for ovarian cancer (OC) therapy using a tumor-bearing mouse model. The hydrogel depot system had a 23.8 Pa of storage modulus at 100 rad/s after visible light irradiation for 10 s. In addition, GC was swollen as a function of time. However, GC had no degradation with the time change. Eventually, the swollen GC matrix affected the releases of PTX and CD/PTX. GC/PTX and GC/CD/PTX exhibited a controlled release of PTX for 7 days. In addition, GC/CD/PTX had a rapid PTX release for 7 days due to improved water solubility of PTX through CD/PTX complex. In vitro cell viability tests showed that GC/CD/PTX had a lower cell viability percentage than the free PTX solution and GC/PTX. Additionally, GC/CD/PTX resulted in a superior antitumor effect against OC. Consequently, we suggest that the GC/CD system might have clinical potential for OC therapy by improving the water solubility of PTX, as PTX is included into the cavity of β-CD.
Collapse
Affiliation(s)
- Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - So Yeon Kim
- Department of Dental Hygiene, College of Health Sciences, Cheongju University, Cheongju 28503, Korea.
| | - Heung Jae Chun
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
29
|
Park GB, Kim D. MicroRNA-503-5p Inhibits the CD97-Mediated JAK2/STAT3 Pathway in Metastatic or Paclitaxel-Resistant Ovarian Cancer Cells. Neoplasia 2019; 21:206-215. [PMID: 30622051 PMCID: PMC6355618 DOI: 10.1016/j.neo.2018.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
CD97 shows a strong relationship with metastasis and poor clinical outcome in various tumors, including ovarian cancer. The expression of CD97 in metastatic ovarian cancer cells was higher than that in primary ovarian cancer cells. Mature miRNAs are frequently de-regulated in cancer and incorporated into a specific mRNA, leading to post-transcriptional silencing. In this study, we investigated whether the miR-503-5p targeting of the CD97 3′-untranslated region (3′-UTR) contributes to ovarian cancer metastasis as well as the underlying mechanism regulating cancer progression. In LPS-stimulated or paclitaxel-resistant ovarian cancer cells, stimulation with recombinant human CD55 (rhCD55) of CD97 in ovarian cancer cells activated NF-κB-dependent miR-503-5p down-regulation and the JAK2/STAT3 pathway, consequently promoting the migratory and invasive capacity. Furthermore, restoration of miR-503-5p by transfection with mimics or NF-κB inhibitor efficiently blocked CD97 expression and the downstream JAK2/STAT3 signaling pathway. Target inhibition of JAK with siRNA also impaired colony formation and metastasis of LPS-stimulated and paclitaxel-resistant ovarian cancer cells. Taken together, these results suggest that high CD97 expression, which is controlled through the NF-κB/miR-503-5p signaling pathway, plays an important role in the invasive activity of metastatic and drug-resistant ovarian cancer cells by activating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Daejin Kim
- Department of Anatomy, Inje University College of Medicine, Busan 47392, Republic of Korea.
| |
Collapse
|
30
|
Masarkar N, Mukherjee S, Goel SK, Nema R. Naturally Derived Formulations and Prospects towards Cancer. Health (London) 2019. [DOI: 10.4236/health.2019.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Mubeen S, Li ZL, Huang QM, He CT, Yang ZY. Comparative Transcriptome Analysis Revealed the Tissue-Specific Accumulations of Taxanes among Three Experimental Lines of Taxus yunnanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10410-10420. [PMID: 30208705 DOI: 10.1021/acs.jafc.8b03502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Taxus yunnanensis (Yew) is known for natural anticancer metabolite paclitaxel (Taxol) and its biosynthesis pathway in yew species still needs to be completely elucidated. In the current study, productions of paclitaxel and 10-DAB III from three different tissues (needle, branch, and root) of T. yunnanensis wild type (WT) and two new cultivars Zhongda-1 (Zd1) and Zhongda-2 (Zd2) were determined, and significant tissue differences in contents of the taxanes were observed among the three experimental lines. The much higher 10-DAB III and lower paclitaxel contents in needle of Zd2 when compared with that of Zd1 indicated the low conversion from 10-DAB III to paclitaxel in the needle of Zd2. In order to uncover the mechanisms of the tissue-specific biosynthesis of the taxanes, transcriptome analysis of cultivar Zd2 was conducted, and the previously reported transcriptome data of Zd1 and WT were used to perform a comparison. The enhancement of TDAT and T10βH side biosynthetic pathway in roots of Zd2 in early taxane synthesis might lead to the biosynthesis of other toxoids, while the preference of T13αH route in the needle and branch of Zd2 was mainly responsible for the tissue-specific reinforced biosynthesis of 10-DAB III and paclitaxel in Zd2. Different from Zd1, the tissue-specific pattern of paclitaxel biosynthesis genes in Zd2 was similar to WT. However, the lower transcript abundance of final steps genes (TBT, DBAT, BAPT, and DBTNBT) of the paclitaxel biosynthesis pathway in Zd2 than in Zd1 might further promote 10-DAB III accumulation in Zd2.
Collapse
Affiliation(s)
- Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Xingang Xi Road 135 , Guangzhou 510275 , China
| | - Zhi-Liang Li
- MeiZhou ZhongTian Medicinal Research Institute , Meizhou 514021 , China
| | - Qiao-Ming Huang
- MeiZhou ZhongTian Medicinal Research Institute , Meizhou 514021 , China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Xingang Xi Road 135 , Guangzhou 510275 , China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Xingang Xi Road 135 , Guangzhou 510275 , China
| |
Collapse
|
32
|
Pilija V, Djurendic-Brenesel M, Miletic S. Fatal poisoning by ingestion of Taxus Baccata leaves. Forensic Sci Int 2018; 290:e1-e4. [DOI: 10.1016/j.forsciint.2018.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022]
|
33
|
Xia B, Lin M, Dong W, Chen H, Li B, Zhang X, Hou Y, Lou G. Upregulation of miR-874-3p and miR-874-5p inhibits epithelial ovarian cancer malignancy via SIK2. J Biochem Mol Toxicol 2018; 32:e22168. [PMID: 30004169 DOI: 10.1002/jbt.22168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Bairong Xia
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| | - Mei Lin
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| | - Wei Dong
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| | - Hong Chen
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| | - Bing Li
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| | - Xiaye Zhang
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| | - Yan Hou
- Department of Biostatistics; Public Health School; Harbin Medical University; Harbin 150081 China
| | - Ge Lou
- Department of Gynecology; Harbin Medical University Cancer Hospital; Harbin 150020 China
| |
Collapse
|
34
|
Otani IM, Lax T, Long AA, Slawski BR, Camargo CA, Banerji A. Utility of Risk Stratification for Paclitaxel Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1266-1273.e2. [DOI: 10.1016/j.jaip.2017.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
|
35
|
Andriguetti NB, Hahn RZ, Lizot LF, Raymundo S, Costa JL, da Cunha KF, Vilela RM, Kluck HM, Schwartsmann G, Antunes MV, Linden R. Analytical and clinical validation of a dried blood spot assay for the determination of paclitaxel using high-performance liquid chromatography-tandem mass spectrometry. Clin Biochem 2018. [DOI: 10.1016/j.clinbiochem.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Cherukula K, Bae WK, Lee JH, Park IK. Programmed 'triple-mode' anti-tumor therapy: Improving peritoneal retention, tumor penetration and activatable drug release properties for effective inhibition of peritoneal carcinomatosis. Biomaterials 2018; 169:45-60. [PMID: 29631167 DOI: 10.1016/j.biomaterials.2018.03.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Peritoneal carcinomatosis (PC) is a fatal condition arising in the gastrointestinal tract. PC patients administered drugs locally in the tumor region, such as in intraperitoneal chemotherapy (IPCh), suffer from low drug retention time and tumor penetration. Herein, we synthesized a lithocholic acid (LCA)-conjugated disulfide-linked polyethyleneimine (ssPEI) micelle (LAPMi) nanoconstruct by covalently conjugating ssPEI and LCA, thereby forming positive charged nanomicellar structures loaded with paclitaxel (PTX) (LAPMi-PTX) for IPCh. The incorporation of a positive surface charge aided in prolonging the peritoneal retention time, presumably via ascites-induced protein corona formation, and the subsequent size expansion caused resistance against undesired clearance through lymphatic openings. Furthermore, preferential tumor penetration by LAPMi-PTX is attributable to the permeation-enhancing properties of LCA, and the subsequent tumor activatable drug release was induced by the presence of disulfide linkages. By integrating these properties, LAPMi exhibited prolonged peritoneal residence time, enhanced tumor permeation and chemotherapeutic effect evidenced by in vitro, tumor spheroid and in vivo studies. Importantly, our strategy enabled significant PC inhibition and increased the overall survival rate of tumor-bearing mice. In conclusion, we provided a new paradigm of intractable PC treatment by enabling the prolonged residence time of the nanoconstruct, thereby enhancing tumor penetration and anti-tumor therapy.
Collapse
Affiliation(s)
- Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Jae Hyuk Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.
| |
Collapse
|
37
|
Pathak A, Tanwar S, Kumar V, Banarjee BD. Present and Future Prospect of Small Molecule & Related Targeted Therapy Against Human Cancer. VIVECHAN INTERNATIONAL JOURNAL OF RESEARCH 2018; 9:36-49. [PMID: 30853755 PMCID: PMC6407887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer is uncontrolled cell growth guided by deregulation of cell growth network. Subsequently, alteration in genes occurs which influences expression (down-regulation of tumor suppressor genes and/or up-regulation of proto-oncogene) of these prominent cell growth proteins. Protein targeting has emerged as a hope against cancer. These therapies work by inhibiting or up regulating the target proteins through agents specific for treatment of deregulated proteins. Targeted cancer therapies are more favorable for cancers like lung, colorectal, breast, lymphoma and leukemia as they focus on particular molecular changes unique to a specific cancer. As researchers scrutinize and comprehend the cell changes that initiate cancer, they are better able to design promising therapies targeting these changes or nullify their effect. In present study we have assessed prospects of significant proteins which are known to be targeted by number of small molecules and related drugs for effective treatment of various forms of cancer. Moreover, we also addressed the efficacies of these drugs toward the cancer treatment and future challenges in their development as this information is lacking in previously published work.
Collapse
Affiliation(s)
- Akshat Pathak
- Department of Computer Science and Engineering IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Sanskriti Tanwar
- Department of Biotechnology IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Basu Dev Banarjee
- Department of Biochemistry, University College of Medical Sciences & Guru Tegh Bahadur Hospital, University of Delhi, Dilshad Garden, Delhi, India
| |
Collapse
|
38
|
Merkher Y, Alvarez-Elizondo MB, Weihs D. Taxol reduces synergistic, mechanobiological invasiveness of metastatic cells. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8c0b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Bidkar AP, Sanpui P, Ghosh SS. Efficient induction of apoptosis in cancer cells by paclitaxel-loaded selenium nanoparticles. Nanomedicine (Lond) 2017; 12:2641-2651. [DOI: 10.2217/nnm-2017-0189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop selenium nanoparticles (SeNPs)-based delivery systems for paclitaxel (PTX) and assess their antiproliferative efficacy against cancer cells in vitro with potential mechanistic insight. Methods: Pluronic F-127 stabilized SeNPs were prepared and characterized. Effects of PTX-loaded SeNPs on lung (A549), breast (MCF7), cervical (HeLa) and colon (HT29) cancer cells were studied by viability assay complemented with flow-cytometric analyses of cell cycle, apoptosis, mitochondrial membrane potential, intracellular reactive oxygen species and caspase activity. Results: PTX-loaded SeNPs demonstrated significant antiproliferative activity against cancer cells. Cell cycle analyses of PTX-SeNPs treated cells established G2/M phase arrest in a dose-dependent manner leading to apoptosis. Further investigation revealed disruption of mitochondrial membrane potential orchestrated with induction of reactive oxygen species leading to the activation of caspases, key players of apoptotic cell death. Conclusion: Efficient induction of apoptosis in various cancer cells by PTX-loaded SeNPs, with appropriate future studies, might lead to potential anticancer strategies.
Collapse
Affiliation(s)
- Anil Parsram Bidkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Pallab Sanpui
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| |
Collapse
|
40
|
Lindamulage IK, Vu HY, Karthikeyan C, Knockleby J, Lee YF, Trivedi P, Lee H. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Sci Rep 2017; 7:10298. [PMID: 28860494 PMCID: PMC5578999 DOI: 10.1038/s41598-017-10972-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 12/04/2022] Open
Abstract
Agents targeting colchicine-binding pocket usually show a minimal drug-resistance issue, albeit often associated with high toxicity. Chalcone-based compounds, which may bind to colchicine-binding site, are found in many edible fruits, suggesting that they can be effective drugs with less toxicity. Therefore, we synthesized and examined 24 quinolone chalcone compounds, from which we identified ((E)-3-(3-(2-Methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-17) and ((E)-6-Methoxy-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-20) as promising leads. In particular, CTR-20 was effective against 65 different cancer cell lines originated from 12 different tissues, largely in a cancer cell-specific manner. We found that both CTR-17 and CTR-20 reversibly bind to the colchicine-binding pocket on β-tubulin. Interestingly however, both the CTRs were highly effective against multidrug-resistant cancer cells while colchicine, paclitaxel and vinblastine were not. Our study with CTR-20 showed that it overcomes multidrug-resistance through its ability to impede MRP1 function while maintaining strong inhibition against microtubule activity. Data from mice engrafted with the MDA-MB-231 triple-negative breast cancer cells showed that both CTR-17 and CTR-20 possess strong anticancer activity, alone or in combination with paclitaxel, without causing any notable side effects. Together, our data demonstrates that both the CTRs can be effective and safe drugs against many different cancers, especially against multidrug-resistant tumors.
Collapse
Affiliation(s)
- I Kalhari Lindamulage
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada.,Biomolecular Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada
| | - Hai-Yen Vu
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Rd, Gandhi Nagar, Bhopal, M.P, India
| | - James Knockleby
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada
| | - Yi-Fang Lee
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Rd, Gandhi Nagar, Bhopal, M.P, India
| | - Hoyun Lee
- Health Sciences North Research Institute, 41 Ramsey Lake Road, Sudbury, Ontario, P3E 5J1, Canada. .,Biomolecular Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada. .,Departments of Medicine, the Faculty of Medicine, the University of Ottawa, Ottawa, Ontario, K1H 5M8, Canada.
| |
Collapse
|
41
|
Shen Y, Pi Z, Yan F, Yeh CK, Zeng X, Diao X, Hu Y, Chen S, Chen X, Zheng H. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int J Nanomedicine 2017; 12:5613-5629. [PMID: 28848341 PMCID: PMC5557914 DOI: 10.2147/ijn.s136401] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Paclitaxel liposomes (PTX-LIPO) are a clinically promising antineoplastic drug formulation for the treatment of various extracranial cancers, excluding glioblastoma. A main reason for this is the presence of the blood–brain barrier (BBB) or blood–tumor barrier (BTB), preventing liposomal drugs from crossing at a therapeutically meaningful level. Focused ultrasound (FUS) in conjunction with microbubbles (MBs) has been suggested in many studies to be an effective approach to increase the BBB or BTB permeability. In this study, we investigated the feasibility of enhancing the delivery of PTX-LIPO in intracranial glioblastoma-bearing nude mice using pulsed low-intensity FUS exposure in the presence of MBs. Our results showed that the delivery efficiency of PTX-LIPO could be effectively improved in terms of the penetration of both the BBB in vitro and BTB in vivo by pulsed FUS sonication with a 10 ms pulse length and 1 Hz pulse repetition frequency at 0.64 MPa peak-rarefactional pressure in the presence of MBs. Quantitative analysis showed that a 2-fold higher drug concentration had accumulated in the glioblastoma 3 h after FUS treatment, with 7.20±1.18 µg PTX per g glioma tissue. Longitudinal magnetic resonance imaging analysis illustrated that the intracranial glioblastoma progression in nude mice treated with PTX-LIPO delivered via FUS with MBs was suppressed consistently for 4 weeks compared to the untreated group. The medium survival time of these tumor-bearing nude mice was significantly prolonged by 20.8%, compared to the untreated nude mice. Immunohistochemical analysis further confirmed the antiproliferation effect and cell apoptosis induction. Our study demonstrated that noninvasive low-intensity FUS with MBs can be used as an effective approach to deliver PTX-LIPO in order to improve their chemotherapy efficacy toward glioblastoma.
Collapse
Affiliation(s)
- Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Zhaoke Pi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Fei Yan
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Xiaojun Zeng
- Shenzhen Second People's Hospital, Shenzhen, People's Republic of China
| | - Xianfen Diao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Yaxin Hu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| |
Collapse
|
42
|
El Nemr S, Al-Najjar BY, Omer HK, Elhissi AMA, Alhnan MA. Studies of the precipitation pattern of paclitaxel in intravenous infusions and rat plasma using laser nephelometry. Pharm Dev Technol 2017; 23:67-75. [PMID: 28696155 DOI: 10.1080/10837450.2017.1345940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cremophor EL (CrEL) is commonly used to solubilize paclitaxel (Ptx); a widely established anticancer agent used against many types of cancer. Using laser-based microplate nephelometry, in this work we assessed the precipitation kinetics of Ptx in CrEL-containing formulations upon dilutions with different infusion media or upon introduction into rat plasma. The precipitation profile of Ptx was assessed for a Taxol-like formulation and compared with a preparation with reduced CrEL content. These two formulations were diluted at various ratios in compatible infusion media and with or without rat plasma. The percentages of Ptx precipitated in dilution media and protein-binding in plasma were quantified using HPLC. The findings of turbidity measurements were in good agreement with HPLC. Despite the presence of albumin, it was possible to assess turbidity within infusion solutions and predict Ptx precipitation. Upon addition to plasma, no precipitation in Taxol-like formulation occurred after 2 h. In contrast, precipitation occurred immediately in CrEL-reduced formulation. It is possible that the high percentage of protein-bound Ptx in plasma (98.5-99.2%) has inhibited drug precipitation. Turbidity measurements using laser nephelometry can provide a rapid screening tool when developing intravenous formulations for poorly soluble drugs, such as Ptx and assess its stability upon dilution in animal plasma.
Collapse
Affiliation(s)
- Shaza El Nemr
- a School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston , UK
| | - Basma Yahya Al-Najjar
- a School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston , UK
| | - Huner K Omer
- a School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston , UK
| | - Abdelbary M A Elhissi
- b Pharmaceutical Sciences Section, College of Pharmacy , Qatar University , Doha , Qatar
| | - Mohamed A Alhnan
- a School of Pharmacy and Biomedical Sciences , University of Central Lancashire , Preston , UK
| |
Collapse
|
43
|
Kanlikilicer P, Ozpolat B, Aslan B, Bayraktar R, Gurbuz N, Rodriguez-Aguayo C, Bayraktar E, Denizli M, Gonzalez-Villasana V, Ivan C, Lokesh GLR, Amero P, Catuogno S, Haemmerle M, Wu SYY, Mitra R, Gorenstein DG, Volk DE, de Franciscis V, Sood AK, Lopez-Berestein G. Therapeutic Targeting of AXL Receptor Tyrosine Kinase Inhibits Tumor Growth and Intraperitoneal Metastasis in Ovarian Cancer Models. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:251-262. [PMID: 29246304 PMCID: PMC5675720 DOI: 10.1016/j.omtn.2017.06.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022]
Abstract
Despite substantial improvements in the treatment strategies, ovarian cancer is still the most lethal gynecological malignancy. Identification of drug treatable therapeutic targets and their safe and effective targeting is critical to improve patient survival in ovarian cancer. AXL receptor tyrosine kinase (RTK) has been proposed to be an important therapeutic target for metastatic and advanced-stage human ovarian cancer. We found that AXL-RTK expression is associated with significantly shorter patient survival based on the The Cancer Genome Atlas patient database. To target AXL-RTK, we developed a chemically modified serum nuclease-stable AXL aptamer (AXL-APTAMER), and we evaluated its in vitro and in vivo antitumor activity using in vitro assays as well as two intraperitoneal animal models. AXL-aptamer treatment inhibited the phosphorylation and the activity of AXL, impaired the migration and invasion ability of ovarian cancer cells, and led to the inhibition of tumor growth and number of intraperitoneal metastatic nodules, which was associated with the inhibition of AXL activity and angiogenesis in tumors. When combined with paclitaxel, in vivo systemic (intravenous [i.v.]) administration of AXL-aptamer treatment markedly enhanced the antitumor efficacy of paclitaxel in mice. Taken together, our data indicate that AXL-aptamers successfully target in vivo AXL-RTK and inhibit its AXL activity and tumor growth and progression, representing a promising strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Pinar Kanlikilicer
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nilgun Gurbuz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emine Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merve Denizli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vianey Gonzalez-Villasana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganesh L R Lokesh
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Monika Haemmerle
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sherry Yen-Yao Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rahul Mitra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David G Gorenstein
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David E Volk
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
44
|
CHANGES IN PERINEURIAL AND HEMATOENDONEURIAL BARRIERS OF THE SCIATIC NERVE IN PACLITAXEL-INDUCED PERIPHERAL NEUROPATHY. WORLD OF MEDICINE AND BIOLOGY 2017. [DOI: 10.26724/2079-8334-2017-4-62-116-122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Health-related quality of life in women with recurrent ovarian cancer receiving paclitaxel plus trebananib or placebo (TRINOVA-1). Ann Oncol 2016; 27:1006-1013. [DOI: 10.1093/annonc/mdw147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/17/2016] [Indexed: 11/14/2022] Open
|
46
|
Sun J, Yin M, Zhu S, Liu L, Zhu Y, Wang Z, Xu RX, Chang S. Ultrasound-mediated destruction of oxygen and paclitaxel loaded lipid microbubbles for combination therapy in hypoxic ovarian cancer cells. ULTRASONICS SONOCHEMISTRY 2016; 28:319-326. [PMID: 26384914 DOI: 10.1016/j.ultsonch.2015.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 06/05/2023]
Abstract
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm(2), 15s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.
Collapse
Affiliation(s)
- Jiangchuan Sun
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mingyue Yin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shenyin Zhu
- Department of Pharmacy, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ronald X Xu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shufang Chang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
47
|
Greene LM, Meegan MJ, Zisterer DM. Combretastatins: more than just vascular targeting agents? J Pharmacol Exp Ther 2015; 355:212-27. [PMID: 26354991 DOI: 10.1124/jpet.115.226225] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/25/2015] [Indexed: 01/23/2023] Open
Abstract
Several prodrugs of the naturally occurring combretastatins have undergone extensive clinical evaluation as vascular targeting agents (VTAs). Their increased selectivity toward endothelial cells together with their innate ability to rapidly induce vascular shutdown and inhibit tumor growth at doses up to 10-fold less than the maximum tolerated dose led to the clinical evaluation of combretastatins as VTAs. Tubulin is well established as the molecular target of the combretastatins and the vast majority of its synthetic derivatives. Furthermore, tubulin is a highly validated molecular target of many direct anticancer agents routinely used as front-line chemotherapeutics. The unique vascular targeting properties of the combretastatins have somewhat overshadowed their development as direct anticancer agents and the delineation of the various cell death pathways and anticancer properties associated with such chemotherapeutics. Moreover, the ongoing clinical trial of OXi4503 (combretastatin-A1 diphosphate) together with preliminary preclinical evaluation for the treatment of refractory acute myelogenous leukemia has successfully highlighted both the indirect and direct anticancer properties of combretastatins. In this review, we discuss the development of the combretastatins from nature to the clinic. The various mechanisms underlying combretastatin-induced cell cycle arrest, mitotic catastrophe, cell death, and survival are also reviewed in an attempt to further enhance the clinical prospects of this unique class of VTAs.
Collapse
Affiliation(s)
- Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (L.M.G., D.M.Z.), and School of Pharmacy and Pharmaceutical Sciences, Centre for Synthesis and Chemical Biology (M.J.M.), Trinity College Dublin, Dublin, Ireland
| | - Mary J Meegan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (L.M.G., D.M.Z.), and School of Pharmacy and Pharmaceutical Sciences, Centre for Synthesis and Chemical Biology (M.J.M.), Trinity College Dublin, Dublin, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (L.M.G., D.M.Z.), and School of Pharmacy and Pharmaceutical Sciences, Centre for Synthesis and Chemical Biology (M.J.M.), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
48
|
Lin CH, Lin XX, Lin L, Wang JM, Lin ZX, Lin JM. Development of LC–MS method for analysis of paclitaxel-inhibited growth and enhanced therapeutic response in human glioblastoma cells. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Zhao TT, Zhang J, Liang LS, Ma QH, Chen X, Zong JW, Wang GX. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch. PLoS One 2015; 10:e0135315. [PMID: 26270529 PMCID: PMC4536078 DOI: 10.1371/journal.pone.0135315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 12/03/2022] Open
Abstract
Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.
Collapse
Affiliation(s)
- Tian-Tian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Li-Song Liang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qing-Hua Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xin Chen
- Shandong Institute of Pomology, Shandong Provincial Key Laboratory of Fruit Tree Biotechnology Breeding, Tai’an, Shandong, China
| | - Jian-Wei Zong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Gui-Xi Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
50
|
Bernardo ADEM, Thorsteinsdóttir S, Mummery CL. Advantages of the avian model for human ovarian cancer. Mol Clin Oncol 2015; 3:1191-1198. [PMID: 26807219 DOI: 10.3892/mco.2015.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer. Early detection of OC is crucial for providing efficient treatment, whereas high mortality rates correlate with late detection of OC, when the tumor has already metastasized to other organs. The most prevalent type of OC is epithelial OC (EOC). Models that have been used to study EOC include the fruit fly, mouse and laying hen, in addition to human EOC cells in 3D culture in vitro. These models have helped in the elucidation of the genetic component of this disease and the development of drug therapies. However, the histological origin of EOC and early markers of the disease remain largely unknown. In this study, we aimed to review the relative value of each of the different models in EOC and their contributions to understanding this disease. It was concluded that the spontaneous occurrence of EOC in the adult hen, the prolific ovulation, the similarity of metastatic progression with that in humans and the advantages of using the chicken embryo for modelling the development of the reproductive system, renders the hen particularly suitable for studying the early development of EOC. Further investigation of this avian model may contribute to a better understanding of EOC, improve clinical insight and ultimately contribute to decreasing its mortality rates among humans.
Collapse
Affiliation(s)
- Ana DE Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|